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ABSTRACT 
This paper describes the application of the Relaxation 

By Elimination (RBE) method to matching the 3D 

structure of molecules in chemical databases within 

the frame work of binary correlation matrix memo- 

ries. The paper illustrates that, when combined with 

distributed representations, the method maps well 

onto these networks, allowing high performance im- 
plementation in parallel systems. It outlines the moti- 

vation, the neural architecture, the RBE method and 

presents some results of matching small molecules 

against a database of 100,OOO models. 

INTRODUCTION 

The maintenance of large chemical structure databas- 

es, possibly containing many millions of small mole- 

cules, and the development of techniques for rapidly 

querying these databases plays a key role in the proc- 
ess of ligand design in the pharmaceutical industry. 

This is the generation of small molecules that bind 

strongly with key receptor sites on biologically im- 
portant proteins so as to inhibit or alter their activity. 
The aim of the design process is to discover mole- 
cules which are both readily synthesised and which 

deliver the required medicinal action without produc- 
ing unwanted side effects, i.e., the drugs should work 
and be safe. Since the synthesis and experimental test- 
ing of potential ligands is both time-consuming and 
very expensive the ability of computational tech- 

niques to reduce the number of molecules that need to 

be considered experimentally is very attractive to the 

pharmaceutical industry. 

There are two forms that the querying of a database 
may take. When the 3D structure of a receptor site on 
a protein is known the task is to search the database to 

locate potential ligands that are complementary to the 
site, i.e., they may ‘dock’ there. Often the 3D struc- 

ture of the receptor site is unknown, but molecules 

that bind there are known through experiments. In 
these instances additional candidate ligands can be re- 

trieved on the basis of their similarity to these known 

molecules. 

A number of different techniques for assessing the 
complementary and similarity of molecular structures 
are currently in routine operational use in the pharma- 
ceutical industry e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 12],[13],[14]. Early approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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were underpinned by the conventional 2D bond dia- 

gram whereby each molecule is described in terms of 

a planar arrangement of atoms and bonds. This repre- 

sentation remains central to many chemical informa- 

tion systems today. More recently search techniques 

have been extended to handle 3D chemical databases 

employing the ‘ball and stick’ representation of mol- 

ecules (for a review see [14]). However, there has 

been an increasing realisation that both simple bond 

diagrams and ball and stick models are limited since 

they are inadequate for conveying the space require- 
ments of molecules and certain important properties 

at the molecular surface which influence the strength 

of protein-ligand interaction. As such, there has been 

a shift in emphasis to pattern matching methods based 
upon shape descriptors such as surface positions, nor- 

mals and curvatures, and properties, such as electro- 

static potential and lipophilicity, and a corresponding 
increase in interest in optimization techniques for 
maximising the similarity (or complementarity) of 
molecules represented in this way e.g.[15],(16],[15]. 

Unfortunately, this new research has met with only 

limited success. The reason is that when these more 
sophisticated descriptions are employed the search 
space tends to be large and complex and this causes 
problems. Specifically, conventional optimization 

techniques (e.g. gradient descent, simulated anneal- 
ing [18], genetic algorithms [19], the EM algorithm 
[20]) tend to get stuck in local minima because they 
only perform local searches in a small proportion of 

the search space. 

Fig. 1 A typical small molecule based on van der 

Waals surface. 

Our objective has been to introduce a framework for 

searching in large chemical databases on the basis of 
3D shape and surface properties (an example is 
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shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) that delivers a technique that IS both 
fast and avoids local minima. Moreover, we aim to 

provide a method that maps efficiently onto highly 

parallel systems based on neural networks. 

For the moment we restrict ourselves to similanty as- 
sessment. The problem of assessing the similarity of 
two molecules is abstracted as one of 3D relational 

graph matching and our development originally fol- 

lowed probability theory [9]. In this paper a different 

mapping of the method is provided that allows i t  to be 
run on a large number of binary neural correlation 

matrix memories. 

In general, the novel feature of the approach is the use 

of a new method for optimising the similarity func- 

tion delivered by the probablistic approach. Rather 

than use conventional optimization methods hindered 

by local minima, or exhaustive search methods 

(e.g.[21],[22]) compromised by speed, we exploit a 
radically different third approach which takes into ac- 

count all of the search space but allows processing to 

be achieved in a reasonable time without seriously 
undermining representational power. The basis of the 

method was outlined in the 1998 IEE Neural Network 

Conference[91. 

In this paper we concentrate on the implementation of 
the method in neural correlation matrix memories. 

The first section presents a functional outline of the 
method, methods. Following this we describe the im- 

plementation in Correlation Matrix Memories as 

combined within the AURA technology and evaluate 
the implementation in comparison to a conventional 

implementation [9] and describe the speed on a con- 

ventional workstation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BACKGROUND TO AURA 

The AURA methods are designed to implement sys- 
tems that manipulate uncertain information [2] using 
correlation matrix memories. They are based on 

methods developed from associative memories and 
neural networks. In particular, the approach exploits 
the pattern matching abilities of neural networks (spe- 

cifically threshold logic and distributed representa- 

tions) using simple one shot training methods similar 

to that used in associative memories. The information 

store is based on a simple one layer neural network 

structure, called a correlation matrix memory (CMM) 

that utilises binary weights. 

The AURA technology has grown out of binary neu- 
ral networks developed in the early 1970's, and inher- 

its their characteristics of ease of implementation, 

high-speed performance, and simple structure [6]. 

AURA has been developed for use in rule based sys- 

tems [6] where it has the ability to deal with large rule 
sets in small amounts of time, for use in time series 
prediction [3], image databases [4], string matching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, 

problems such as address databases and for general 

pattern matching problems based on the k-NN meth- 
od [5]. In addition, the technology has unique parallel 
processing capabilities [2] which allow it to deal with 

multiple simultaneous data inputs. 

OUTLINE OF THE AURA METHOD 

As described above, the AURA methods are based on 

correlation matrix memories. These networks have 

the advantage of one shot learning, i.e. data need only 

be presented once for the network to learn an associ- 
ation between two items. The CMMs used in AURA 

are typically binary, that is they have binary weights 

and binary inputs and outputs. If a CMM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, has input 

vectors I and output vectors 0, then training such a 

CMM to form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan association between one instance of 

I and 0 requires the following process: 

(1) Before M is used, initialise all elements to zero. 

(2) Take the outer product between I and 0, to pro- 

duce a matrix M' of the same dimensions as M as fol- 

1ows:M' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO T 

(3) Form the bit wise logical OR of M with M', as fol- 

1ows:M = M v M' 

This process is repeated for all training examples. 

To recall a stored output pattern, 0, for a given input 

pattern. I, the following operations are used: 

(1 ) Obtain a raw output pattern, R by: R = MI 

(2) Threshold R to obtain a binary pattern, in this case 
by applying a fixed threshold: 

For a l l  i 
If Ri 2 w then oi=l 
else O,=O 

endf or 

The threshold W is obtained by knowing the bit den- 
sity in the query input I. If the query input must exact- 

ly match the stored item, then W is chosen to equal the 
number of bits set in I. If the query input need only 

match by X% then the threshold is set to I x X%. 

In the ideal case the output pattern 0 will contain only 

a single pattern that was trained against the given in- 

put pattern, I. Unfortunately, if I is incomplete, then it 
is likely that more than one trained example will re- 

spond. This is represented by the superposition of the 

responding patterns in the output pattern 0. To allow 

these patterns to be separated we restrict each trained 

output pattern to a fixed density, and apply a method 
called MBI [7] to identify the multiple matches. MBI 
has been designed to operate very quickly on large da- 

tasets. 

In practical problems we also use a fixed density input 
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pattern (each trained pattern has the same number of 
bits set to one). When used in combination with mul- 

tiple memories, this allows us to identify if an input 

query exactly matches a stored example (described 

fully in [2]). 

Typical input data is made up of a number of data 

items which must be combined and applied to the 
memory to find amatch. This is achieved by first con- 

verting the data items to fixed weight binary strings 

then either superimposing the separate strings or con- 
catinating the strings. The former removes any order 
in the data being presented and is useful when dealing 

with cardinal data such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas found in rule evaluation 

systems. The latter preserves the order in the data and 

is useful in ordinal data streams as for example in text 

matching. 

The speed of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACMMs derives from the use of only 

very sparse access to memory and from their use of 

binary weights, allowing simple implementation in 

dedicated hardware [l]. In practice, an input vector, I, 
will contain only a small percentage of bits set. To 

perform the matrix multiplication for recall requires 

summation of the matrix lines selected by those bits 
set to one in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. The process of summing the lines is 

supported well in conventional software and very 

well in dedicated hardware. 

THE RBE FRAMEWORK 

This section outlines the RBE method more fully de- 
scribed in [l]. The development given here is aimed 
at showing how the method maps onto an array of 
correlation matrix memories. 

The approach is characterised by a number of models 
representing the stored molecules, and data represent- 
ing the molecule to be matched. Furthermore, the data 
is made up of a number of data points and the model 

made up of a number of model points. 

In our example, for simplicity of description, each 

model contains the same number of model points. 

Each point, in the model is numbered and character- 
ised by a set of measurements. For simplicity one 

measurement per model point is used in our example, 

as well as the distance between the points. In practice 
both the number of points in the model and in the data 
can vary. The problem addressed here is a conven- 

tional optimization problem, where it is necessary to 
find out which model best fits the data points and 

which point within a given model should be optimally 

assigned to a point on the data molecule. 

To understand how optimization is achieved, consid- 

er N data points, each which contain an initial unary 
measurement which represent data from a given mol- 
ecule to be matched. The task to be undertaken is to 
match these points to a set of models, M ,  and find the 
model that best fits. Each model contains a set of mod- 

el points, P, which also contain a single measurement 

giving the distance to the centeroid of the molecule. 
The data points are distributed over the data molecule 

at a regular distance from each other, and the inter- 

point distance, Dij is given between all data points i ,  
and;, and for all model points. 

As described below the method commences by using 
the distance to the centeroid to get an initial hypothe- 

sis of the matching models, which returns a large 
number of matches. With this data to hand, The ap- 

proach introduces the inter-point distances and ap- 

plies RBE to prune the search space, through iterative 
update. 

Initialisation. 

The first stage aims to obtain a context-free set of po- 

tential models at each data point. For this the ap- 
proach utilises the unary measurements at the data 

points to generate the list of initial candidate matches. 

For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd a t a  po in t  i in N 
For each mode l  p o i n t ,  j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 

Find all points in the m o d e l ,  j 
matches the measurement at the 
d a t a  p o i n t .  
Generate a list Lj of this data. 

endf or 
Fig.2 shows the state of a simple three point example, 

after the initialisation stage. In this example, point N3 
is the data point being updated, all nodes present lists 
of initial matches. 

a 

.. L3 

Fig. 2. The state of the system after 

initialisation 

Search. 

Step 1, finding the support 
The next stage applies knowledge of inter-point dis- 

tances. It visits each data point i ,  and for each checks 
the knowledge held at other data points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ to find any 
support for the models at i .  
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Step 3, pruning the support. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This stage performs the elimination of models that 

have little support. In this case it is performed over all 
data points and all models at each. In effect this is by 

setting T to the correct value. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL1D1.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-’ L’3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e 

L2D2,3-> L23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

N2 

N3 

Fig. 3. Computation of support to node N3 . 

For each data point, i, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. 
For all j ,  visit each data point, 
j, in N (not including i )  

Calculate the distance, Di,?, 
between the two points, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and J . 
Find which of’ the current mod- 
els, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ‘ j ,  support points at the 
distance D i , ,  . 
(This results in a support vector, LJi that shows 

how the data point j supports the data point i, 

given the list of points in models at j and the 

distance Di,j. Note, this is where the CMM is 

used later.) 

endf or 
endf or 

Step 2, fusing the support. 
This looks at each data point and fuses the support for 

its models given from other nodes. 

0 
NI 

e 
N3 

L3 = T(L’3+L23) 
0 

N2 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Calculation of new models supported at 

node N3 given support at the other nodes. 

For each point, i, in N. 
Sum the .support for all model 
points, LJi to get the raw support 
Lirdw at the node i. 
Threshold LiraW at a level T to get 
the binary model support vector, 

Li . 
endfor 

Over all points p in I \D<M, 

Find the models with the least 
support, and delete them. 

endf or 

Step 4, halting condition. 
This stops the iterations when all 

models have a support that ex- 
ceeds a threshold, T. 

Step 5, iteration. 
Repeat from step 1. 

Step 6, back check. 1 

The final stage is to find the dominant models that ex- 
ist in the final labelings, extract these and compare 
them with the input data. 

Note that the approach given here uses quite soft s u p  
port iilformation based on inter-point distances. The 

benefit of this is that it is fast, and will not remove any 
models that could match. At the end of processing 
each node will have information on which models are 
supported. Some of these will be ambiguous due to 

the simple distance constraint used. These can be 
eliminated by using conventional geometric matching 
on, what is now, a small set of candidate models. 

The iteration continues until only one or a number of 

models remain with the same support. Following the 
cessation of iterations the set of lists of model points 
at each node, L, must be examined to determine which 
nodes are supported, and this should be compared 

against the original models to determine if any mod- 
els are totally supported - i.e. if all the points for that 

model are to be found in L, distributed across the 

nodes N in a rational way. Although the method uses 
binary support information, the original formulation 

uses a probablistic framework which was then de- 

scribed in binary terms, but not implemented in 

CMMs [l]. 

The process halts when the support at all nodes fails 
to change. In practice, this may not be the lowest en- 

ergy state of the system, in that a large number of 
nodes may remain with high support. In this case a 
‘kick start’ is given to the node with the highest “am- 

biguity’’ of support, by increasing Tat that node, ef- 

fectively removing the least supported model at that 
node. 

. 
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In practice, all neighbours of a given node are select- 

ed to provide information to up date that node. It is 
possible to use a subset of the neighbours, but this 

leads to slower convergence. 

The approach uses a process of removing points that 
do not get support from other nodes (step 3). The mo- 

tivation for this is based on the observation that it is 

simpler and more reliable to eliminate all models that 

have no support, and to let this knowledge propagate, 
than to select models that have the highest support zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 
found in other relaxation based methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 11. 

USING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE CMM 

The CMMs are used to store information concerning 

“which points support which models”. 

At each data point there is a list of models which have 

model points that match the current data point. In the 

search stage, these models are combined with the in- 

ter-point distance on different points of the molecule 
and used to find which models could match. A search 

must be made of the mode database to find models 
$at are supported. The input of the CMM is a 2D ma- 

P keep=0.9 Y=0.3, Y=0.3 
w=4 w 4  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-D?l ; - ;  
threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

trix shown above, which codes the currently support- 

ed models, Lj  against the inter-point distance of 
interest, D,,i (see Fig. 2). This is input to the Ch4M 

which then looks up the models that match and out- 
puts a raw vector OFw which expresses this. This 

vector is then thresholded at a level Y to obtain a bi- 

nary vector giving the models supported at data point 

j from data point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, given ai LJ,. This information is 

sent to the data point currently being evaluated where 
it is combined as given above. The threshold level, Y, 
is determined from the number of bits set in the input 

to the CMM, which is controlled by the number of 

currently matching models. In practice Y can be re- 
duced as explained in section The parameterisation 

of the memory is derived from analysis of CMM stor- 
age ability [lo]. 

The encoding of the list of models L to a binary for- 
mat suitable for the CMM is simple, but the reverse 

process is not. For this reason the halting criterion in 
section 4, step 4 must be changed to one which is easy 
to compute when dealing with binary encodings of L. 
The criterion used is that the system be in a stable 
state, even after a ‘kick start’. 

623 

DISTRIBUTED SUPERIMPOSED CODE 
REPRESENTATION 

To ensure efficient use of resources the method uses 

distributed representations. This uses a n in m bit su- 

perimposed binary code and is used widely in AURA. 
In practice, if you have lo6 molecules to match in the 

database and about 50 points on each molecule, then 
using unary representations (one bit in m), the output 

of the CMM, M, will be M ~ ~ ~ ~ ,  lo6 in size. The input 

to the CMM is based on Msize multiplied by a unary 
encoded binary representation of the distance be- 

tween any two data points, which is typically Dsize, 30 

in size. This leads to a CMM of the order of 

(106)2~30, or 3 ~ 1 0 ’ ~  binary bits. This is clearly too 

large to implement (3.4 Tbytes). To overcome this the 
distributed coding is used, and relies on the fact that 

typically, at some data points, very few models will be 
activated after initialisation. Thus, the list labelling all 

points in the models M, can be compressed using a 
distributed representation without loss of too much 

information at those, i.e. by using 2 bits set in a binary 

vector size Msize‘ where Msize’ << Msize, and then su- 
perimposing the model point codes into one vector of 

size MsizL. In practice as long as some bits remain un- 

set in the distributed code at some nodes, the system 
will converge. 

COMPARATIVE RESULTS 

The method given above has been implemented using 

the AURA C++ library developed at York, and com- 
pared with the BINARY, non-CMM based method 
(binary version) described in [I]. Results in Table I 

Table 1. Comparative results. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I BINARY 1 AURA 1 AURA I I 

I P,. I 245 I 1.8 -1 14.9 1 
seconds) 



CMM method, and W value is the number of bits set 
in the binary vectors used to label each molecule. Our 

results show that the method recovers the same mole- 
cules as the 'binary' implementation described in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PARALLEL IMPLEMENTATION 

The method is designed to be implemented on dedi- 

cated implementations of CMMs such as the PRES- 

ENCE hardware developed in our group [2]. It is 
anticipated that a 5 times speed up is achievable using 

one PRESENCE processor node, and that good scale- 
up should be possible with more processing nodes. 

CONCLUSIONS 

This paper has described the use of a CMM based ap- 
proach for chemical structure matching. The tech- 

nique exploits a relaxation by elimination method that 

operates effectively in the AURA framework. The ap- 
proach is scalable and is simple to implement in par- 
allel. It can incorporate a wide variety of data types. 
Our current work is extending the basic framework to 

incorporate more molecular information, and map- 
ping the method on to a parallel implementation 
based on the PRESENCE hardware. 
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