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Abstract

Making predictions of the following word given the back his-

tory of words may be challenging without meta-information

such as the topic. Standard neural network language models

have an implicit representation of the topic via the back history

of words. In this work a more explicit form of topic represen-

tation is used via an attention mechanism. Though this makes

use of the same information as the standard model, it allows pa-

rameters of the network to focus on different aspects of the task.

The attention model provides a form of topic representation that

is automatically learned from the data. Whereas the recurrent

model deals with the (conditional) history representation. The

combined model is expected to reduce the stress on the stan-

dard model to handle multiple aspects. Experiments were con-

ducted on the Penn Tree Bank and BBC Multi-Genre Broadcast

News (MGB) corpora, where the proposed approach outper-

forms standard forms of recurrent models in perplexity. Finally,

N-best list rescoring for speech recognition in the MGB3 task

shows word error rate improvements over comparable standard

form of recurrent models.

Index Terms: language model, recurrent neural network, mem-

ory networks, attention, speech recognition, ASR

1. Introduction

Language models form a crucial component of many speech

and language processing pipelines, such as in speech recogni-

tion and machine translation. In many state-of-the-art systems,

a recurrent neural network language model (RNNLM) is com-

bined with a n-gram language model [1, 2] to obtain the best

performance. The advantage of the RNNLM approach is the

use of a long word history within a continuous hidden repre-

sentation. Making accurate predictions of the following word

given the back word history may be challenging without access

to meta information. This limitation is particularly evident for

tasks where the back word history is either ambiguous or can

take on multiple meanings, such as in the case of topic model-

ing. The standard RNNLM only has an implicit topic represen-

tation via the back word history and may struggle to learn this

representation, unless provided explicit guidance [3, 4].

This paper introduces a novel recurrent network architec-

ture, referred to as an Active Memory Network (AMN), that

introduces a more explicit topic representation to the standard

RNNLM structure via an attention mechanism. An AMN uses a

recurrent attention mechanism to actively attend to K dynamic

memory cells, where each memory cell may hold an eigen topic

representation when trained to do so. At each time-step, an opti-

mal topic representation for word-prediction can be obtained by

interpolating the memory cells. Furthermore, a time-dependent

regularization term is introduced to improve the training of an

AMN. A high-level overview of the AMN architecture is shown

in Figure 1, with further details in the following sections.

The model presented in this work is related to a range of

attention and memory based models such as Neural Turing Ma-

chines [5] and memory networks [6, 7, 8, 9, 10]. However, un-

like previous works, a simpler approach is presented here for

incorporating memory and attention into the model.

The rest of this paper is organized as follows. Section

2 gives a brief overview of neural network LMs. Section 3

presents the AMN architecture. The training and regularization

methods are discussed in Section 4 and 5. Experimental results

are presented in Section 6 with the Conclusion in Section 7.

Figure 1: Active Memory Network

2. Neural Network Language Models

Language models (LMs) are generally classified as either

discrete-space models such as n-grams, or continuous-space

models such as neural networks [11]. Continuous-space mod-

els can be further divided between ones that use the truncated

word-history from wt−k to wt (feedforward neural networks)

versus models that use the complete word-history from w1 to

wt (RNNLMs).

Unlike n-gram LMs, RNNLMs models the complete word-

history by computing a continuous hidden vector ht [2].

P (w) =

T
∏

t=1

P (wt|wt−1, ...,w1) ≈
T
∏

t=1

P (wt|ht) (1)

The hidden vector ht is computed by:

xt = Cwt (2)

ht = tanh(Wxxt +Whht−1) (3)

where xt is the word-embedding for the word wt obtained us-

ing an embedding matrix C, Wx is the input-to-hidden weight
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matrix, and Wh is the hidden-to-hidden weight matrix. Com-

puting the probability of the next word at time t is given by:

ŷt = Softmax(Woht) (4)

where Wo is the hidden-to-output weight matrix, and ŷt =
P (wt|ht) is the word probability distribution vector.

RNNLMs have been successfully applied in many language

modeling applications [2, 12, 13, 14, 15]. Most state-of-the-art

LMs are based on RNNs and their variants, such as GRUs or

LSTMs [16, 17, 18, 19, 20].

3. Active Memory Networks

As noted earlier, RNNs make use of a single hidden state to rep-

resent the input history, which implicitly includes any meta in-

formation. For language modeling, this meta information might

correspond to the topics; for acoustic modeling, this meta in-

formation might correspond to speaker acoustic characteristics.

This puts a lot of stress on a single hidden state, which may im-

pair model training. Thus in some situations, it may be better

to represent the meta information more explicitly. This would

require specifying: (i) the model for representing the meta infor-

mation and (ii) the method for training it. The Active Memory

Network (AMN) is introduced as a first step in that direction,

where a model that can learn to represent the meta information

is provided along with a training method that requires no addi-

tional supervision.

At a high-level, an AMN uses a recurrent attention mech-

anism to attend over K parallel, time-dependent memory cells

(abbrv. memcells) that share the same input xt. A diagram

comparing an AMN to a RNN is shown in Figure 2. Unlike a

RNN, an AMN contains multiple internal hidden states in the

form of the memcell vectors {m
(i)
t }, where i ∈ {1, ...,K}.

m
(i)
t can be interpreted as the hidden state of a single RNN, as

shown by its input-to-hidden and hidden-to-hidden connections

m
(i)
t = tanh(Wx(i)xt +Wm(i)m

(i)
t−1) (5)

where Wx(i) and Wm(i) are the input-to-hidden and hidden-

to-hidden weight matrix respectively. Note that each memory

cell has their own input-to-hidden weight matrix. Memory cells

are selected by computing a soft-attention vector using a con-

troller ut implemented by

ut = tanh(Qxxt +Quut−1) (6)

where Qx and Qu are the input-to-hidden and hidden-to-hidden

weight matrix respectively. To generate the attention vector

β
(i)
t = ut ·m

(i)
t (7)

is computed and passed through a softmax to obtain the atten-

tion weight α
(i)
t for m

(i)
t :

α
(i)
t =

exp(β
(i)
t )

∑

j
exp(β

(j)
t )

(8)

A summation of the memory cell vectors weighted by the

attention weights returns the response output ot.

ot =

K
∑

i=1

α
(i)
t ·m

(i)
t (9)

The predicted output at time t can then be computed by:

ŷt = Softmax(Woot) (10)

Finally, the network can be trained using standard RNN algo-

rithms, such as backpropagation-through-time (BPTT) [21].

Figure 2: Comparison of a RNN and AMN for a single time-

step.

4. Training the Attention Mechanism

Given the relatively complex architecture of the AMN model,

training from random initialization using BPTT is unlikely to

yield a robust attention mechanism. In the preliminary experi-

ments, the model often converged to a trivial attention mecha-

nism where many memcells were assigned near-zero attention

weights. To understand this, it is useful to examine the deriva-

tive of the response output o with respect to the weights used to

compute the memcell vector m(k):

∂o

∂w(k)
= α(k) ∂m

(k)

∂w(k)

(

1 + β(k) −
K
∑

i=1

α(i)β(i)
)

(11)

Here, ∂m(k)/∂w(k) is the derivative of the kth memcell vec-

tor with respect to its weights. Equation 11 implies that the

weight-update for the kth memory cell is directly proportional

to the attention weight α(k) assigned to it. In particular, when

α(k) = 0, the kth memcell never gets updated because the error

gradient goes to 0. On the other hand, when α(k) = 1, only the

kth memcell gets trained due to the sum to one constraint.

4.1. Attention-weight annealing

One simple remedy to address such greedy training behavior is

to force the model to activate all memcells during the first few

training epochs. This can be enforced implicitly by using an

annealing schedule

α
(i)
t =

exp(β
(i)
t /T )

∑

j
exp(β

(j)
t /T )

(12)

where T is the “temperature”. As T approaches infinity, α
(i)
t

approaches 1/K, which implies that the attention is evenly dis-

tributed across all memcells. As T approaches 0, one of the

weights α
(i)
t approaches 1 with the rest approaching 0, which

implies that the model is focused on a single memcell. Thus T
is initially set to a high value to encourage weight-tuning in all

memcells, and slowly lowered at each training epoch by multi-

plying with γ < 1.
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4.2. Dropout

Another technique that can prevent strong co-adaptation of at-

tention weights is dropout [22, 23]. For the controller, this can

be implemented using:

ut = tanh(Qx(xt ⊙ zut
) +Quut−1) (13)

where zut
is a bit-mask vector sampled anew at each time-step.

For the memcells, this can be similarly implemented by:

m
(i)
t = tanh(Wx(xt ⊙ z

m
(i)
t

) +Wm(i)m
(i)
t−1) (14)

Figure 3 shows how each component of the model is af-

fected by dropout in the controller and dropout in the memcells.

For the memcells, the response output is changed by both the

attention weights and the memcells. For the controller, the re-

sponse output is only changed by the attention weights. This is

shown by the dotted lines in the figure. This subtle difference

in how dropout affects each model component leads to drasti-

cally different regularization behaviors. In particular, dropout

in the memcells has the desirable property of regularizing both

the memcell vectors and the attention mechanism. Note that

Figure 3: Dropout in controller (left) versus dropout in mem-

cells (right). Dotted lines indicates computation paths affected

by noise injection from dropout.

these regularization effects are due to the structural properties

of AMN, and not the particular dropout method used. Thus, the

regularization effects of dropout in the memcell will still hold

even when an alternative method, such as [23], is used.

Figure 4: Weight-update in original error function (left) and

weight-update with ITL (right).

5. Regularization with Implicit Target Loss

Given the use of attention and memory in the AMN model,

a natural question which arises is: what should the memcells

model? The original formulation of the model is quite uncon-

strained in that there are no training signals that dictates what

the memcells should learn. This can lead to a high-degree of

co-adaptation in the memcells during training. An example is

illustrated in Figure 4, where a weight-update pushes the re-

sponse vector towards the desired target vector t, even though

the memcells are pushed towards different points. A reasonable

prior in this situation is to have one of the memcells focus on

modeling t and let the other memcell model some other vector.

To remedy this problem, a regularization term can be intro-

duced to encourage memcell specialization during training:

R(θ) = λ
K
∑

i=1

α
(i)
t ‖ot −m

(i)
t ‖2 (15)

where R(θ) is the regularization term and λ is the tunable reg-

ularization penalty. This regularization term – referred to as

the implicit-target loss (abbrv. ITL) – directly minimizes the

loss between the memcell vector m
(i)
t and the response output

ot. Intuitively, ot provides a time-varying implicit-target for the

memcells to directly model, where the quantity of the error con-

tributed by each memcell is proportional to its attention value

α
(i)
t . The right hand side of Figure 4 shows how the weight-

updates are changed by ITL. Instead of having both memcells

weakly pushed towards t, ITL induces a strong push towards t

in one of the memcells, and allows the other one to wander.

In the special case of R(θ) = 0, either (i) a single mem-

cell is activated or (ii) the memcells are identical. Case (ii) is

interesting since it suggests that ITL may encourage the model

to train the memcells to be identical. However, if noise was in-

jected into the computation of the memcells, it is highly unlikely

that any of the memcells will ever be identical. In particular, the

dropout technique for AMN discussed earlier will achieve pre-

cisely this effect. Consequently, R(θ) will be non-zero for most

training cases when used in conjunction with memcell-dropout.

5.1. Interpreting ITL as MoE

The AMN model in equation (9) can also be viewed as a pseudo

mixture-of-experts (MoE) [24, 25], with the gating function im-

plemented using the controller and the memcells acting as the

experts. However, unlike a typical MoE model, the memcell-

experts do not directly model an output class-probability distri-

bution y. Instead, each memcell learns a hidden representation

which is indirectly used to compute y via the interpolated re-

sponse vector o. To minimize the error, each memcell-expert

needs to output a vector that is both useful for predicting y and

accounts for the residual errors of the other memcell-experts.

In this context, ITL can be interpreted as a way to de-couple

the memcell interactions. Co-adaptation is discouraged because

ITL will penalize the activation of memcells that are contribut-

ing a high residual error towards o. This in turn frees the re-

maining memcells to further specialize for y without needing

to account for the errors made by the non-specialized experts.

5.2. Interpreting ITL as L2 regularization

Alternatively, one can also interpret ITL as a form of L2 regular-

ization on the memcells. This can be shown by setting ot = 0

and assuming that α
(i)
t = 1/K.

R(θ) = λ̃
K
∑

i=1

‖m
(i)
t ‖2 (16)
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where λ̃ is a scaled regularization penalty. This has implications

for setting the initial weights, since smaller weights will likely

push ot towards 0 thus pushing ITL towards L2 regularization.

6. Experiments

Preliminary language modeling experiments were performed

using the Penn TreeBank (PTB) dataset [22]. PTB consists

mainly of text related to finance, politics and business, and

contains roughly 1M words. The main language model experi-

ments – including speech recognition – were conducted on the

BBC Multi-Genre Broadcast News (MGB) dataset [26] using

a hybrid acoustic model trained on 275 hours of audio. MGB

consists of both manually-transcribed (4M) and automatically-

generated subtitles (700M) drawn from seven weeks of BBC

broadcasts, and contains many genres/topics.

The baseline RNN, GRU, and LSTM each had a single

recurrent layer containing 750 hidden units. The AMN con-

tained five memcells, where both the controller and the mem-

cells were implemented using a GRU recurrent layer with 500

hidden units. More details on the experimental setup can be

found in [27].

Model Valid Eval

RNN + Dropout 146 139

GRU + Dropout 115 114

LSTM + Dropout 127 117

AMN + Anneal + Drop-Mem 102 96

AMN + Anneal + Drop-Mem + ITL 98 91

Table 1: PTB perplexity with single hidden layer.

Table 1 shows consistent perplexity deductions from the

AMN model on PTB against standard RNN baselines. Train-

ing AMN with implicit target loss regularization (ITL) resulted

in better performance, likely due to the improved regularization

of the attention mechanism from ITL. Note that better results

can be achieved with further hyperparameter tuning [20, 28],

but this is outside the scope of these simple experiments.

Model Valid Eval

KN-5 (Mikolov et. al 2012) 148 141

RNN + LDA (Mikolov et. al 2012) 132 126

TopicRNN (Dieng et. al 2017) 129 122

TopicGRU (Dieng et. al 2017) 118 112

TopicLSTM (Dieng et. al 2017) 126 118

AMN + Drop-Mem 108 103

AMN + Drop-Mem + ITL 104 97

AMN + Anneal + Drop-Mem + ITL 103 95

Table 2: Comparison against explicit topic models on PTB.

A comparison of AMN against models that perform explicit

topic modeling [3, 29] is shown in Table 2. The AMN models

were trained with 100 recurrent units to compare with published

results. The perplexity results suggest that the topic modeling

approach espoused by AMN provides a powerful alternative to

the explicit topic modeling approach used by the other mod-

els. Moreover, the AMN modeling approach has the benefit of

avoiding the need to set up the topic space, such as choosing the

number of topics.

Perplexity and word error rate (WER) results on the MGB

task are shown in Table 3. RNNLMs were trained on a smaller

Model Datasets Perplexity WER

3-gram Man+Sub 127 28.5

RNN Man 198 27.8

GRU Man 164 27.2

AMN Man 142 27.0

Table 3: MGB perplexity and WER from 100-best rescoring. All

models were trained with 512 recurrent units.

Figure 5: Heatmap of genre distribution across memcells.

dataset due to computational constraints, which is why their per-

plexity results were worse than the tri-gram model – otherwise

the perplexity results were similar to the results for PTB. Sig-

nificant WER improvements were observed after interpolating

with the n-gram LM for n-best rescoring – a common practice

for speech recognition [2, 30, 31]. The best results were given

by the AMNLM, which obtained a 0.2 WER absolute improve-

ment over the GRU model. Figure 5 gives an example of the

genre distribution among the memcells in MGB based on topic

word-rankings. The genre word-ranking for memcell m(i) was

computed by ranking words in the genre-specific vocabulary ac-

cording to their attention α(i) averaged across all observations.

The figure shows that at least one memcell was highly active

for all genres. Note that no genre supervision was given to the

AMNLM, so any genre specialization behaviors in the mem-

cells were learned implicitly by the model.

7. Conclusions

Current forms of recurrent neural networks store an implicit

representation of the meta information, such as the topic, in

the back word history. In certain situations it may be advanta-

geous to model such representations more explicitly. This paper

proposed a model which stored multiple representations within

memory cells and used a (soft) attention mechanism to select

the most appropriate representation at each time-step. Since

training these models from random initialization tend to lead to

poor attention behaviors, this paper introduced several training

methods for yielding more robust attention mechanisms. Ex-

periments conducted on PTB and the MGB tasks show that this

new model can outperform various standard recurrent language

models in terms of perplexity and word error rate.
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