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Abstract  

Crystal lattice energy is a key property affecting the ease of processing pharmaceutical materials 

during manufacturing, as well as product performance. We present an extensive comparison of 

324 force-field protocols for calculating the lattice energies of single component, organic 

molecular crystals (further restricted to Z’ less than or equal to one), corresponding to a wide 

variety of force-fields (DREIDING, Universal, CVFF, PCFF, COMPASS, COMPASSII), 

optimization routines and other variations which could be implemented as part of an automated 

workflow using the industry standard Materials Studio software. All calculations were validated 

using a large new dataset (SUB-BIG), which we make publicly available. This dataset comprises 

public domain sublimation data, from which estimated experimental lattice energies were derived, 

linked to 235 molecular crystals. Analysis of pharmaceutical relevance was performed according 

to two distinct methods based upon (A) public and (B) proprietary data. These identified 

overlapping subsets of SUB-BIG comprising (A) 172 and (B) 63 crystals, of putative 

pharmaceutical relevance, respectively. We recommend a protocol based on the COMPASSII 

force-field for lattice energy calculations of general organic or pharmaceutically relevant 

molecular crystals. This protocol was the most highly ranked prior to subsetting and was either the 

top ranking or amongst the top 15 protocols (top 5%) following subsetting of the dataset according 

to putative pharmaceutical relevance. Further analysis identified scenarios where the lattice 

energies calculated using the recommended force-field protocol should either be disregarded 

(values greater than or equal to zero and/or the messages generated by the automated workflow 

indicate extraneous atoms were added to the unit cell) or treated cautiously (values less than or 

equal to -249 kJ/mol), as they are likely to be inaccurate. Application of the recommended force-

field protocol, coupled with these heuristic filtering criteria, achieved an RMSE around 17 kJ/mol 



 3 

(MAD around 11 kJ/mol, Spearman’s rank correlation coefficient of 0.88) across all 226 SUB-

BIG structures retained after removing calculation failures and applying the filtering criteria. 

Across these 226 structures, the estimated experimental lattice energies ranged from -60 to -269 

kJ/mol, with a standard deviation around 29 kJ/mol. The performance of the recommended 

protocol on pharmaceutically relevant crystals could be somewhat reduced, with an RMSE around 

20 kJ/mol (MAD around 13 kJ/mol, Spearman’s rank correlation coefficient of 0.76) obtained on 

62 structures retained following filtering according to pharmaceutical relevance method B, for 

which the distribution of experimental values was similar. For a diverse set of 17 SUB-BIG entries, 

deemed pharmaceutically relevant according to method B, this recommended force-field protocol 

was compared to dispersion corrected density functional theory (DFT) calculations (PBE+TS). 

These calculations suggest that the recommended force-field protocol (RMSE around 15 kJ/mol) 

outperforms PBE+TS (RMSE around 37 kJ/mol), although it may not outperform more 

sophisticated DFT protocols and future studies should investigate this. Finally, further work is 

required to compare our recommended protocol to other lattice energy calculation protocols 

reported in the literature, as comparisons based upon previously reported smaller datasets indicated 

this protocol was outperformed by a number of other methods. The SUB-BIG dataset provides a 

basis for these future studies and could support protocol refinement. 

Keywords 

lattice energy; sublimation enthalpy; force-field; density functional theory; drug-likeness 
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Introduction 

Being able to anticipate the different solid forms of drug candidates and, based upon knowledge 

of the solid form, determine their associated properties is crucial for assessing their 

developability.1 In particular, being able to accurately predict the lattice energy, a measure of 

solid state cohesion defined more precisely below, serves a number of useful purposes in the 

context of pharmaceutical development.  

The lattice energy may be related to the solid state contribution to the Gibbs free energy of 

solution and hence, in turn, related to thermodynamic solubility.2–4 Whilst incorporating lattice 

energies calculated from experimental crystal structures may not necessarily produce more 

accurate quantitative structure-property relationship (QSPR) models of solubility than those 

based on molecular descriptors alone,5,6 QSPR models based upon descriptors which can be 

explicitly related to the solid state or non-solid state contribution to solubility may provide 

greater physical insight.2,3 In turn, this may support rational design of new active pharmaceutical 

ingredients (APIs) or solid forms with more desirable solubility. Control of pharmaceutical 

solubility affects the dissolution rate and bioavailability of the final drug product,4 as well as 

supporting the design of manufacturing unit operations, such as cooling crystallization.7 Lattice 

energy calculations also support crystal structure predictions, especially if they are accurate 

enough to distinguish between polymorphs, which supports polymorph screening and, hence, 

assessments of thermodynamic stability.8–10  

Lattice energy calculations may also be used as an intermediate step for other analyses. Firstly, 

these calculations may be decomposed in terms of molecular synthons and support the design of 
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molecular crystals and crystallization processes.9,11–14 Secondly, it is conceivable that crystal 

structure based lattice energy calculations could support assessment of other factors related to 

pharmaceutical manufacturing, such as mechanical properties and powder behavior during 

processing.15 Using accurate lattice energy calculations as an intermediate step for these other 

analyses assumes that they correspond to accurate calculations of the constituent contributions, 

rather than being accurate due to cancellation of errors. 

The lattice energy may be defined as the energy change upon bringing together static, infinitely 

separated molecules (or, equivalently, molecules in an ideal gas), in their lowest energy 

conformation, to form a static lattice for an ideal crystal.8,16 The lattice energy is a contribution to 

the sublimation enthalpy, which can be obtained experimentally.17 Under certain assumptions, 

notably assuming the sublimed crystal to be an ideal gas, the relationship between sublimation 

enthalpy and the lattice energy can be expressed as per equation (1).17 (In equation (1), οܪ௦௨ 

denotes the sublimation enthalpy, ܧܮ the lattice energy, οܧ௩ the change in vibrational energy 

going from the solid state to the gas phase, ܴ is the molar gas constant, ܶ is the temperature in 

Kelvin, and 3.5 = ݔ for a linear molecule and x = 4 for a non-linear molecule.) However, if 

further assumptions are made regarding the solid state and gas phase vibrational states, equation 

(1) may be further simplified, as per equation (2).2 Since this equation implies all solids have the 

same, temperature independent, heat capacity, this is clearly a crude approximation. 

οܪ௦௨ ൌ  െܧܮ   οܧ௩   (1)  ܴܶݔ

 οܪ௦௨ ൌ  െܧܮ െ ʹܴܶ  (2) 

In principle, if accurate values for οܧ௩ were available, the experimental lattice energy could be 

derived from the experimental sublimation enthalpy via equation (1). Alternatively, if accurate 
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solid and gas phase heat capacity values as a function of temperature were available – along with 

solid phase change enthalpies where applicable, allowing for the sublimation enthalpy to be 

corrected to zero Kelvin,18,19 and the zero-point17,19 οܧ௩ was either negligible or known, the 

experimental lattice energy could also be derived using equation (1). However, in the absence of 

this information, it is typically necessary to derive a more approximate estimate of experimental 

lattice energy using equation (2). 

Hence, sublimation data may be used to evaluate lattice energy calculations, e.g. via comparing 

them to experimentally estimated lattice energies.2,20–22 In general, physics based methods are 

employed for calculating lattice energies from crystal structures. These methods include those 

which calculate energies using molecular force-fields, ab initio approaches, such as density 

functional theory (DFT), and hybrid approaches.23 

Molecular force-fields24 calculate intramolecular energetic contributions in terms of 

parameterized terms reflecting the deviation of bond lengths and angles from local energy 

minima and intermolecular energetic contributions in terms of parameterized terms reflecting 

different kinds of contributions to intermolecular forces, with functional forms based upon 

knowledge of the relevant physics.20,25–27 For example, the contribution to the intermolecular 

energy arising from the charge distribution of the isolated molecule might be approximated as 

the pairwise summation of atomic partial charges interacting via Coulomb’s law.20 The 

parameters assigned are contingent upon the “atom types” involved in the intermolecular or 

intramolecular interactions, where each “atom type” represents a given (set of) elements in a 

defined chemical environment.20 For example, the force-field parameters might include different 

atomic partial charges, for calculating Coulombic interactions, for different atom types.20 

Sublimation data may be used to help parameterize / optimize force-field approaches for 
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calculating lattice energies from crystal structures.26,27 However, the parameters used in these 

force-fields may be determined using a variety of calculated and experimental data and the 

parameters in existing force-fields may be refined using additional data.20,28 

In general, DFT calculations24,29,30 are based upon computing ground state electron densities, for 

a given solid state or molecular structure, and the corresponding electronic energy using a 

density functional which maps between them. Under certain simplifying assumptions, this 

density functional can be derived from first principles. A known weakness of many DFT density 

functionals is their failure to properly capture dispersion (van der Waals attraction) interactions 

in molecular solids. Hence, DFT calculations of lattice energies17,22,31 commonly apply a 

dispersion correction to the energy calculated using the density functional. Depending upon the 

choice of density functional, dispersion correction or force-field, literature studies suggest DFT 

calculations may or may not outperform force-field calculations of lattice energies.31 However, 

the computational overhead for DFT calculations of lattice energies is much higher than for 

force-field calculations. 

For crystals comprising a single molecular component, the lattice energy may be computed as 

per equation (3).22 In equation (3), ܧ denotes the energy per mole of unit cell, ܼ the total 

number of molecules in the unit cell and ܧ the energy per mole of isolated gas phase molecule.  

ܧܮ ൌ  ா െ   (3)ܧ 

These energetic terms may be computed using molecular force-fields or DFT calculations. In all 

cases, static structures are assumed. If it can further be assumed that the experimental crystal 

structure represents the lowest energy conformation of the solid state and that the lowest energy 
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gas phase geometry is approximately the same as the crystal structure molecular geometry,32 a 

force-field calculation of lattice energy can be obtained via only computing the intermolecular 

contributions to ܧ. These assumptions are made in the HABIT program33 and its extensions 

(HABIT95,34 HABIT98 and Visual HABIT),14 as well as by other force-field protocols for 

calculating lattice energies.26 However, even if changes in molecular structure in the gas phase 

are ignored, different lattice energy calculation protocols may also differ in the extent to which 

the input crystal structure geometry is optimized / relaxed to a local energy minimum with 

respect to the potential energy surface estimated from the calculation.11,20 Whilst the lattice 

energy is defined with respect to the energy minimized lattice structure according to the true 

potential energy surface, it must be remembered that the calculations only provide an 

approximation of this potential energy surface. It is possible that the true energy minimized 

structure lies closer to the experimentally observed structure, allowing for some deviation due to 

thermal expansion and experimental error, i.e. complete relaxation of the crystal structure 

geometry may not yield the most accurate lattice energy calculation. 

Hence, as well as the means of calculating energetic contributions (e.g. one out of many possible 

DFT methodologies or one out of many molecular force-fields), physics based calculations of 

lattice energies may also differ with respect to how the crystal and molecular structures are 

processed. Other variations, such as the choice of atomic partial charges to be assigned for force-

field calculations, are also possible.  

The primary goal of the present work was to thoroughly evaluate a range of possible protocols 

for computing the lattice energies of single component molecular crystals, using computationally 

inexpensive force-fields, which could be implemented via automated workflows using the 

industry standard Materials Studio software, so as to develop a recommended workflow for 
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automated lattice energy calculations that was appropriate for general organic and 

pharmaceutical materials.35 To ensure a thorough evaluation was carried out, not only were a 

variety of possible force-fields selected, but a range of options, such as the optimization protocol, 

were also evaluated. To ensure a robust assessment of the performance of each protocol was 

performed, these protocols were evaluated using a new, large dataset, comprising molecular 

crystal structures linked to experimental lattice energy estimates derived from sublimation 

enthalpy data. We make this dataset publicly available for future evaluations of lattice energy 

calculation protocols. At the time we submitted this work for publication, this was the largest 

reported dataset for evaluations of lattice energy calculations from crystal structures and it 

remains the largest dataset used for evaluation of the methods for lattice energy calculation 

considered herein. Whilst an even larger dataset was reported by Gavezzotti and Chickos whilst 

we were revising our work for publication,36 they evaluated different lattice energy calculation 

routines to the industry standard methods investigated here. 

Since we were interested in the most suitable protocol for calculating the lattice energies of 

pharmaceutically relevant crystals, analyses were repeated on subsets of the data putatively 

deemed to be more pharmaceutically relevant, according to different criteria. We further develop 

heuristic recommendations as to when lattice energies calculated using the best force-field 

protocol should be treated with caution. Subsequently, a comparison was made between the best 

force-field protocol and a modestly sized, chemically diverse subset of the new dataset, of 

putative pharmaceutical relevance, and a dispersion corrected DFT lattice energy protocol which 

was implemented within the publicly available CASTEP software37 when these studies were 

performed. Finally, we evaluated the best force-field protocol identified in our work using small 

datasets previously proposed in the literature for evaluating calculations of lattice energies / 
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sublimation enthalpies. These evaluations highlight the need for further comparative assessments 

of the different approaches, which would be supported by the large dataset we have made 

available. 

Methods and Data 

To assist the reader, a glossary of technical terms is provided in Supporting Information Table 

S1. 

SUB-BIG Dataset 

A dataset comprising 235 crystals, documented using their Cambridge Structural Database 

(CSD) refcodes,38 linked to 434 experimentally derived sublimation enthalpies, along with the 

corresponding temperature, was curated. Each crystal corresponded to a unique chemical, i.e. 

none of the crystals was a polymorph or redetermination of any other dataset entry.38 As is 

further discussed below, in the context of data quality, only a few sublimation enthalpies were 

confirmed to correspond to the same polymorph as the linked CSD refcode. Sublimation 

enthalpies reported at temperatures other than 298-298.15 Kelvin, i.e. 298 (0dp) Kelvin, were 

corrected to 298 Kelvin using the 3rd equation from Acree and Chickos.39 (Where experimental 

solid state heat capacities at 298 Kelvin – or very close to this – were available, these were used 

to apply this correction. Otherwise, the group contribution estimate of Acree and Chickos was 

applied.)39 This dataset was further processed to link each of the 235 crystals to an 

experimentally derived lattice energy estimate (see below). Here, this dataset is denoted “SUB-

BIG” and is available in the Supporting Information as an Excel file (SUB-BIG_rev.3.xlsx), 

which links each sublimation enthalpy datapoint to the literature reference, the corresponding 
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CSD refcode and metadata required to assess the quality of this datapoint and the assignment 

(see below), along with the processed version of the dataset, as a CSV file (SUB-

BIG_rev.3_FFevalInput.csv), linking each crystal structure to a single experimental estimate of 

lattice energy. Finally, the results of all force-field calculations, alongside the experimental 

lattice energy estimates and relevant metadata, including classification according to data quality 

and pharmaceutical relevance (see below), are also available from the Supporting Information as 

a single file (SUB-BIG_Integrated_Experi_Calc_Info.xlsx). 

As was required by our implementation of the force-field lattice energy protocols evaluated in 

this work (see below), all crystal structures corresponded to a single molecular component, with 

at most a single molecule in the asymmetric unit, i.e. Z’ ≤ 1.40 (Whilst most published organic 

crystal structures correspond to Z’ ≤ 1, the percentage of Z’ > 1 crystals is rising over time, from 

8% in 1970 to nearly 16% in 2012, with increasing interest in high Z’ and co-crystal structures 

within the pharmaceutical industry.)41 All crystal structures corresponded to organic molecular 

structures, albeit one entry (CSD refcode TPHBOR01) contained Boron, hence may be 

considered inorganic by some molecular modelling software programs.42 

At the time this work was submitted for publication, the SUB-BIG dataset was, to the best of our 

knowledge, larger than all previously reported datasets integrating experimental sublimation 

enthalpies (or experimentally estimated lattice energies) and crystal structures.2,9,17,19–22,25–28,31,43–

52 (Larger datasets were previously reported for molecular QSPR studies of sublimation 

enthalpies, but those datasets were not integrated with crystal structures.53,54) However, in the 

course of revising our manuscript for publication, Gavezzotti and Chickos reported an even 

larger dataset than SUB-BIG.36 
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An expanded description of SUB-BIG is provided in Supporting Information section A.0. 

Data Quality Assignments for SUB-BIG Dataset 

Data quality labels were assigned to the sublimation enthalpies, at 298 Kelvin, for the SUB-BIG 

dataset and the linked crystal structure. These were assigned based upon a set of heuristics 

reflecting the confidence in the originally curated sublimation enthalpy value, i.e. the 298 Kelvin 

correction was not accounted for as this kind of correction is commonplace in the experimental 

literature, as well as both the inherent quality of the crystallographic data and the degree of 

confidence to which it could be linked to the sublimation enthalpy, given known polymorphism 

for the chemical in question. (In only six cases was it possible to determine that the 

experimentally tested polymorph corresponded to the linked crystal structure. However, only 110 

datapoints, for which the experimentally tested polymorph could not be confirmed to correspond 

to the linked crystal structure, were linked to crystal structures for which polymorphism was 

observed via analysis of automatically identified polymorphs in the Best R-factor list55 or, where 

necessary, manual inspection of all relevant members of the refcode family in version 5.38 of the 

CSD.38 Moreover, previous studies indicate this would typically introduce a small degree of 

uncertainty into the experimentally estimated lattice energies for the corresponding crystal 

structures. Recent computational analysis suggests that most pairwise differences in lattice 

energies between polymorphs are typically less than 2 kJ/mol and are greater than 7.2 kJ/mol in 

only 5% of cases.56 Earlier analysis of experimental data also suggested sublimation enthalpies 

of polymorphs typically differ by only a few percent.)26 The quality labels assigned based upon 

the curated sublimation enthalpy and linked crystal structure were then combined to obtain an 

overall quality ranking (1 – 8) for the linked sublimation enthalpy at 298 Kelvin, with lower 
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values indicating higher confidence in the assignment of that value to the crystal structure and 

the crystallographic data. 

Regarding the quality labels assigned based upon the curated sublimation enthalpy, data were 

deemed of higher quality if the experimental error, by which we mean any quantitative 

uncertainty estimate, and experimental method were both available and curated and if the 

experimental error did not exceed 4.9 kJ/mol. (It has been suggested that typical errors in 

experimental sublimation enthalpies are of the order of 4.9 kJ/mol.22 However, as noted by 

Červinka et al.,19 different approaches to estimating sublimation enthalpy are associated with 

different quantitative estimates of uncertainty. Moreover, different studies may estimate these 

uncertainties in different ways.)19 If either the experimental method or error were not curated, or 

comments from the cited references suggested the datapoint might be considered unreliable, the 

datapoint was judged of uncertain quality, with the absence of a curated experimental error 

deemed to make the datapoint less reliable. If the experimental error exceeded 4.9 kJ/mol, the 

datapoint was deemed of lower quality. 

Regarding the quality labels assigned to the linked crystal structures, these took account of 

whether the assignment was uncertain due to known polymorphism, the size of the R-factor and 

whether the crystal was missing hydrogens or contained disordered atoms, albeit the automated 

preparation of crystal structures performed in the current work was designed to take fix the latter 

problems and no crystal structures with other kinds of documented disorder were included in the 

dataset. 

A full description of how these data quality labels and the final data quality ranks were assigned 

is provided in Supporting Information section A.1. 
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Derivation of Experimental Lattice Energy Estimates for SUB-BIG Dataset 

The workflow described in Supporting Information section A.2 was applied to resolve all 

sublimation enthalpies values reported at 298 Kelvin, or corrected to 298 Kelvin (see above), 

associated with a given CSD refcode in SUB-BIG into a single (average) sublimation enthalpy 

value at 298 Kelvin. In brief, lower quality datapoints (see above) and statistical outliers were 

excluded prior to averaging. This average sublimation enthalpy was then converted into an 

approximate, given the necessary crude assumptions,2,17 experimental estimate of lattice energy, 

using equation (2). The single data quality rank (see above) of the averaged sublimation enthalpies 

was assigned to the experimental estimate of lattice energy. 

Parsing SUB-BIG Dataset for Calculations 

Crystal structures were prepared for force-field and DFT calculations as summarized in Figure 

1. Further details, including how SMILES for the corresponding molecular structures were 

generated for additional analyses, are provided in Supporting Information section A.3. 
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Figure 1. Preparation of SUB-BIG dataset for evaluation of different lattice energy calculation 

protocols using different subsets of the dataset. All dataset preparation steps, following curation 

of the original 235 crystal structures linked to 434 sublimation data points, were automated using 

publicly available Python scripts,57 with “cleaning” of the crystal structures and filtering of Z’ > 

140 and multicomponent crystals – not applicable for SUB-BIG – carried out using the CSD Python 

API.58 

Force-Field Calculations of Lattice Energy 

Whilst 324 different protocols were evaluated, corresponding to variations in the details of each 

step, all protocols corresponded to the generic workflow in Figure 2. A variety of different options 

were explored: the choice of force-field (DREIDING,59 Universal,60 CVFF,61 PCFF,62 COMPASS,20 

COMPASSII);28 the optimization routine for the crystal structure (if any) and extracted gas phase 

molecule; charges assigned; van der Waals cut-offs, Ewald summation accuracy and convergence 
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criteria (“quality”).63,64 Full details are given in Supporting Information section A.4. N.B. We note 

that some of these force-fields, such as COMPASSII, may be iteratively refined between different 

versions of Materials Studio, although earlier iterations can also be accessed, as explained in the 

documentation.35 In the current work, we employed Materials Studio version 17.1.0.48 for all 

force-field calculations. 

Our automated workflow for applying these protocols was only applicable to single component 

molecular crystals, further restricted to Z’ <= 1.40 We note that this does not reflect intrinsic 

limitations of Materials Studio,35 but reflects the manner in which we implemented the 

calculations.57 We further note that we only investigated local optimization of the gas phase 

geometry. Whilst this limits the computational overhead and is a reasonable approximation in 

many cases, since the crystal conformer is typically energetically similar to the gas phase global 

minimum, lattice energy is defined with respect to the global minimum8 and this may sometimes 

be 25 kJ/mol lower than the crystal conformer.32
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Figure 2. A generic workflow for the 324 force-field protocols evaluated using the SUB-BIG 

dataset and various subsets thereof. The variations giving rise to 324 protocols are described in 

Supporting Information section A.4. Importantly, due to the manner in which they were 

implemented as a script57 for Materials Studio,35 these protocols were not applicable to structures 

with Z’ > 140 or more than one molecular component, e.g. co-crystals or salts. 

Statistical Assessment of Lattice Energy Calculations 

The predictive performance of the lattice energy calculations was assessed in terms of the root 

mean-squared error (RMSE), the coefficient of determination (R2), mean absolute deviation 

(MAD), Pearson’s correlation coefficient (r) and Spearman’s rank correlation coefficient (ȡ).31,65 

In addition, the 90% confidence intervals for the distributions of signed and unsigned errors 

obtained with the force-field protocols, for different scenarios, are provided in the Supporting 

Information (see below). For all force-field comparisons on the same sets of data, the protocols 
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were ranked in order of increasing RMSE, which is equivalent to ranking in order of decreasing 

R2.65 See Supporting Information section A.10 for further details. 

Principles for Assessing Pharmaceutical Relevance 

Two different approaches (A and B) were investigated for assessing the pharmaceutical 

relevance of entries in the SUB-BIG dataset. Importantly, for both approaches, pharmaceutical 

relevance was assessed with respect to whether the lattice energy – structure relationships observed 

within the subset of SUB-BIG classified as pharmaceutically relevant were expected to reflect the 

relationships observed for active pharmaceutical ingredients (APIs) or API candidates in drug 

development. (By lattice energy – structure relationships, we mean the molecular characteristics 

contributing to lattice energies and the manner in which they contribute. These could be different 

for pharmaceuticals as compared to general organic chemicals, e.g. due to the prevalence of 

particular molecular sub-structures or other changes which affect the kinds of intermolecular 

synthons formed and the strength of their contributions towards the lattice energy.) Any other 

considerations, such as reactivity and biological activity,66 were not deemed relevant, as the aim 

here was to ensure that the evaluation of lattice energy calculation routines would be relevant for 

the kinds of chemicals being assessed during drug development. 

Pharmaceutical Relevance Approach A 

A Support Vector Machine (SVM) binary classification model,67–69 employing a Tanimoto 

kernel70 with  molecular fingerprints chosen to best capture lattice energy – structure relationships, 

was trained to differentiate drugs (compounds found in DrugBank)71–73 from non-drugs (not 

present in DrugBank). (A range of off-the-shelf molecular fingerprint types and parameters 
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controlling the computation of those fingerprints were evaluated in terms of the predictive ability 

of a Support Vector Regression74 model for experimentally estimated lattice energies built using 

those fingerprints. The fingerprint which gave a model which was most predictive of 

experimentally estimated lattice energy was deemed most able to capture structural features of 

relevance to lattice energy. Full details regarding fingerprint selection are provided in Supporting 

Information section A.6.3.) Predicted drugs were deemed pharmaceutically relevant. A 

justification for this approach, in terms of its ability to differentiate chemicals exhibiting different 

lattice energy – structure relationships, is presented in Supporting Information section A6.4. A 

fuller explanation of how this method was implemented and its ability to correctly identify drug-

like chemicals is presented in Supporting Information section A.6.6. 

Pharmaceutical Relevance Approach B 

SUB-BIG entries were deemed to be pharmaceutically irrelevant if their values for molecular 

weight and the nConf20 flexibility descriptor75 were outside the typical range of values for a 

representative subset of the GlaxoSmithKline (GSK) in-house crystal structure database: 

molecular weight = 212 – 586, nConf20 = 0 - 37. The analysis which led to the selection of these 

descriptors and a complete explanation of method B are provided in Supporting Information 

sections A.6.5. and A.6.7. respectively. 

Assessment of the Suitability of Pharmaceutical Relevance Approaches 

Analyses, which are fully described in Supporting Information section A.6, provided partial 

evidence in support of different structure – lattice energy relationships for chemicals predicted to 

be drug-like vs. non-drug-like by method A. They more clearly indicated different structure – 
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lattice energy relationships when the available data were partitioned using the median value for 

the descriptors employed for method B, albeit different thresholds for these descriptors were 

employed to filter SUB-BIG entries. 

Density Functional Theory Calculations of Lattice Energy and Vibrational Energy 

The DFT lattice energy calculations are summarized in Figure 3, with full details in Supporting 

Information section A.7. The extent to which incorporating DFT calculations of vibrational 

energy improved the consistency between calculated and pseudo-experimental lattice energies, 

as per Reilly et al.,22 was investigated for a few data points (see Supporting Information section 

A.8). 

 

Figure 3. A simplified view of the DFT lattice energy calculation protocol evaluated in this work. 

(Full details are provided in Supporting Information section A.7.) This protocol was applied using 

the widely employed CASTEP software (standalone version 16.11).37,76 Energies, both for 
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optimizations and single point calculations, were computed using the PBE density functional77 in 

combination with the Tkatchenko and Scheffler78 dispersion correction (PBE+TS). 

DFT-Subset 

Due to the much higher computational overhead of DFT lattice energy calculations, it was not 

practical to perform these calculations for all SUB-BIG entries. Hence, a chemically diverse 

subset of 17 crystal structures was selected from the SUB-BIG entries which were deemed 

pharmaceutically relevant according to method B. (Full details are provided in Supporting 

Information section A.9.) This subset is denoted the DFT-Subset (Figure 4). Their diversity is 

reflected in their nConf20 values, along with other descriptors calculated as per Supporting 

Information section A.6.7., molecular weights, density and whether they contained hydrogen 

bonds, according to the CSD Python API (entry.crystal.hbonds()).58 Full details are provided in 

the Supporting Information (“SI_Electronic_Files\SUB-BIG_Dataset\DFT-Subset”). 
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Figure 4. The molecular structures of all entries in the DFT-Subset, labelled by their 

corresponding CSD refcodes. All entries were deemed pharmaceutically relevant according to 

method B (based upon consideration of their molecular weight and flexibility). The 13 entries also 

deemed pharmaceutically relevant according to method A (based upon their similarity to marketed 

drugs) are annotated accordingly. These images were generated from the SMILES derived from 

the CSD refcodes (Supporting Information section A.3) using CDK Depict.79 
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Computational Details 

A complete description of the versions of all software used for all calculations is provided in 

Supporting Information section B, along with detailed instructions required to reproduce all 

results. The scripts and Jupyter Notebooks which are required to reproduce these results have 

been made publicly available.57 

Results and Discussion 

The results of all force-field and DFT lattice energy calculations are provided in the Supporting 

Information: “SI_Electronic_Files”. The key findings obtained from analysis of those predictions 

are presented below. 

Comparative Performance of Force-Field Protocols and Selection of the Recommended 

Force-Field Protocol 

It should be noted that various calculations failed, either because Materials Studio was unable to 

process the structure – for CSD refcode HEXDEC03 – or because the lattice energy calculation 

workflow failed at some point, for some of the force-field protocols. In the latter case, different 

protocols failed for different structures. (The one Boron containing structure – CSD refcode 

TPHBOR01 – could only be parsed when the Universal60 or Dreiding force-fields59 were 

employed. This may reflect the fact that these force-fields were designed to offer broad coverage 

of chemical space. The fact that the COMPASSII, COMPASS, PCFF and CVFF calculations 

failed reflects the more specific atom type definitions employed by these force-fields. When 

trying to run calculations using each of these force-fields for the TPHBOR01 structure, following 
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the bond calculation step in the Materials Studio GUI, Materials Studio reported that a force-

field type could not be assigned. We note that the COMPASSII force-field does, at least, include 

an atom type for tetravalent Boron.20,28 However, the Boron atom in TPHBOR01 is trivalent.) 

Since different protocols failed for different structures, only the subset of 210 SUB-BIG entries 

for which none of the calculations failed was used to compute performance statistics when 

comparing all 324 protocols.  

The predictive performance statistics, across these 210 structures, for the five top ranking 

(lowest RMSE values) force-field protocols are presented in Table 1. (The y-scrambling analysis 

presented in Supporting Information section C.4 confirmed that the empirical performance of the 

best protocol was not an artefact of having evaluated a large number – 324 – of protocols.) All of 

these protocols involved the COMPASSII,28 or COMPASS,20 force-fields, force-field assigned 

charges and at least partial relaxation of the crystal structure. A fuller summary of the relative 

performance of the different force-field protocols is provided in Figure 5. It should be noted that 

the ranking of the protocols according to RMSE and Spearman’s rank correlation coefficient is 

not always identical. Hence, some protocols may be better for screening crystals according to the 

strength of solid state interactions than for predicting accurate lattice energy values. Nonetheless, 

the top ranking protocol according to RMSE is ranked 3rd when the protocols are ranked 

according to Spearman’s coefficient and the Spearman’s coefficient of the new 1st ranked 

protocol is indistinguishable when the values are rounded to two decimal places. 

Regarding the application of the calculation quality setting, we found that, across these 210 

structures, the ultra-fine setting consistently increased the average calculation time, albeit 

typically by less than one second. However, it only improved the RMSE 101/162 times and all 

performance statistics were only consistently improved 69/162 times. In the case of the top 
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ranking protocol from Table 1, the corresponding protocol employing the medium calculation 

quality setting was worse in terms of all performance statistics across these 210 structures, albeit 

with an RMSE increase of only 1.12 kJ/mol and a corresponding increase in average 

computational time of less than one second. These findings reflect the tighter convergence limits 

for these calculations (see Table S5), as illustrated for some examples in Supporting Information 

section C.14. 

Full performance statistics for all protocols, along with the 90% confidence intervals for the 

distributions of all signed and unsigned errors, are presented in an Excel file (SUB-

BIG_PerfStatsAllFFs.xlsx) in the Supporting Information. In addition, the Supporting 

Information provides performance statistics obtained for all evaluated subsets of SUB-BIG (see 

the Excel files referred to under Supporting Information Sections C.1 – C.2, Tables S8-S9). 

When only the SUB-BIG entries considered pharmaceutically relevant according to method A 

are considered (see Figure S1), the protocol with the lowest RMSE value obtained without 

filtering SUB-BIG (top row of Table 1) remains the top ranking protocol. When only the SUB-

BIG entries considered pharmaceutically relevant according to method B are considered (see 

Figure S2), that protocol is ranked 14th out of 324. The precise ranking, according to RMSE, of 

this protocol (see Figures S3 – S5) is further changed upon restricting consideration to those data 

judged of highest quality according to the heuristic data quality rankings assigned to every pair 

of crystal structure and estimated experimental lattice energy in SUB-BIG. (Since this 

appreciably reduces the size of the relevant subsets – see Figure S6, the rankings may not be as 

robust. The different rankings observed when filtering according to data quality may also, in 

some cases, partially reflect changes in coverage of chemical space as well. Similar molecular 

weight distributions – see Figure S6 – but appreciably different nConf2075 – Figure S7 – 
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distributions are observed when the entries deemed pharmaceutically relevant according to 

method B are filtered according to data quality.) Nonetheless, this protocol remains within the 

top 15 (top 5%) of all protocols for all evaluated subsets of SUB-BIG. 

Table 1. Top ranking five of 324 force-field protocols. Evaluated on all 210 SUB-BIG entries for 

which none of the calculations failed. All protocols are ranked in order of increasing RMSE 

(decreasing R2, the coefficient of determination for the predictions). All top ranking protocols 

involved relaxation (local optimization) of the molecular positions and internal co-ordinates within 

the crystal structure and force-field assigned charges. The details for the recommended protocol 

(lowest RMSE) are underlined. 

Force-field Unit cell 

parameters 

relaxed? 

Gas phase 

molecule 

relaxed? 

Quality RMSE  

(kJ/ 

mol) 

MAD 

(kJ/ 

mol) 

R2 r ȡ 

COMPASSII FALSE TRUE Ultra-

fine 

17.36 11.23 0.62 0.82 0.87 

COMPASSII TRUE TRUE Ultra-

fine 

17.84 10.98 0.60 0.81 0.85 

COMPASS FALSE TRUE Ultra-

fine 

18.13 11.90 0.59 0.80 0.84 

COMPASSII TRUE TRUE Medium 18.17 11.17 0.59 0.80 0.85 

COMPASS TRUE TRUE Ultra-

fine 

18.27 11.49 0.58 0.80 0.84 
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Figure 5. Summary of the relative performance of force-field protocols, corresponding to different 

force-fields and other protocol variations, on all 210 SUB-BIG entries for which all 324 protocols 

could compute a lattice energy. Protocols with negative Spearman rank correlation (ȡ) or RMSE 

values greater than 100 kJ/mol are not shown. The recommended force-field protocol is 

highlighted using an arrow and corresponds to the top ranking protocol from Table 1. 

Recommended Force-Field Protocol 

Out of the force-field protocols evaluated in this work, we recommend the top ranking 

protocol (lowest RMSE) as assessed upon all SUB-BIG entries for which every force-field 

protocol was able to calculate a lattice energy (Table 1), be used for future calculations of lattice 

energies where the focus is obtaining the most accurate lattice energies. This was also amongst the 

top 15 (top 5%) of all protocols for all evaluated subsets of SUB-BIG (see the Excel files referred 
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to in Supporting Information Sections C.1-C.2, Tables S8-S9). Moreover, the rankings obtained 

using the larger set of data, i.e. without filtering SUB-BIG, can be expected to be more robust. 

This recommended protocol corresponds to the following options: COMPASSII force-field,28 with 

force-field assigned charges, partial relaxation of the crystal structure geometry (including the 

positions and internal co-ordinates of the molecules, but not the unit cell parameters), local 

optimization of the gas phase geometry and the ultra-fine quality setting for Materials Studio35 

calculations (see Figure 6). 

However, it is not necessarily the case that the partial optimization of the crystal structure carried 

out by this protocol makes this most suitable for studies of intermolecular synthons or 

crystallization processes.11–14 Indeed, Bernardes and Joseph previously found, based upon 

consideration of different force-field protocols, that the most suitable protocol for accurate lattice 

energy calculations was not most suitable for evaluating structural characteristics.25 It is possible 

that, at least in part, this protocol gave the best empirical results, prior to subsetting the dataset, 

due to cancellation of errors involved in each step. Nonetheless, we found that allowing the unit 

cell parameters to relax – i.e. full local optimization – not only typically resulted in the calculated 

lattice energies becoming more negative and worse performance in terms of most statistical 

measures (Table 1), but could lead to significant distortion of the unit cell in some cases 

(Supporting Information section C.13). Hence, the constrained relaxation allowed for by the 

recommended protocol appears to be better for calculating lattice energies and may provide more 

realistic crystal structures for subsequent analysis.  

However, crystal structure prediction8,80 cannot rely upon fixed, experimental lattice parameters. 

Hence, the observation that the optimized structures obtained when the recommended protocol 

was modified to allow complete relaxation of the crystal structure, including the lattice parameters, 
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could differ significantly to the experimental structures in some cases (Supporting Information 

section C.13) may mean the force-field settings are not suitable for crystal structure prediction. 

However, this question is beyond the scope of the present study and requires further investigation. 

 

 

Figure 6. An overview of the recommended force-field protocol, applied to the “clean” crystal 

structures prepared via the automated workflow presented in Figure 1. All energies, both for 

optimizations and single point calculations, were computed using the COMPASSII force-field,28 

with force-field assigned charges and the ultra-fine quality setting for Materials Studio.35 

Performance of the Recommended Force-Field Protocol Coupled with Heuristic Filtering 

Criteria 

Analysis of six extreme prediction outliers (absolute errors of more than 100 kJ/mol with the 

recommended protocol, see Figures S12- S17) in SUB-BIG led to the development of the 
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following heuristic filtering criteria – designed to flag unreliable calculations obtained using the 

recommended force-field protocol. (N.B. These extreme outliers caused at least some of the 

force-field protocols to fail, hence weren’t included in the 210 entries used to compare different 

protocols.) 1. The calculation cannot be trusted if the ostensible number of atoms in the unit cell, 

reported by the lattice energy code, is inconsistent with the product of the z-value and the 

number of atoms in the extracted gas phase molecule. (Typically, this was observed to reflect the 

erroneous addition of extra hydrogen atoms as part of the automated structure preparation steps 

from Figure 1.) 2. Positive or zero lattice energies are unphysical and should be discounted. 3. 

Negative values less than or equal to -249 kJ/mol are unusual and may be unreliable (only one 

SUB-BIG entry had an estimated experimental lattice energy more negative than this). In all 

cases, these entries appeared to correspond to problematic preparation of the crystal structures as 

part of the combined automated steps applied as per Figure 1 and Figure 2. Other analyses were 

performed to see whether the prediction errors could be rationalized by consideration of 

differences in molecular weight (Figure S9) – since dispersion contributions were expected to 

increase with molecular weight and the handling of dispersion by the COMPASSII force-

field20,28 is imperfect,31 flexibility75 (Figure S10) – since the application of local optimization of 

the gas phase molecule would fail to properly handle scenarios where the energy of the global 

minimum gas phase conformer was significantly different to the crystal structure 

conformer,32and R-factor (Figure S11). However, no clear trends were observed. 

The performance of the recommended protocol, coupled with the heuristic filtering criteria, on 

all applicable SUB-BIG entries, i.e. also excluding those entries for which the calculation failed, 

is shown in Table 2, alongside the performance on different subsets of SUB-BIG. (The 

structures for which the recommended protocol failed, i.e. only produced an error message rather 
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than a lattice energy, or produced results which were rejected by the heuristic filtering criteria, 

were a subset of the structures for which any of the 324 force-field protocols failed. Hence, the 

statistics in Table 2 were computed on a larger set of 226 structures than the 210 structures used 

to compare different protocols, as per Table 1.) Regarding the variation in performance across 

different subsets, some of these statistics might be affected by artefacts due to variations in the 

distributions of the data. For example, a model which only successfully reproduced the lattice 

energies on average would have a lower RMSE if the data were distributed over a narrower 

range.2,65(However, it should be noted that the force-field calculations reported in Table 2 

consistently obtain an RMSE less than the standard deviation in the experimental values, i.e. they 

perform better than a model which merely reproduces the average of the experimental values.2 

The corresponding standard deviations, from Excel 2013, of the experimental values are as 

follows: 28.57 kJ/mol prior to filtering, 25.22 kJ/mol following filtering according to method A, 

29.41 kJ/mol following filtering according to method B, 21.57 kJ/mol for the DFT-Subset.) 

Conversely, if a model consistently produced residuals of a given magnitude, i.e. if  RMSE was 

fixed, R2 would be reduced if the data were distributed over a narrower range.65 Nonetheless, in 

spite of the possibility that some of the variation in these statistics might be affected by artefacts, 

consideration of all statistics suggests that the performance of the recommended protocol is 

either comparable or somewhat, but not dramatically, worse when moving to subsets of higher 

putative pharmaceutical relevance, including the DFT-Subset (a diverse subset of entries deemed 

pharmaceutically relevant according to method B). All experimentally estimated and calculated 

lattice energies, using the recommended protocol coupled with the heuristic filtering criteria, for 

all SUB-BIG entries are shown graphically in Figure 7. 
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Additional statistics are presented in Supporting Information Table S11, following filtering of 

these subsets to only retain the highest quality datapoints (data quality ranking = 1), according to 

the heuristic data quality labels. Curiously, although all performance statistics improve when 

filtering the applicable SUB-BIG entries and the subset deemed pharmaceutically relevant 

according to method A, the performance statistics are often worse when filtering the subset 

deemed pharmaceutically relevant according to method B or the DFT-Subset, a subset of those 

deemed pharmaceutically relevant according to method B, according to the heuristic quality 

labels. However, the statistics calculated on these smaller subsets are arguably less robust and 

possibly reflect, in part, differences in coverage of chemical space as well as data quality (see 

Figure S7).  

Finally, the distributions of the signed and absolute error distributions, when applying the 

recommended force-field protocol coupled with the heuristic filtering criteria, are summarized in 

Figures S18 – S25. These indicate that, depending upon the subset of the data considered, the 

absolute prediction error has at least a 95% chance of not exceeding 36.6 kJ/mol. 

Table 2. Performance of the recommended force-field protocol, coupled with the heuristic filtering 

criteria, on different subsets of SUB-BIG, including comparison to DFT (PBE+TS) calculations 

on the DFT-Subset. These statistics were calculated following removal of three structures for 

which the recommended protocol couldn’t generate any result and six structures excluded by the 

heuristic filtering criteria. Supporting Information Table S11 also presents statistics following 

filtering of these subsets according to the heuristic data quality labels. 

Subseta Number of 

crystal 

structures 

Method RMSE 

(kJ/mol) 

MAD 

(kJ/mol) 

R2 R ȡ 
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All applicable 

SUB-BIG entries  226 

Force-fieldb 

17.17 11.20 0.64 0.83 0.88 

Putative 

pharmaceutically 

relevant (Method 

A) subset 164 

Force-field 

16.83 11.59 0.55 0.81 0.86 

Putative 

pharmaceutically 

relevant (Method 

B) subset 62 

Force-field 

19.80 12.64 0.55 0.75 0.76 

DFT-Subset 17 Force-field 15.10 11.98 0.51 0.82 0.83 

17 DFT 37.14 29.00 -1.96 0.65 0.66 

a. Entries for which the recommended force-field protocol failed or which did not pass the 

heuristic filtering criteria were removed. The filtering criteria removed any entries for which 

the force-field protocol calculated lattice energies which were positive, less than or equal to -

249 kJ/mol and/or parsing of the messages generated by the Materials Studio Perl script 

indicated the automated structure preparation workflow had failed. 

b. All force-field calculations refer to the recommended protocol: COMPASSII force-field, with 

force-field assigned charges, partial relaxation of the crystal structure geometry (including the 

positions and internal co-ordinates of the molecules, but not the unit cell parameters), local 

optimization of the gas phase geometry and the ultra-fine quality setting for Materials Studio. 
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Figure 7. Comparison between experimental estimates of lattice energies and values calculated 

using the recommended force-field protocol, coupled with heuristic filtering criteria, for the SUB-

BIG dataset. The identity line is shown. Different symbols and colors denote whether the 

corresponding entries were deemed pharmaceutically relevant according to method A, B, both, or 

neither. Of the significant outliers (absolute error >50 kJ/mol), labelled according to their CSD 

refcode, only NOZWII has significant experimental uncertainty (data quality rank = 8). 

Comparison of Force-Field and DFT Lattice Energy Calculations 

As can be seen from Table 2, the recommended force-field protocol clearly performs much 

better than the DFT protocol, in terms of all statistical measures. (As can be seen from Table S11, 
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this remains the case when the DFT-Subset is filtered to only retain the highest quality datapoints, 

according to the heuristic data quality labels.) The comparative performance of both protocols is 

graphically illustrated in Figure 8. It is apparent that the DFT protocol tends to significantly 

overestimate the magnitude of the lattice energy, a bias which is reflected in its RMSE value (37.14 

kJmol) being substantially larger than the standard deviation of the estimated experimental lattice 

energies for the DFT-Subset (21.57 kJ/mol), i.e. the model yields worse absolute predictions than 

a model which merely reproduced the average experimental value. Still, the positive correlation 

coefficients are better than would be expected for this so-called null model.2 

Finally, we note that the dispersion corrected DFT protocol was also outperformed by a variant 

of the recommended force-field in which the unit cell parameters were also relaxed (Supporting 

Information Table S12). This protocol is more directly comparable to the DFT protocol, since both 

protocols employed full local optimization of the unit cell geometry and gas phase molecule. 

Our finding, that the dispersion corrected DFT protocol employed herein (PBE+TS),77,78 was 

substantially worse at calculating lattice energies than the recommended force-field protocol, 

prompted recent enhancements to the CASTEP DFT code employed for this work. Specifically, 

this work resulted in the development of CASTEP’s dispersion functionality to include an efficient 

many body dispersion functionality,81 Grimme D3.82 However, the newly developed CASTEP 

code was not available to us for the DFT calculations reported in the current work. 
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Figure 8. Comparison between experimental estimates of lattice energies and values calculated 

using (a) the recommended force-field protocol or (b) DFT for all 17 entries in the DFT-Subset. 

The identity line is shown for both plots. All entries were deemed pharmaceutically relevant 

according to method B and the results for those entries which were also deemed pharmaceutically 

relevant according to method A are denoted using yellow circles. Only with DFT predictions are 

significant outliers (absolute error >50 kJ/mol) observed. Of these outliers, labelled according to 

their CSD refcode, only UGIYEP has significant experimental uncertainty (data quality rank = 7). 

The molecular structures of these compounds can be seen in Figure 4. 
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Significance of Vibrational Contributions Calculated Using DFT 

As can be seen in Supporting Information Section C.5 (Table S10), the magnitudes of the 

deviations between the DFT calculated lattice energies and the experimental (or pseudo-

experimental) estimates of lattice energy consistently increased when pseudo-experimental lattice 

energies were derived using DFT computed vibrational calculations. 

Comparison of Our Results to the Literature 

In order to properly put our results in the context of previous studies which empirically assessed 

computational calculations of lattice energies or sublimation enthalpies, from crystal structures, 

we evaluated our recommended force-field protocol on a variety of the smaller datasets employed 

in previous studies: the X23 (23 crystals),22,31 SUB-48 (48 crystals),2 Bernardes et al. (23 

crystals)25 and original COMPASS II validation set (41 crystals).28 We computed performance 

statistics on subsets of those datasets for which our recommended force-field protocol calculated 

lattice energies which passed the heuristic filtering criteria. These statistics were based upon 

experimental estimates of lattice energy reported within or which could be estimated from those 

earlier studies. Where possible, we also computed performance statistics for these subsets based 

upon the calculated lattice energies, obtained with a variety of computational methods, which were 

reported within or could be estimated from those earlier studies. Full details are presented in 

Supporting Information section C.10, with the performance statistics summarized in Table S13. 

These results clearly show that our recommended force-field protocol clearly gives worse 

performance, in terms of all statistics, than the best dispersion corrected DFT methods reported for 

the applicable subset of the X23 benchmark.22 (However, these calculations have a much higher 

computational overhead than our recommended force-field protocol.) It is also outperformed, in 



 38 

terms of most statistics, by the OPLS-AA force-field calculations for the applicable subset of the 

dataset of Bernardes et al.25 However, its performance on the applicable subsets of the original 

COMPASS II validation set and the SUB-48 dataset is typically competitive, in terms of most 

statistics, to DMACRYS2 and the COMPASS II sublimation enthalpy simulations of Sun et al.28 

(converted to estimated lattice energies herein) respectively.  

Moreover, these comparisons are based upon much smaller datasets than the SUB-BIG dataset 

provided in our work and used to select our recommended force-field protocol (compare the 

numbers in Table 2 and Table S13). In addition, the subsets of these various datasets, for which 

the methods were compared, correspond to different distributions of key descriptors, which are 

expected to be related to different lattice energy – structure energy relationships, as shown in 

Figures S26 – S27. 

We also note that a significantly higher R2 (0.97) than that obtained on the SUB-BIG dataset using 

our recommended force-field protocol (0.64 on the 226 entries left after applying the heuristic 

filtering criteria) was reported more than two decades ago by Charlton et al.,51 for comparisons of 

force-field lattice energy calculations using the HABIT33 program without any structure 

optimization and atomic charges from semi-empirical quantum calculations. Whilst we were 

unable to derive their dataset to perform a direct comparison, we note that their dataset (62 crystal 

structures) was considerably smaller than the SUB-BIG dataset (235 crystal structures) employed 

for the current study. 

Further work is required to more confidently assess the relative merits of these different lattice 

energy calculation protocols, via comparison using a larger dataset than in earlier studies. The 

SUB-BIG dataset reported herein, along with the putative pharmaceutical relevance 

classifications, could support these further studies, as could the even larger dataset reported, in the 
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course of revising this work for publication, by Gavezzotti and Chickos.36 Indeed, integration of 

these datasets, especially if further supplemented with data clearly linked to multiple polymorphs 

of the same molecules,25 could yield an enhanced dataset for future investigations. 

Finally, we note that our study was concerned with evaluating calculations of lattice energies from 

crystal structures, focusing on force-field protocols which could be readily implemented using the 

industry standard Materials Studio software. Hence, models for lattice energy, or the related 

sublimation enthalpy, based purely on molecular structures were considered out of scope. In 

principle, calculations based upon crystal structures offer the ability to rank polymorph stability 

and support crystal structure prediction,8 albeit the SUB-BIG dataset does not offer insights into 

this (see SUB-BIG Dataset under Methods and Data). However, the level of predictive 

performance obtained with the recommended force-field protocol, as estimated using the SUB-

BIG dataset (Table 2), indicates it is far too inaccurate to capture the typically small energetic 

differences between polymorphs.56,83 Indeed, it would be interesting to see how well methods 

based purely on molecular structure53,54,84 compare to the force-field protocol recommended herein 

based upon the SUB-BIG dataset. For example, Cardozo reported a group contribution method 

with a standard deviation of 15 kJ/mol (experimental vs. calculated sublimation enthalpies) on an, 

unidentified, set of 115 organic compounds.84 This is comparable to the value obtained (17 kJ/mol) 

using the recommended force-field protocol (estimated experimental vs. calculated lattice 

energies), coupled with the heuristic filtering criteria, on all applicable 226 SUB-BIG entries. 

However, whether these statistics are directly comparable in light of possible differences in data 

distributions2,65 or whether the apparent performance would be comparable in terms of other 

statistics (Table 2) is an open question. It would be particularly interesting to see whether some 
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inexpensive calculations based upon molecular structure could offer comparable predictive 

performance to some crystal structure calculations, with reduced computational overhead. 

Computational Overhead 

The recommended force-field protocol takes approximately two seconds, on average, per crystal 

structure (based on the arithmetic mean timings for all DFT-Subset entries returned by the Perl 

time() function). In contrast, the dispersion corrected DFT lattice energy calculation took more 

than a day per crystal structure, on average, and the subsequent vibrational energy calculations 

took more than three days, on average, per crystal structure. (N.B. The different resources used to 

perform these calculations are documented in the Supporting Information (Section B).) Hence, 

also taking into account the reasonable correlation with experimental estimates of lattice energies 

(e.g. see Table 2), our recommended force-field protocol is suitable for screening in-house 

industrial databases of the order of hundreds (or maybe thousands) of crystal structures, as well as 

studying lattice energy structure relationships in larger datasets of tens of thousands of crystal 

structures. Indeed, recent work within industry85 and ongoing work within the ADDoPT project86 

has investigated lattice energy structure relationships based upon COMPASSII force-field 

calculations for hundreds and tens of thousands of crystal structures respectively. 

Scope for Improving the Recommended Force-Field Protocol 

The high Spearman’s rank correlation coefficient (0.88) obtained with the recommended protocol, 

coupled with the heuristic filtering criteria, across all applicable SUB-BIG dataset entries suggests 

this computationally inexpensive protocol is useful for screening large numbers of crystal 

structures according to their relative lattice energies. However, the corresponding error estimates 
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(RMSE around 17 kJ/mol) indicate that this method cannot be used to estimate relative stabilities 

of polymorphs.56,83 Estimating the phase diagram requires Gibbs free energy calculations and very 

high-level estimates of the lattice energy, as recently demonstrated for methanol.83 

There are several possible avenues which could be explored in future studies to improve the lattice 

energies calculated using the recommended force-field protocol: (1) improved description of the 

sublimation process; (2) improved description of the intermolecular and/or intramolecular 

interactions; (3) improved processing of the crystal structures; (4) Machine Learning modelling of 

the residuals. Regarding improved description of the sublimation process, the recommended 

protocol fails to take account of possible changes in tautomeric state87 and does not fully allow for 

changes in conformation, which are sometimes significant,32 during sublimation, i.e. only local 

optimization of the gas phase molecule extracted from the crystal is allowed. (In practice, 

experimental sublimation may also correspond to the formation of gas phase clusters, rather than 

isolated molecules.19 However, it is arguable that this issue requires correction of the sublimation 

data,19 rather than the calculation, given the definition of lattice energy with respect to infinitely 

separated gas phase molecules.)8 Nonetheless, the poor correlation observed between absolute 

prediction errors and the conformational flexibility descriptor nConf2075 (Supporting Information, 

Figure S10), suggests the failure to globally optimize the gas phase molecule was not a significant 

limiting factor here in most cases. 

Regarding the need for improved description of the intermolecular and/or intramolecular 

interactions, it should be noted that, whilst the functional form of the underlying COMPASSII 

force-field is documented along with the parameterization routine, full details of the parameters 

were not reported in the accompanying publication.28 Nonetheless, since this force-field employs 

a simple Lennard−Jones, pairwise additive, description of dispersion,20,28 we speculate that the 
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incorporation of more sophisticated dispersion contributions, as recommended elsewhere,31 could 

improve the calculations. We further speculate that the inclusion of atomic partial charges using 

quantum chemical methods might also yield better predictions. 

Regarding processing of the crystal structures, it should be noted that our implementation of the 

force-field workflows assessed in this work is not capable of handling Z’ > 1 structures.40 It is also 

clear that the structure pre-processing (Figure 1, Figure 6) could cause significant errors in some 

cases (see Supporting Information section C.7.), albeit the heuristic filtering criteria should serve 

to identify when these errors occurred. Improvements to this automated workflow could avoid 

chemically incorrect representations of a few structures leading to serious errors in the calculated 

lattice energies. 

Finally, recent work has found that Machine Learning may be used, with some success, to predict 

the difference between force-field and DFT calculations of lattice energies from knowledge of 

different crystal structures of the same molecule.88 Similar approaches might be suitable to learn 

the error in the force-field calculations of lattice energy presented here. The experimental lattice 

energy estimates, coupled with the corresponding force-field calculated values, for the SUB-BIG 

dataset, which we make available in the Supporting Information (“SI_Electronic_Files”), provide 

a useful starting point for exploring this in future studies. 

Conclusions 

To the best of our knowledge, we report the most extensive evaluation of different force-field 

protocol variations for calculating lattice energies presented to date in the literature. Moreover, 

as well as evaluating a large variety of different force-field protocols, we empirically evaluated 

their performance on a much larger dataset than previously published studies, which supports 
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more robust conclusions. This SUB-BIG dataset, comprising 235 molecular crystals linked to 

sublimation enthalpy data, from which estimated experimental lattice energies were derived, is 

made publicly available for future investigations. Moreover, all force-field protocols, coupled 

with preparation of experimental crystal structures, were implemented using an automated 

workflow employing the Cambridge Structural Database Python Application Programming 

Interface and the industry-standard Materials Studio. We have made the scripts implementing 

that automated workflow publicly available. 

Based upon our analysis, of relatively inexpensive force-field protocols implemented within the 

industry standard Materials Studio software, we recommend a force-field protocol based upon 

the COMPASSII force-field. This recommendation is based upon its having performed best on 

the unfiltered set of SUB-BIG for which all protocols could calculate a lattice energy, along with 

at least being amongst the top 15 ranking protocols (top 5% of 324 investigated protocols) 

following subsetting based upon putative pharmaceutical relevance according to two distinct 

methods. 

We further recommend some heuristic criteria for filtering unphysical (values greater than or 

equal to zero and/or the messages generated by the automated workflow indicate extraneous 

atoms were added to the unit cell) or suspicious (values less than or equal to -249 kJ/mol) lattice 

energy values calculated using the recommended protocol. Application of the recommended 

force-field protocol, coupled with these heuristic filtering criteria, achieved an RMSE around 17 

kJ/mol (MAD around 11 kJ/mol, Spearman’s rank correlation coefficient of 0.88) across all 226 

SUB-BIG structures retained after removing calculation failures and applying the filtering 

criteria. Across these 226 structures, the estimated experimental lattice energies ranged from -60 

to -269 kJ/mol, with a standard deviation around 29 kJ/mol. The performance of the 
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recommended protocol on pharmaceutically relevant crystals could be somewhat reduced, with 

an RMSE around 20 kJ/mol (MAD around 13 kJ/mol, Spearman’s rank correlation coefficient of 

0.76) obtained on 62 structures retained following filtering according to pharmaceutical 

relevance method B, for which the distribution of experimental values was similar. 

We determined that our recommended protocol outperformed the dispersion corrected DFT 

protocol investigated herein (PBE+TS), based on a diverse subset of SUB-BIG (17 molecular 

crystals) of putative pharmaceutical relevance (method B). This work prompted further 

development of the CASTEP DFT code, employed for this work, to improve its dispersion 

functionality. 

Comparison of the predictive performance of our recommended force-field protocol, coupled 

with the heuristic filtering criteria, to the performance of other lattice energy calculation 

protocols reported in the literature for much smaller datasets suggested some other calculation 

routines could provide more reliable lattice energy estimates. However, some of these calculation 

routines have a significantly higher computational overhead, hence are less suitable for obtaining 

quick estimates of lattice energy or screening large databases. Moreover, further work is required 

to assess whether the relative performance of the methods would remain unchanged when 

assessed on larger datasets. In addition, there is scope for improving our recommended force-

field protocol, building upon the results presented in our current work. The SUB-BIG dataset we 

make available here would provide a basis for future studies aimed at more robust comparison to 

other methods as well as improvements to our recommended force-field protocol. 
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