
This is a repository copy of Energy Efficiency of the Cell-Free Massive MIMO Uplink with 
Optimal Uniform Quantization.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152545/

Version: Accepted Version

Article:

Bashar, Manijeh, Cumanan, Kanapathippillai orcid.org/0000-0002-9735-7019, Burr, Alister 
Graham orcid.org/0000-0001-6435-3962 et al. (3 more authors) (2019) Energy Efficiency 
of the Cell-Free Massive MIMO Uplink with Optimal Uniform Quantization. IEEE 
Transactions on Green Communications and Networking. ISSN 2473-2400 

https://doi.org/10.1109/TGCN.2019.2932071

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Energy Efficiency of the Cell-Free Massive MIMO

Uplink with Optimal Uniform Quantization
Manijeh Bashar, Student Member, IEEE, Kanapathippillai Cumanan, Member, IEEE, Alister G. Burr, Senior

Member, IEEE, Hien Quoc Ngo, Member, IEEE, Erik G. Larsson, Fellow, IEEE, and Pei Xiao, Senior

Member, IEEE

Abstract—A cell-free Massive multiple-input multiple-output
(MIMO) uplink is considered, where the access points (APs) are
connected to a central processing unit (CPU) through limited-
capacity wireless microwave links. The quantized version of
the weighted signals are available at the CPU, by exploiting
the Bussgang decomposition to model the effect of quantiza-
tion. A closed-form expression for spectral efficiency is derived
taking into account the effects of channel estimation error
and quantization distortion. The energy efficiency maximization
problem is considered with per-user power, backhaul capacity
and throughput requirement constraints. To solve this non-
convex problem, we decouple the original problem into two sub-
problems, namely, receiver filter coefficient design and power
allocation. The receiver filter coefficient design is formulated as
a generalized eigenvalue problem whereas a successive convex
approximation (SCA) and a heuristic sub-optimal scheme are
exploited to convert the power allocation problem into a standard
geometric programming (GP) problem. An iterative algorithm
is proposed to alternately solve each sub-problem. Complexity
analysis and convergence of the proposed schemes are investi-
gated. Numerical results indicate the superiority of the proposed
algorithms over the case of equal power allocation.

Keywords: Cell-free Massive MIMO, Bussgang decomposition,
convex optimization, energy efficiency, geometric programming,
generalized eigenvalue problem.

I. INTRODUCTION

In recent years, several novel technologies have been iden-

tified for the design of fifth generation (5G) radio access

networks (RANs) to deliver a wide range of new user services

and to meet the dramatical increase of network spectral and

energy efficiencies. Massive multiple-input multiple-output
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(MIMO) and cloud RAN (C-RAN) have been recognized as

two of the key elements of 5G systems. In C-RAN, the remote

radio heads (RRHs) are distributed across the coverage area

and the base-band processing is carried out at central base

band unit (BBU). In cellular networks, the area is divided into

several cells with one base station (BS) in each cell and each

BS only serves users distributed in its cell. The bottleneck

in cellular networks is the performance of cell edge users

[1]. To deal with this problem, cell-free Massive MIMO is

introduced. In cell-free Massive MIMO, there are no cells, and

hence, no boundaries. All users in the network are coherently

served by many access points (APs) via a central processing

unit (CPU) [2]–[4]. In [5] a user-centric approach is proposed

where each user is served by a small number of APs. Cell-free

Massive MIMO effectively implements a user-centric approach

[6]. Moreover, the effect of hardware impairments on cell-free

Massive MIMO is investigated in [7].

Cell-free Massive MIMO is a scalable and practical ver-

sion of network MIMO or coordinated multipoint processing

(CoMP) [8], which combines Massive MIMO technology

and C-RAN. The authors in [9], [10] present an overview

of the basics of CoMP. The authors in [11] investigate the

performance of CoMP with statistical channels. Moreover, the

performance of CoMP with limited capacity backhaul links is

investigated in [12], [13]. Massive MIMO technology exploits

the favorable propagation and channel hardening properties to

offer huge spectral and energy efficiencies with simple linear

processing whereas C-RAN provides an opportunity for the

network operators to implement RANs without encountering

inter-cell interference. Note that the analysis of favorable

propagation and channel hardening in cell-free Massive MIMO

is presented in [14]. The backhaul load is one of the key

issues that needs to be addressed in any distributed antenna

systems [15]–[17]. As such, the implementation of cell-free

Massive MIMO with limited backhaul links is the main

challenge in the uplink mode, as the limited backhaul links

forward the received signal from the APs to the CPU. When

converted to digital form this requires a capacity for the

backhaul links many times the corresponding user data rate,

to ensure signals are transferred with sufficient precision. In

the C-RAN literature this has been estimated as 20-50 times

the corresponding data rate, implemented using the common

public radio interface (CPRI) standard [18], typically over

optical fiber [19].1 The assumption of infinite backhaul in [2]

1Note that in [19, page 12], the authors present various calculations for the
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is not realistic in practice. It is reasonable to assume, however,

that the fronthaul network will carry quantized signals, at least

in the uplink direction, and that this will affect the network

performance. Therefore, this paper provides an approach for

the analysis of the effect of backhaul quantization on the

uplink of cell-free Massive MIMO. While there has been sig-

nificant work in the context of network MIMO on compression

techniques such as Wyner-Ziv coding for interconnection of

BSs, here for simplicity (and hence improved scalability) we

assume simple uniform quantization. The non-uniform additive

quantization noise model (AQNM) quantizer is investigated

in [20], [21]. In this paper, we assume that the correlation

between the input signals of the quantizers at the different

APs is negligible. Note that the authors in [22] investigate the

effect of correlation across the antennas in collocated Massive

MIMO. We exploit the Bussgang decomposition [23] to model

the effect of quantization. We study the case when only the

quantized version of the weighted signal is available at the

CPU and the CPU employs maximum-ratio combining (MRC)

detection. Similar to the model in [24], the backhaul links

establish communications through wireless microwave links

with limited capacity. Next, we derive the backhaul rate of

cell-free Massive MIMO. For a given backhaul capacity, we

show that the relative total power consumption in the cell-

free Massive MIMO system depends on the length of uplink

pilot vectors, channel coherence time and the total number of

quantization bits.

An important performance metric is required to strike a

proper balance between the achievable data rate and the

consumed power [25]–[28]. The uplink energy efficiency of

the cell-free Massive MIMO system is investigated in this

paper. In particular, optimal power allocation strategies which

maximize the uplink energy efficiency are investigated for

a system in which the quantized version of the weighted

signals obtained from MRC weighting at APs are available

at the CPU. The contributions of the paper are summarized as

follows:

1. An expression for uplink energy efficiency is derived

based on channel statistics and taking into account the

effects of channel estimation errors, the effect of pilot

sequences, and quantization distortion.

2. We exploit the Bussgang decomposition to model the

effect of quantization and present the analytical solution

to find the optimal step-size of the quantizer.

3. A novel approach to solve the non-convex energy ef-

ficiency maximization problem is proposed, where we

propose to decompose the original problem into two

sub-problems and an iterative algorithm is developed to

determine the optimal solution. An successive convex ap-

proximation (SCA) is used to efficiently solve the power

allocation problem. Next, a heuristic sub-optimal energy

efficiency maximization problem is proposed where the

original optimization problem is transformed into a stan-

dard geometric programming (GP).

backhaul load. The factor 20-50 times does not appear, but (for example) it
suggests that GSM would require 25.6 Mbps - since GSM can send at most
280 kbit/s this would be more like 100 times.

Figure 1. The uplink of a cell-free Massive MIMO system with K single-
antenna users and M APs. Each AP is equipped with N antennas. The solid
lines denote the uplink channels and the dashed lines present the limited
capacity backhaul links between the APs and the CPU.

4. The convergence and complexity analysis of the proposed

schemes are presented. The numerical results confirm that

the proposed algorithm converges after a few iterations.

5. Numerical results demonstrate that the proposed scheme

substantially outperforms the case with equal power al-

location. Moreover, numerical results demonstrate that

although the proposed sub-optimal scheme has a lower

complexity, it provides a performance fairly close to the

SCA scheme.

A. Outline

The rest of the paper is organized as follows. Section II

describes the system model and Section III provides perfor-

mance analysis. The total energy efficiency model is presented

in Section IV and the proposed total energy efficiency maxi-

mization scheme is provided in Section V. Numerical results

are provided in Section VI, and finally Section VII concludes

the paper.

B. Notation

It is assumed that x ∼ CN(0, σ2) represents a zero-mean

circularly symmetric complex Gaussian random variable with

variance σ2. The conjugate of the variable x is presented by

x∗. Moreover, [x]n, R(x) and I(x) represent the nth element

of vector x, the real part and imaginary part of the complex

variable x, respectively. Finally, diag[x] refers to a diagonal

matrix whose diagonal elements are the elements of vector x.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free Massive

MIMO system with M APs and K single-antenna users

randomly distributed in a large area, as shown in Fig. 1.

Moreover, we assume each AP has N antennas. The channel

coefficient vector between the kth user and the mth AP,

gmk ∈ CN×1, is modeled as gmk =
√
βmkhmk, where βmk

denotes the large-scale fading and hmk ∼ CN(0, IN) represents

the small-scale fading [2]. In this paper, we evaluate the

performance of cell-free Massive MIMO for a scenario with

rich scattering. A possible, alternative model is the Ricean
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channel. Cell-free Massive MIMO with Ricean fading and

quantization errors has not been investigated before, but is out

of the scope of this paper. Two closely related works are: [29]

that investigates cell-free Massive MIMO with Ricean fading

but without quantization errors, and [30] that studies cellular

Massive MIMO with Ricean channels and with quantization

errors.

A. Uplink Channel Estimation

All pilot sequences transmitted by the K users in the channel

estimation phase are collected in a matrix Φ ∈ Cτp×K , where

τp is the length of the pilot sequence for each user and the

kth column of Φ, φφφk , represents the pilot sequence used for

the kth user. After performing a de-spreading operation (i.e.,

projecting the received pilot signal onto φφφk), the minimum

mean-square error (MMSE) estimate of the channel coefficient

between the kth user and the mth AP is given by [2]

ĝmk =cmk

(
√
τpppgmk+

√
τppp

K∑
k′,k

gmk′φφφ
H
k′φφφk+Wp,mφφφk

)
, (1)

where Wp,m denotes the noise vector at the mth antenna

whose elements are independent and identically distributed

(i.i.d.) CN(0,1), pp represents the normalized signal-to-noise

ratio (SNR) of each pilot symbol (which we define in Section

VI), and cmk is given by cmk =

√
τpppβmk

τppp

∑K
k′=1

βmk′ |φφφH
k′φφφk |2+1

. Note

that, as in [2], we assume that the large-scale fading, βmk , is

known.2 The estimated channels in (1) are used by the APs

to design the receiver coefficients.

B. Uplink Transmission

In this subsection, we consider the uplink data transmission,

where all users send their signals to the APs. The transmitted

signal from the kth user is represented by xk =
√

qk sk, where

sk (E{|sk |2} = 1) and qk denotes the transmitted symbol and

the transmit power from the kth user, respectively. The N × 1

received signal at the mth AP from all users is given by

ym =
√
ρ

K∑
k=1

gmk

√
qk sk + nm , (2)

where nm ∈ CN×1 is the noise at the mth AP and ρ is

the normalized uplink SNR. We assume that elements of nm
are independent and identically distributed (i.i.d.) CN(0,1)
random variables (RVs).

C. Optimal Uniform Quantization Model

We assume that the in-phase and quadrature components

of the weighted signals at each AP are uniformly quantized.

The Bussgang theorem [23] is exploited, where a nonlinear

output of a quantizer can be introduced by a linear function

plus uncorrelated distortion as Q(z) = az + nd, ∀k, where a is

2The large-scale fading βmk changes very slowly with time. Compared to
the small-scale fading, the large-scale fading changes much more slowly, some
40 times slower according to [31], [32]. Therefore, βmk can be estimated in
advance. One simple way is that the AP takes the average of the power level of
the received signal over a long time period. A similar technique for collocated
Massive MIMO is discussed in [32, Section III-D].

a constant, nd refers to the distortion noise, z is the input of

the quantizer [16], [23], [33]–[35]. The term a is given by a =
E{zh(z)}
E{z2 } =

1
pz

∫
Z zh(z) fz(z)d z, where pz = E{|z |2} = E{z2}

denotes the power of z and we drop absolute value as z is a

real number, and fz(z) represents the probability distribution

function of z. We define the second parameter b =
E{h2(z)}
E{z2 } =

1
pz

∫
Z h2(z) fz(z)dz [16], [23], [33]. We aim to maximize the

signal-to-distortion noise ratio (SDNR), which is defined as

follows: SDNR =
E{(az)2}
E{n2

d
} =

a2

b−a2 , where E
{
az2

}
= a2pz , and

E{n2
d
} = pnd

= (b − a2)pz . Note that for the midrise uniform

quantizer function, the terms a and b are obtained in [33].

In general, terms a and b are functions of the power of the

quantizer input, pz . To remove this dependency, we normalize

the input signal by dividing the input signal, z, by the square

root of its power,
√

pz , and then multiply the quantizer output

by
√

pz . Hence, by introducing a new variable z̃ = z√
pz

, we

have

Q(z) = √
pzQ(z̃) = ã

√
pz z̃ +

√
pz ñd = ãz +

√
pz ñd . (3)

The optimal step-size of the quantizer, ∆opt, can be obtained

by solving the following maximization problem:

∆opt=arg max
∆

SDNR=arg max
∆

a2

b−a2
=arg max

∆

ã2

b̃−ã2
. (4)

The maximization problem in (4) can be solved through a one-

dimensional search over ∆ for a given number of quantization

bits in a symbolic mathematics tool such as Mathematica [16],

[33], and the resulting distortion power are summarized in

Table I.

D. Quantization of the Weighted Signal at the APs

The received signal for the kth user is multiplied by the

low complexity MRC detector at each AP. Using Bussgang’s

theorem [23], a nonlinear output can be represented as a linear

function as follows:

Q
(
R

(
ĝH
mkym

))
= ãR

(
ĝH
mkym

)
+ σR(ĝH

mk
ym)ñd,mk, ∀k, (5)

where σR(ĝH
mk

ym) is the standard deviation of the R
(
ĝH
mk

ym

)
.

The same equality holds for the imaginary part I
(
ĝH
mk

ym

)
.

Note that the following equality holds:

σ2

R(ĝH
mk

ym) = σ
2

I(ĝH
mk

ym) =
1

2
σ2

ĝH
mk

ym
. (6)

Remark 1. Note that in [36], Bussgang assumes that the

input signal of the quantizer has a Gaussian distribution.

Since the input of quantizer is the sum of many random

variates, from the central limit theorem, it has near Gaussian

distribution. Therefore, we use the Bussgang decomposition,

making the approximation that the input of the quantizer is

Gaussian distributed. The Gaussian approximation can be

verified numerically, for typical parameter values, as shown

in Fig. 2a-2c. We can see that the cumulative distribution of

the empirical distribution matches very well with that of the

Gaussian distribution.
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Figure 2. Cumulative distribution of the input of the quantizer.

Table I
THE OPTIMAL STEP-SIZE AND DISTORTION POWER OF A UNIFORM

QUANTIZER WITH BUSSGANG DECOMPOSITION AND UNIT VARIANCE

INPUT SIGNAL [33].

α ∆opt pñd
= b̃ − ã2

= σ2
ẽ

ã

1 1.596 0.2313 0.6366

2 0.9957 0.10472 0.88115

3 0.586 0.036037 0.96256

4 0.3352 0.011409 0.98845

5 0.1881 0.003482 0.996505

6 0.1041 0.0010389 0.99896

In order to improve the performance, the forwarded signal is

further multiplied by the receiver filter coefficients at the CPU.

Finally, using the Bussgang decomposition and the receiver

filter coefficients umk,∀m, k at the CPU, the aggregate received

signal at the CPU can be written as

rk =

M∑
m=1

umkQ
(
ĝH
mkym

)

=

M∑
m=1

umk

(
ã ĝH

mkym+σĝH
mk

ym
ñd,mk︸          ︷︷          ︸

nd ,mk

)

=

M∑
m=1

umk

(
ã ĝH

mkym + nd,mk

)
. (7)

Collecting all the receiver filter coefficients umk,∀m, corre-

sponding to the kth user, we define uk = [u1k,u2k, · · · ,uMk]T .

without loss of generality, it is assumed that | |uk | | = 1.

III. PERFORMANCE ANALYSIS

In this section, we derive the spectral efficiency for the con-

sidered system model by following a similar approach in [2].

Note that the main difference between the proposed approach

and the scheme in [2] is the new set of receiver coefficients

which are introduced at the CPU to improve the spectral

efficiency. The benefits of the proposed approach in terms

of the spectral efficiency is demonstrated through numerical

results in Section V. In deriving the spectral efficiency of each

user, it is assumed that the CPU exploits only the knowledge

of channel statistics between the users and APs in detecting

data from the received signal in (7). The aggregated received

signal in (7) can be written as

rk = ã
√
ρE

{
M∑
m=1

umk ĝH
mkgmk

√
qk

}
︸                               ︷︷                               ︸

DSk

sk

+ ã
√
ρ

(
M∑
m=1

umk ĝH
mkgmk

√
qk−E

{
M∑
m=1

umk ĝH
mkgmk

√
qk

})
︸                                                              ︷︷                                                              ︸

BUk

sk

+ ã

K∑
k′,k

√
ρ

M∑
m=1

umk ĝH
mkgmk′

√
qk′

︸                          ︷︷                          ︸
IUIkk′

sk′

+ ã

M∑
m=1

umk ĝH
mknm

︸            ︷︷            ︸
TNk

+

M∑
m=1

umknd,mk

︸           ︷︷           ︸
TQDk

, (8)

where DSk , BUk and IUIk denote the desired signal (DS),

beamforming uncertainty (BU) for the kth user, and the inter-

user-interference (IUI) caused by the k ′th user, respectively.

In addition, TNk accounts for the total noise (TN) following

the MRC detection, and finally TQDk refers to the total

quantization distortion (TQD) at the kth user. The elements

of quantization distortion are i.i.d. RVs [37]. Moreover, if the

probability density function of the input of the quantizer is

even and we use a symmetrical quantizer, the quantization

noise has zero mean [38]–[40]. In addition, note that using

Bussgang decomposition the elements of the quantization

distortion are uncorrelated with the input of the quantizer [23],

i.e.,

E

{(
ĝH
mkym

)H
nd,mk

}
= 0. (9)

Exploiting (9), we have

E {(DSk .sk + BUk .sk) × TQDk} = 0. (10)

Hence, exploiting the analysis in [2], it can be shown that

terms DSk .sk , BUk .sk , IUIkk′ .sk′ , TNk and TQDk are mutually

uncorrelated. Using the fact that uncorrelated Gaussian noise

introduces the worst case, we obtain the corresponding spectral
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Sk =

(
1 −
τp

τc

)
log2 (1 + SINRk) =

(
1 −
τp

τc

)
log2

©­­­«
1 +

|DSk |2

E
{
|BUk |2

}
+

∑K
k′,kE{|IUIkk′ |2} + E{|TNk |2}+

1

ã2
E{|TQDk |2}

ª®®®¬
. (11)

SINRk =

N2uH
k

(
qkΓkΓ

H
k

)
uk

uH
k

(
N2

∑K
k′,k qk′ |φφφHk φφφk′ |2∆kk′∆

H
kk′ + N2

∑K
k′=1 qk′ |φφφHk φφφk′ |2Λk′ + N

∑K
k′=1 qk′Dkk′ +

N

ρ
Rk

)
uk

, (12)

efficiency (in bit/s/Hz) of the received signal in (8) as pro-

vided in (11) (given at the top of the next page), where SINRk

refers to the signal-to-interference-plus-noise ratio (SINR) of

the kth user and its closed-form expression is provided in the

following theorem.3

Theorem 1. By employing MRC detection at the APs, the

achievable uplink SINR of the kth user in the cell-free Massive

MIMO system with K randomly distributed single-antenna

users and M APs, each is equipped with N antennas, is given

by (12) (defined at the top of this page), where

Γk = [γ1k, γ2k, · · · , γMk]T , (13a)

∆kk′ =

[
γ1k β1k′

β1k
,
γ2k β2k′

β2k
, · · · , γMk βMk′

βMk

]T
, (13b)

Λk′ =
σ2
ẽ

ã2
diag

[
γ2

1k′, · · · , γ
2
Mk′

]
, (13c)

Dkk′ =

(
σ2
ẽ

ã2
+ 1

)
diag

[
β1k′γ1k, · · · , βMk′γMk

]
, (13d)

Rk =

(
σ2
ẽ

ã2
+ 1

)
diag [γ1k, · · · , γMk] , (13e)

and where γmk =
√
τpppβmkcmk .

Proof: Please refer to Appendix A. �

Finally, the sum spectral efficiency is given by

S (qk,uk, α) =
K∑
k=1

Sk (qk,uk, α) . (14)

IV. TOTAL ENERGY EFFICIENCY MODEL

A. Power Consumption Model

The total power consumption can be defined as follows [41]:

Ptotal = PTX + PCP, (15)

where PTX is the uplink power amplifiers (PAs) due to transmit

power at the users and PA dissipation [41], and PCP refers to

the circuit power (CP) consumption. The power consumption

PTX is given by

PTX =
1

ζ
ρN0

K∑
k=1

qk, (16)

3Note that the expectations are taken over small-scale fading and noise in
(8)-(11).

where ζ is the PA efficiency at each user. The power con-

sumption PCP is obtained as

PCP = MPfix + KPU +

M∑
m=1

Pbh,m, (17)

where Pfix is a fixed power consumption (including control

signals and backhaul) at each AP, PU denotes the required

power to run circuit components at each user and finally,

backhaul power consumption from the mth AP to the CPU

is obtained as follows [24], [42]–[44]:

Pbh,m = PBT

Rbh,m

Cbh,m

, (18)

where PBT is the total power required for backhaul traffic (BT)

at full capacity, Cbh,m is the capacity of the backhaul link

between the mth AP and the CPU, and finally Rbh,m is the

actual backhaul rate between the mth AP and the CPU and is

given by [24], [42]–[44]

Rbh,m =
2 K τf αm

Tc

, (19)

where αm denotes the number of quantization bits at each

AP and for simplicity we consider the same number of bits

at all APs, drop the index m and use α as the number of

quantization bits. Moreover, τf introduces the length of the

uplink data (in symbols) and is given by τf = τc − τp, where

τc denotes the number of samples for each coherence interval,

τp represents the length of pilot sequence, and finally Tc refers

to coherence time in seconds. Note that in (19) α is related

to the total uplink spectral efficiency, since it will affect the

TQD term and hence the total spectral efficiency in (11).

B. Total Energy Efficiency

In this section, we formulate the total energy efficiency of

cell-free Massive MIMO uplink. The total energy efficiency

is obtained by dividing the sum throughput (bit/s) by the total

consumed power (W) which is given by

Ee (qk,uk, α) =
B . S (qk,uk, α)

Ptotal

(
bit

Joule

)
, (20)

where B is the bandwidth.
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V. TOTAL ENERGY EFFICIENCY MAXIMIZATION

In this section, we propose a total energy efficiency max-

imization problem in cell-free Massive MIMO, where we

design the number of quantization bits α, the receiver filter

coefficients uk and the power coefficients qk to maximize

the total energy efficiency under per-user power and per-

user spectral efficiency constraints. Hence, the total energy

efficiency maximization can be modeled as follows:

P1 : max
qk ,uk ,α

Ee (qk,uk, α) (21a)

s.t. Sk (qk,uk) ≥ S
(r)
k
, ∀k, (21b)

| |uk | | = 1, ∀k, (21c)

0 ≤ qk ≤ p
(k)
max, ∀k, (21d)

Rbh,m ≤ Cbh,m, ∀m, (21e)

where S
(r)
k

is the required spectral efficiency of the kth user,

p
(k)
max and Cbh,m refer to the maximum transmit power available

at user k and the capacity of backhaul link between the mth

AP and the CPU, respectively. Assuming the same amount

of backhaul capacity between all APs and the CPU, we drop

the index m, and use Cbh for simplicity. Using the analysis in

Section IV, Problem P1 can be written as

P2 : max
qk ,uk ,α

B . S (qk,uk, α)
1
ζ
ρN0

∑K
k=1 qk+MPfix+KPU+PBT

2 K τ f α

Tc

PBT

Cbh

(22a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (22b)

| |uk | | = 1, ∀k, (22c)

0 ≤ qk ≤ p
(k)
max, ∀k, (22d)

Rbh ≤ Cbh, ∀m. (22e)

Problem P2 contains one discrete variable (the number of

quantization bits). Note that the number of quantization bits,

α, can take only discrete values. Hence, we can formulate the

problem for fixed values of the number of quantization bits α,

and we investigate the optimal values of α numerically. As a

result, for a given α, the total energy efficiency maximization

problem can be re-formulated as follows:

P3 : max
qk ,uk

B . S (qk,uk, α)
1
ζ
ρN0

∑K
k=1 qk+MPfix+KPU+PBT

2 K τ f α

Tc

PBT

Cbh

(23a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (23b)

| |uk | | = 1, ∀k, (23c)

0 ≤ qk ≤ p
(k)
max, ∀k . (23d)

We then reformulate Problem P3 into the following problem:

P4 : max
qk ,uk ,ν

B . S (qk,uk, α)
1
ζ
ρN0ν

∑K
k=1 p

(k)
max+MPfix+KPU+PBT

2 K τ f α

Tc

PBT

Cbh

(24a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (24b)

| |uk | | = 1, ∀k, (24c)

0 ≤ qk ≤ p
(k)
max,∀k, (24d)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max, (24e)

ν∗ ≤ ν ≤ 1, (24f)

where ν is a auxiliary variable and ν∗ and is obtained through

the following remark.

Remark 2. Based on the analysis in [45], [46], the slack

variable ν∗ is obtained by solving a power minimization

problem subject to the same per-user power constraints in

(24d) and throughput requirement constraints in (24b). For

details, please refer to Appendix B. �

Theorem 2. The optimal solution of Problem P3 and problem

P4 are equal.

Proof: The proof of Theorem 2 follows the same approach

in the proof of [45, Theorem 1]. Let us assume {Uopt,qopt} and

{ ÛUopt, Ûqopt, Ûν} are the optimal solution of Problems P3 and P4,

respectively. It is easy to show that
∑K

k=1 Ûqk = Ûν∑K
k=1 p

(k)
max.

Moreover, based on [45], it is clear that ÛUopt and Ûqopt provide

a feasible solution to Problem P3. Exploiting the per-user

power constraints, using ν = 1∑K
k=1 p

(k)
max

∑K
k=1 qk and 0 ≤ ν ≤ 1,

and by considering the throughput requirement constraints,

one can conclude that {Uopt,qopt} provide a feasible solution

to Problem P4. Through these two facts, it is not difficult

to show that the optimal solutions of Problems P3 and P4

are equal, which completes the proof of Theorem 2. �

Hence, we can convert the original total energy efficiency

maximization problem into a total energy efficiency maxi-

mization problem with per-user power constraints, throughput

requirement constraints and the new total power constraint.

Next, Problem P4 is iteratively solved by performing a one-

dimensional search over the variable ν∗ ≤ ν ≤ 1 [45].

Therefore, for a given ν, the denominator of the objective

function of Problem P4 is a constant, which enables us to

define the following equivalent optimization problem:

P5 : max
qk ,uk

S (qk,uk, α) (25a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (25b)

| |uk | | = 1, ∀k, (25c)

0 ≤ qk ≤ p
(k)
max,∀k, (25d)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max. (25e)

Problem P5 is not convex in terms of uk and power allocation

qk, ∀k. Therefore, it cannot be directly solved through existing
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P7 : max
uk

N2uH
k

(
qkΓkΓ

H
k

)
uk

uH
k

(
N2

∑K
k′,k qk′ |φφφHk φφφk′ |2∆kk′∆

H
kk′ + N2

∑K
k′=1 qk′ |φφφHk φφφk′ |2Λk′ + N

∑K
k′=1 qk′Dkk′ +

N

ρ
Rk

)
uk

(27a)

s.t. | |uk | | = 1, ∀k . (27b)

convex optimization software. To tackle this non-convexity

issue, we decouple Problem P5 into two sub-problems: re-

ceiver coefficient design (i.e. uk) and the power allocation

problem. The optimal solution for Problem P5, is obtained

through alternately solving these sub-problems, as explained

in the following subsections.

A. Receiver Filter Coefficient Design

In this subsection, the problem of designing the receiver

filter coefficient vector is considered. We solve the total energy

efficiency maximization problem for a given set of power

allocations at all users, qk,∀k, and fixed values for the number

of quantization bits, αm, ∀m. These coefficients (i.e., uk ,

∀ k) are obtained by independently maximizing the total

uplink energy efficiency of the system. Note that the spectral

efficiency of the kth user, i.e., Sk (qk,uk, α), is a function of

only uk (it does not depend on uk′ , where k ′
, k), and hence,

the optimal receiver filter coefficients can be determined by

solving the following optimization problem:

P6 :max
uk

Sk (qk,uk, α) (26a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (26b)

| |uk | | = 1, ∀k . (26c)

Note that the satisfaction of constraints in (26b) will be

ensured in the power allocation problem. Hence, we drop

constraint (26b) and Problem P6 can be reformulated as

Problem P7 (defined at the top of this page). Problem P7 is

a generalized eigenvalue problem [4], [47]–[49], where the

optimal solutions can be obtained by determining the gener-

alized eigen vector of the matrix pair Ak = N2qkΓkΓ
H
k

and

Bk = N2
∑K

k′,kqk′ |φφφHk φφφk′ |
2
∆kk′∆

H
kk′ +N2

∑K
k′=1qk′ |φφφHk φφφk′ |

2
Λk′ +

N
∑K

k′=1qk′Dkk′+
N
ρ

Rk corresponding to the maximum gener-

alized eigenvalue.

B. Power Allocation

In this subsection, we solve the power allocation problem

for a given set of fixed receiver filter coefficients, uk , ∀ k,

and fixed values of quantization levels, Qm, ∀m. The optimal

transmit power can be determined by solving the following

total spectral efficiency maximization problem:

P8 : max
qk

S (qk,uk, α) (28a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (28b)

0 ≤ qk ≤ p
(k)
max, ∀k, (28c)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max. (28d)

Problem P8 can be reformulated as follows:

P9 : min
qk

K∏
k=1

(
1 + SINRk (qk,uk, α)

)−1

(29a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (29b)

0 ≤ qk ≤ p
(k)
max, ∀k, (29c)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max. (29d)

Problem P9 is generally a non-convex problem, however, it

can be reformulated as a standard GP problem [50]. We first

rewrite Problem P9 as follows:

P10 : min
qk ,tk

K∏
k=1

(1 + tk)−1 (30a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (30b)

0 ≤ qk ≤ p
(k)
max,∀k, (30c)

SINRk ≥ tk,∀k, (30d)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max, (30e)

where tk,∀k refers to the slack variables. Problem (30) is

a non-convex signomial problem. However, in Appendix C,

we will show that all constraints in (30) can be reformulated

into posynomial functions. Hence, if the objective function in

(30) can be reformulated into a posynomial function, problem

(30) is a standard GP and has an optimal solution [50]. This

motivates us to propose two schemes to transform Problem

(30) into a standard GP.

1) Efficient Power Allocation Scheme: We use the SCA

scheme proposed in [51] to convert Problem (30) into a

standard GP. This scheme is referred to as the “inner ap-

proximation algorithm for non-convex problems” in [51], and

introduces an efficient solution for the original problem [45],

[51]. Based on the analysis in [51], it is possible to search

for a local optimum through solving a sequence of GPs

which locally approximate the original optimization problem.

This scheme is called the “inner approximation algorithm

for non-convex problems” in [51]. This scheme provides an

efficient solution for the original problem [45], [51]. Next, the

following lemma using SCA is required [45, Lemma 1]:

Lemma 1. Function Θ(x) = κtξ can be used to approximate

function Π(x) = 1 + t, near the point t̂. The best monomial

local approximation is obtained by the following parameters:

ξ =
t̂

1 + t̂
, κ =

1 + t̂

t̂ξ
, (31)



8

Algorithm 1 Proposed algorithm to solve Problem P5

1. Initialize q(0), U(0). Calculate the uplink SINR
(0)
k

, t
(0)
0

and

S
(r)
k

using q(0) and U(0), and set the initial SINR guess and

initial auxiliary variables as t̂k = SINR
(0)
k
,∀k, and t

(0)
k
=

SINR
(0)
k
,∀k, respectively.

2. Set q(∗)
= 0, t

(∗)
k
= t

(0)
k

, U(∗)
= U(0), and Ẽ

(∗)
e,k
= 0,∀k.

3. Calculate the constants ξ and κ using (31), and solve

problem P11 with t
(∗)
k

and U(∗), and find q(∗∗) and calculate

t
(∗∗)
0

and t
(∗∗)
k

.

4. If

���t(∗∗)
k

− t
(∗)
k

��� ≤ ǫ1, then set t
(∗∗)
k
= t

(∗)
k

and q(∗∗)
= q(∗) and

go to step 8, otherwise, t
(∗)
k
= t

(∗∗)
k

and go to step 3.

5. Solve the generalized eigenvalue Problem P7 using q(∗) and

calculate U. Next, let U(∗∗)
= U.

6. Compute the objective value of Problem P11 with U(∗∗) and

q(∗) and call it Ẽ
(∗∗)
e,k
,∀k.

7. If

���Ẽ (∗∗)
e,k

− Ẽ,ke(∗)
��� ≤ ǫ2,∀k, then U(∗)

= U(∗∗) and go to step

8, otherwise, go to step 3.

8. If the stop criteria is satisfied stop, otherwise, go to step 3.

where Θ(t) ≤ Π(t), ∀t > 0.

Using the local approximation in Lemma 1, we can tackle

the non-convexity of Problem P10, which enables us to refor-

mulate Problem P10 as follows:

P11 : min
qk ,tk

©­­­«
K∏
k=1

t

−
t̂k

1 + t̂k
k

ª®®®¬
(32a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (32b)

0 ≤ qk ≤ p
(k)
max,∀k, (32c)

SINRk ≥ tk,∀k, (32d)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max, (32e)

(
(1 − δ)t̂k

)
≤ tk ≤

(
(1 − δ)t̂k

)
,∀k, (32f)

where δ is a constant value to control the approximation

accuracy [45].

Proposition 1. Problem P11 can be formulated into a standard

GP.

Proof: Please refer to Appendix C. �

Therefore, Problem P11 is efficiently solved through

existing convex optimization software. Based on these two

sub-problems (P7 and P11), an iterative algorithm has been

developed by alternately solving both sub-problems at each

iteration. The proposed algorithm is summarized in Algorithm

1, where ǫ1 and ǫ2 are small values, and we set ǫ1 = ǫ2 = 0.01.

2) Sub-Optimal Power Allocation Scheme: In this section,

we present a heuristic solution to tackle the non-convexity

issue of Problem P10. Exploiting the analysis in [52], we

Algorithm 2 Proposed sub-optimal algorithm to solve Prob-

lem P5

1. Initialize q(0), i = 1.

2. Repeat steps 3-5 until

��� ˜̃E
(i+1)
e,k

− ˜̃E
(i)
e,k

��� ≤ ǫ3,∀k, where ˜̃Ee,k

is the objective value of Problem P10.

3. i = i + 1.

4. Set q(i)
= q(i−1) and determine the optimal receiver

coefficients U(i) through solving the generalized eigenvalue

Problem P7.

5. Compute q(i+1) through solving Problem P12.

propose to reformulate the energy efficiency maximization

Problem P8 as follows:

P12 : min
qk ,tk

K∏
k=1

t−1
k (33a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, (33b)

0 ≤ qk ≤ p
(k)
max,∀k, (33c)

SINRk ≥ tk,∀k, (33d)

K∑
k=1

qk ≤ ν
K∑
k=1

p
(k)
max. (33e)

Proposition 2. Problem P12 can be formulated into a standard

GP.

Proof: The objective function in (30a) and the power

constraint in (30e) are posynomial functions. The spectral

efficiency constraint in (30b) and the SINR constraint in (30d)

can be rewritten into the posynomial functions similar to

(60) and (62), which completes the proof. �

Hence, existing convex optimization software can be

used to solve problem P12. As in the previous section,

here we propose an iterative algorithm to iteratively solve

sub-problems P7 and P12. Finally, Algorithm 2 summarizes

the proposed scheme.

C. Convergence

In this section, the convergence analysis of the proposed

Algorithms 1 and 2 are provided. Two sub-problems are

alternately solved to determine the solution to Problem P2.

At each iteration, one of the design parameters is determined

by solving the corresponding sub-problem while other design

variables are kept fixed. Note that each sub-problem provides

an optimal solution for the other given design variables. At

the nth iteration, the receiver filter coefficients u
(n)
k
, ∀k are

determined for a given power allocation q(n) and similarly, the

power allocation q(n+1) is updated for a given set of receiver

filter coefficients u
(n)
k
, ∀k. The optimal power allocation q(n+1)

obtained for a given u
(n)
k

achieves an uplink spectral efficiency

greater than or equal to that of the previous iteration. In

addition, the power allocation q(n) is also a feasible solution in

determining q(n+1) as the receiver filter coefficients u
(n+1)
k
, ∀k

are determined for a given q(n). This reveals that the achieved
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Table II
COMPUTATIONAL COMPLEXITY OF DIFFERENT PROBLEMS

Problem Required arithmetic operations

Problem P7
14
3 KM3

Problem P11 niter × O
(
(4K − 1)

1
2

(
24K3 − 20K2

+ 8K − 1
))

Problem P12 O
(
(4K − 1)

1
2

(
24K3 − 20K2

+ 8K − 1
))

uplink spectral efficiency monotonically increases with each

iteration, which can also be observed from the numerical

results presented in Figs. 3a, 3b and 3c. As the achievable

uplink energy efficiency is upper bounded by a certain value

for a given set of per-user power and spectral efficiency

constraints, the proposed algorithms converges to a particular

solution. Note that to the best of our knowledge and referring

to [53], [54] this is a common way to show the convergence.

D. Complexity analysis

Here, we provide the computational complexity analysis for

the proposed Algorithms 1 and 2, which solve a generalized

eigenvalue problem P7 and a GP (convex optimization prob-

lem) given by P11 and P12, respectively, at each iteration. For

the receiver filter coefficient design in P7, an eigenvalue solver

requires 14
3

K M3 flops for K users using the QR algorithm [55].

Proposition 3. Problem P11, can be solved with complexity

equivalent to

niter × O
(
(4K − 1) 1

2
(
24K3 − 20K2

+ 8K − 1
) )

, where niter

refers to the number of iterations in P11 which depends on δ in

(32f). Note that the term O means there is an unknown factor.

Moreover, it can be shown that Problem P12 can be solved

with a complexity of O
(
(4K − 1) 1

2
(
24K3 − 20K2

+ 8K − 1
) )

.

Proof: Please refer to Appendix D. �

The number of arithmetic operations required for Algorithms

1 and 2 are provided in Table II.

VI. USER ASSIGNMENT

Let τf be the length of the uplink payload data transmission

for each coherence interval, i.e., τf = τc−τp , where τc denotes

the number of samples for each coherence interval and τp
represents the length of pilot sequence. Note that we need

2αm × (Kτf ) bits for each AP during each coherence interval.

Hence, the total backhaul capacity required between the mth

AP and the CPU for all schemes is defined as

Cm =
2
(
Kτf

)
αm

Tc

, (34)

where Tc (in sec.) refers to coherence time. Exploiting (34),

it is obvious that the total backhaul capacity required between

the mth AP and the CPU increases linearly with the total

number of users served by the mth AP. This motivates the

need to pick a proper set of active users for each AP. Using

(34), we have

αm × Km ≤ CbhTc

2τf
, (35)

where Km denotes the size of the set of active users for the mth

AP. From (35), it can be seen that decreasing the size of the

set of active users allows for a larger number of quantization

levels. Motivated by this fact, and to exploit the capacity of

backhaul links more efficiently, we investigate all possible

combinations of αm and Km. First, for a fixed value of αm,

we find an upper bound on the size of the set of active users

for each AP. In the next step, we propose for all APs that

the users are sorted according to βmk, ∀k, and find the Km

users which have the highest values of βmk among all users.

If a user is not selected by any AP, we propose to find the

AP which has the best link to this user (π( j) = argmax
m

βmj

determines best link to the jth user, i.e., the index of the AP

which is closest to the jth user). Note that to consider only

the users that have links to other APs, we use k |Skπj , �,

where � refers to empty set. Then we drop the user which

has the lowest βmk, ∀k, among the set of active users for that

AP, which has links to other APs as well. Finally, we add

the user which is not selected by any AP to the set of active

users for this AP. We next solve the uplink energy efficiency

maximization problem as follows

Puser assignment : max
qk ,uk ,α

Ee (qk,uk, α, γ̃mk) (36a)

s.t. Sk (qk,uk, γ̃mk) ≥ S
(r)
k
, ∀k, (36b)

| |uk | |=1,∀k, 0≤ qk≤ p
(k)
max,∀k, (36c)

Rbh,m ≤ Cbh,m, ∀m, (36d)

where

γ̃mk =

{
γmk, m ∈ Sk

0, otherwise
(37)

where Sk refers to the set of active APs for the kth user. Fi-

nally, note that this reduces the complexity of the optimization

problem, as some entries of γ̃mk are zero. Finally, note that

we turn off the mth AP, if the set of active users for the mth

AP is empty, after performing the user assignment scheme.

Hence, we put the number of active APs instead of M . This

will reduce the complexity of the proposed scheme.

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical numerical results to

validate the performance of the proposed scheme. A cell-free

Massive MIMO system with M APs and K single-antenna

users is considered in a D × D numerical area, where both

APs and users are uniformly distributed at random points. In

the following subsections, we define the numerical parameters

and then present the corresponding numerical results.

A. Simulation Parameters

The channel coefficients between users and APs are mod-

eled in Section II, where the coefficient βmk is given by [2]

βmk = PLmk10

σsh zmk

10 , (38)
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Figure 3. The total energy efficiency of proposed Algorithm 1 (solid curves) and proposed Algorithm 2 (dashed curves) versus number of iterations.

where PLmk is the path loss from the kth user to the mth

AP and the second term in (38), 10
σsh zmk

10 , denotes the

shadow fading with standard deviation σsh = 8 dB, and

zmk ∼ N(0,1). In the simulation, an uncorrelated shadowing

model is considered and a three-slope model for the path loss

is given by [2]

PLmk=

{ −L − 35 log10(dmk/1 m), dmk > d1,

−L −15log10(d1 /1 m)−20 log10(dmk/1 m), d0< dmk ≤ d1,

−L − 15 log10(d1/1 m) − 20 log10(d0/1 m), dmk ≤ d0,
(39)

and L = 46.3 + 33.9 log10( f ) − 13.82 log10(hAP) −(
1.1 log10( f ) − 0.7

)
hk +

(
1.56 log10( f ) − 0.8

)
, where f de-

notes the carrier frequency (in MHz), hAP and hk represent the

AP antenna height (in m) and user height (in m), respectively.

The noise power is given by pn = BW × kB × T0 × W, where

BW = 20 MHz denotes the bandwidth, kB = 1.381 × 10−23

represents the Boltzmann constant, and T0 = 290 (K) denotes

the noise temperature. Moreover, W = 9 dB, and denotes the

noise figure. It is assumed that p̄p and ρ̄ denote the power of

the pilot sequence and the uplink data powers, respectively,

where pp =
p̄p

pn
and ρ =

ρ̄

pn
are normalized transmit SNRs. In

simulations, we set p̄p = 200 mW and ρ̄ = 1 W. Similar to [2],

we assume that the simulation area is wrapped around at the

edges which can simulate an area without boundaries. Hence,

the square simulation area has eight neighbours. Moreover,

we set ζ = 0.3, PU = 0.1 W, Pfix = .825 W [24], [41]–[44].

Moreover, hereafter the term “orthogonal pilots” refers to the

case where unique orthogonal pilots are assigned to all users,

while in “random pilot assignment” each user is randomly

assigned a pilot sequence from a set of orthogonal sequences

of length τp (< K), following the approach of [2].

B. Numerical Results

1) Convergence of the Proposed Schemes: In this section,

the convergence of the proposed Algorithms 1 and 2 is

investigated. Figs. 3a, 3b and 3c present the convergence of

the proposed Algorithms 1 and 2 with M = 100 and M = 200

APs, and K = 20 and K = 40 users with the length of pilot

τp = 20. Note that in Figs. 3a, 3b and 3c, the solid and dashed

curves represent the performance of proposed Algorithm 1

and Algorithm 2, respectively. The figures confirm that the

proposed Algorithms 1 and 2 converge in a few iterations.
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Figure 4. The total energy efficiency of proposed Algorithm 1 and proposed
Algorithm 2 versus ν for one channel realization with K = 20, M = 100,
N = 1, α = 2, τp = 20, and D = 1 km.
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Figure 5. The average total energy efficiency versus number of APs with
proposed Algorithm 1 and equal power allocation with N = 1, α = 2, τp =
20, and D = 1 km.

Figs. 3a, 3b and 3c demonstrate that the proposed sub-

optimal scheme has a performance fairly close to the per-

formance of the proposed Algorithm 1. As Algorithm 2 has

a lower complexity and good performance, in the rest of
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Figure 6. The average total energy efficiency of proposed Algorithm 2 versus
number of quantization bits with K = 20, N = 1, τp = 20, and D = 1 km.

numerical results, we investigate the performance using only

the proposed Algorithm 2.

2) The optimal value of ν: To study the effect of ν in

Problem P5, we solve Problem P5 with different values of

ν and plot the total energy efficiency versus ν in Fig. 4. For

this channel realization, for both proposed Algorithms 1 and

2, the optimal value of ν has a range from 0.25 − 0.35, and

we set the optimal value to νopt
= 0.3.

3) Performance Comparison: Fig. 5 presents the total en-

ergy efficiency of the proposed Algorithm 2 and the scheme

with the equal power allocation with M = 100, N = 1, α = 2,

τp = 20, and D = 1 km. As seen in Fig. 5, the proposed

scheme significantly improves the total energy efficiency of

cell-free Massive MIMO compared to equal power allocation

scheme (i.e., qk = 1,∀k,uk = [1, · · · ,1],∀k).

4) Effect of the Number of Quantization Bits: This section

investigates the optimum values of number of quantization bits

to maximize the energy efficiency of cell-free Massive MIMO.

Increasing the number of quantization bits introduces spectral

efficiency improvement whereas it increases the backhaul

power consumption from the APs to the CPU. Therefore,

there is an optimum value in terms of number of quantization

bits to maximize the total energy efficiency of the cell-free

Massive MIMO system. The average energy efficiency versus

the number of quantization bits is shown in Fig. 6 for the

system with {K = 40,N = 5,PBT = 1 W, ρ = 3 W, Tc = 2 ms,

D = 2 Km}, {K = 20,N = 1,PBT = 1 W, ρ = 1 W, Tc = 1 ms,

D = 1 Km}, {K = 40,N = 5,PBT = 10 W, ρ = 3 W, Tc = 1

ms, D = 1 Km} with orthogonal pilots. Optimally, we need

only 2-4 bits to quantize the data.

5) Effect of the Number of Antennas per AP: In this

section, the performance of cell-free Massive MIMO is studied

with different numbers of antennas per AP. Similar to the

methodolgy in [53], we set MN = 256 as the total number of

service antennas. The average energy efficiency of the system

is shown in Fig. 7, for K = 40, α = 4 bits, and PBT = 10

W. Moreover, we provide numerical results for two cases of

orthogonal and random pilot assignment. It can be seen for a

fixed total number of service antennas, by reducing the total
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Figure 7. The average total energy efficiency of proposed Algorithm 2 versus
the number of antennas per AP with K = 40, MN = 256, PBT = 10 W,
Cbh = 100 Mbps, and α = 4 bits.
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Figure 8. The average total energy efficiency of proposed Algorithm 2 versus
number of quantization bits with K = 20, N = 1, τp = 20, D = 1 km,
Cbh = 102.4 Mbps, and two cases of M = 60 and M = 120.

number of APs, M (which is equivalent to increasing number

of antennas per APs, N), the total power consumption will

decrease. On the other hand, reducing M results in throughput

reduction. As a result, one can find a trade off between M and

N . Fig. 7 reveals the optimum values of M and N to have the

largest total energy efficiency.

6) Effect of Power of Backhaul Links: Fig. 8 shows the

average energy efficiency of the cell-free Massive MIMO sys-

tem versus the total backhaul traffic power, PBT, for K = 20,

N = 1, τp = 20, D = 1 km, Cbh = 102.4 Mbps, and two

cases of M = 60 and M = 120. As the figure demonstrates,

the average energy efficiency decreases as the total power for

backhaul traffic increases.

7) Energy Efficiency vs Relative Loss in Max-Min Spectral

Efficiency: It is interesting to evaluate how much we can

gain with the proposed energy efficiency power control by

sacrificing the required spectral efficiency. To investigate this,

we consider the max-min spectral efficiency problem defined

in [56] with a given backhaul rate, which is defined as follows:
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D = 1 km, α = 2, PBT = 1 W and Cbh = 100 Mbps.

Pmax-min : max
qk ,uk

min
k=1, · · · ,K

Rk, (40a)

s.t. | |uk | | = 1, ∀k, (40b)

0 ≤ qk ≤ p
(k)
max, ∀k, (40c)

where Rk refers to the rate of the kth user given in [56]. The

details to solve Problem Pmax-min are presented in [56]. Next,

we define the following optimization problem:

Psac : max
qk ,uk

Ee (qk,uk) , (41a)

s.t. Sk (qk,uk) ≥
(
thsac × S

(max-min)
k

)
, ∀k,

(41b)

| |uk | | = 1, ∀k, 0 ≤ qk ≤ p
(k)
max, ∀k, (41c)

where S
(max-min)
k

= (1 − τp

τc
)Rmax-min

k
, where Rmax-min

k
is the

optimal solution of Problem Pmax-min. Fig. 9 presents the

average energy efficiency performance of the cell-free Massive

MIMO with M = 80, K = 15, N = 1, α = 2 and orthogonal

pilots, obtained by solving Problems Pmax-min and Psac. Note

that we use the sub-optimal power allocation scheme presented

in Subsection V-B2 to solve Problem Psac. The figure shows

that by sacrificing 6% of the max-min spectral efficiency (i.e.,

1 − thsac = 0.06), one could gain 6.71×106−5.25×106

5.25×106 = 27.8%

improvement in the average energy efficiency of the system.

8) Performance of the Proposed User Assignment Scheme:

This subsection investigates the performance of the proposed

user assignment scheme. In Fig. 10, the average energy effi-

ciency proposed using Algorithm 2 is presented with M = 40,

N = 4, K = 50, and τp = 30 versus the total number of

active users per AP. Here, we used inequality (35) and set

αm ×Km = 100. As Fig. 10 shows, the optimum value of Km,

(K
opt
m ) is achieved by K

opt
m = 33. As a result, the proposed

user assignment scheme can effectively improve the energy

efficiency performance of cell-free Massive MIMO systems

with limited backhaul capacity.
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Figure 10. The average energy efficiency of proposed Algorithm 2 versus
the total number of active users for each AP with M = 40, N = 4, K = 50,
τp = 30 and αm × Km = 100.

VIII. CONCLUSIONS

We have considered cell-free Massive MIMO when the

quantized version of the weighted signals are available at

the CPU. Bussgang decomposition has been used to model

the quantization effects. A closed-form expression for spectral

efficiency has been derived. We have then studied the problem

of the energy efficiency maximization with per-user power

constraints, backhaul capacity constraints and throughput re-

quirements. We have developed an SCA to efficiently solve

this non-convex problem. Next a low-complexity sub-optimal

scheme is proposed. In addition, complexity and convergence

of the proposed schemes have been investigated. Numerical

results confirmed that the limited-backhaul cell-free Massive

MIMO system with the proposed algorithm can reach almost

twice the uplink total energy efficiency compared to the case

of equal power allocation. In addition, a trade-off between

the total number of APs and the number of antennas at the

APs has been shown. Moreover, we investigated the optimal

number of AP antennas along with the optimal number of

quantization bits to maximize the uplink total energy efficiency

of cell-free Massive MIMO. Finally, we have presented the

energy efficiency performance as a function of relative loss

in the max-min spectral efficiency and evaluated the energy

efficiency improvement achieved by sacrificing some of the

max-min spectral efficiency.

APPENDIX A: PROOF OF THEOREM 1

The desired signal for the user k is given by

DSk=
√
ρE

{
M∑
m=1

umk ĝH
mkgmk

√
qk

}
=N

√
pqk

M∑
m=1

umkγmk .(42)
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Hence, |DSk |2 = ρqk
(
N

∑M
m=1 umkγmk

)2

. Moreover, the term

E{|BUk |2} can be obtained as

E
{
|BUk |2

}
= ρE

{�����
M∑
m=1

umk ĝH
mkgmk

√
qk − E

{ M∑
m=1

umk ĝH
mkgmk

√
qk

}�����
2}

= ρN

M∑
m=1

qku2
mkγmk βmk, (43)

where the last equality comes from the analysis in [2,

Appendix A], and using γmk =
√
τpppβmkcmk . The term

E{|IUIkk′ |2} is obtained as

E{|IUIkk′ |2} = ρ qk′E



�����
M∑
m=1

cmkumkgH
mk′w̃mk

�����
2
︸                                  ︷︷                                  ︸

A

+ρ τpppE




qk′

�����
M∑
m=1

cmkumk

( K∑
i=1

gmiφφφ
H
k φφφi

)H
gmk′

�����
2
︸                                                            ︷︷                                                            ︸

B

, (44)

where the third equality in (44) is due to the fact that for

two independent random variables X and Y and E{X} =
0, we have E{|X + Y |2} = E{|X |2} + E{|Y |2} [2]. Since

w̃mk = φφφ
H
k

Wp,m is independent of the term gmk′ similar to

[2, Appendix A], the term A in (44) immediately is given

by A = Nqk′
∑M

m=1 c2
mk

u2
mk
βmk′ . The term B in (44) can be

obtained as

B = τpppqk′E



�����
M∑
m=1

cmkumk | |gmk′ | |2φφφHk φφφk′
�����
2
︸                                                  ︷︷                                                  ︸

C

+ τpppqk′E



�����
M∑
m=1

cmkumk

( K∑
i,k′

gmiφφφ
H
k φφφi

)H
gmk′

�����
2
︸                                                            ︷︷                                                            ︸

D

. (45)

The first term in (45) is given by

C = Nτpppqk′
��φφφHk φφφk′ ��2

M∑
m=1

c2
mku2

mk βmk′

+ N2qk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

, (46)

where the last equality is derived based on the fact that γmk =√
τpppβmkcmk . The second term in (45) can be obtained as

D = N
√
τppqk′

M∑
m=1

u2
mkcmk βmk′βmk

− Nqk′

M∑
m=1

u2
mkc2

mk βmk′

− Nτppqk′

M∑
m=1

u2
mkc2

mk β
2
mk′

��φφφHk φφφk′ ��2 . (47)

Finally by substituting (46) and (47) into (45), and substituting

(45) into (44), we obtain

E{|IUIkk′ |2} = Nρqk′

(
M∑
m=1

u2
mk βmk′γmk

)

+ N2ρqk′
��φφφHk φφφk′ ��2

(
M∑
m=1

umkγmk

βmk′

βmk

)2

. (48)

The total noise for the user k is given by

E
{
|TNk |2

}
= E



�����
M∑
m=1

umk ĝH
mknm

�����
2

= N

M∑
m=1

u2
mkγmk, (49)

where the last equality is due to the fact that the terms ĝmk and

nm are uncorrelated. The power of the quantization distortion

for user k is given by

E
{
|TQDk |2

}
= E



�����
M∑
m=1

umknd,mk

�����
2

. (50)

In general, the inputs of the quantizers at different APs are

correlated, and hence, the quantization distortions across APs

are correlated. However, analysis and numerical results for

typical cases based on [57]–[59] show that:

Rnd ,knd ,k
≈

(
b̃ − ã2

)
︸    ︷︷    ︸

σ2
ẽ

diag(Rzkzk
), (51)

where Rnd ,knd ,k
= E

{
nd,knH

d,k

}
and Rzk zk = E

{
zkzH

k

}
refer

to the covariance matrix of the quantization distortion and

the covariance matrix of the input of quantizer, respectively.

This implies that the quantization distortions across APs can

be assumed to by uncorrelated. Therefore, we can obtain the

following approximation

E
{
|TQDk|2

}
= E



�����
M∑
m=1

umknd,mk

�����
2


≈
M∑
m=1

u2
mkE

{��nd,mk

��2} . (52)

Note that the numerical analysis in [22] show that for the

case of small number of users, the correlation affects the

spectral efficiency performance of the massive MIMO system.

However, for cell-free Massive MIMO, under the conditions

listed below, the quantization distortions are approximately

uncorrelated: 1) There is no line-of-sight (LOS) component,

2) having large path loss differences at different APs to avoid

large correlation, 3) having a large number of users, and

4) having small N . To validate the approximation (52), we

next present the uplink per-user rate with different system

parameters for two different scenarios; 1) the exact uplink per-

user rate with E
{
|TQDk |2

}
= E

{��∑M
m=1 umknd,mk

��2}, which is

referred to as “Exact" in Fig. 11a-11c; and 2) the uplink per-

user rate with E
{
|TQDk |2

}
=

∑M
m=1 u2

mk
E

{��nd,mk

��2}, where

refers to the case when we ignore the correlation between

the inputs of the quantizers, and this scenario is given as
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(c) M = 60, N = 6, K = 40, and τp = 30.

Figure 11. Uplink per-user rate of cell-free Massive MIMO with. Here, the term “Exact" refers to the case where we use the exact result (50), whereas the
term “Approximate" refers to the case we use the approximation (52). In all figures, we set α = 2 quantization bits, and use equal power allocation.

“Approximate" in Fig. 11a-11c. As Fig. 11a-11c shows, there

is a negligible performance gap between the exact SINR

and the approximate SINR. To calculate the power of the

quantization distortion, given by (52), we use the following

property of the quantization distortion power

E

{��nd,mk

��2}
= σ2

ĝH
mk

ym
E

{��ñd,mk

��2} . (53)

where the term σ2

ĝH
mk

ym
is

σ2

ĝH
mk

ym
= σ2

zmk
= E

{
|zmk |2

}

= N2
K∑

k′=1

γ2
mk′

��φφφHk′φφφk ��2 ρqk′
+ Nγmk

K∑
k′=1

βmk′ρqk′+Nγmk . (54)

Therefore, we have

E
{
|TQDk |2

}
=

(
b̃ − ã2

)
︸    ︷︷    ︸

σ2
ẽ

M∑
m=1

u2
mk

(
N2

K∑
k′=1

γ2
mk′

��φφφHk′φφφk ��2 ρqk′+Nγmk

K∑
k′=1

βmk′ρqk′+Nγmk

)
.(55)

By substituting (42), (43), (48), (49) and (55) into (11), the

corresponding SINR of the kth user is obtained by (12), which

completes the proof of Theorem 1. �

APPENDIX B: DETAILS OF FINDING ν∗ IN REMARK 2

Assuming a total transmit power of
∑K

k=1 qk , the power

minimization problem can be defined as follows:

P13 : min
qk

K∑
k=1

qk (56a)

s.t. Sk (qk,uk, α) ≥ S
(r)
k
, ∀k, 0 ≤ qk ≤ p

(k)
max,∀k .

(56b)

Problem P13 is a GP and can be efficiently solved. After

solving Problem P13 and finding the optimal solution q+
k
,∀k,

the slack variable ν∗ is obtained as follows:

ν∗ =

∑K
k=1 p

(k)
max∑K

k=1 q+
k

, (57)

which completes the definition for Remark 2. �

APPENDIX C: PROOF OF PROPOSITION 1

The standard form of GP is defined as follows [50], [60]:

P14 : min f0(x), (58a)

s.t. fi(x) ≤ 1, i=1, · · · ,m, gi(x)=1, i=1, · · · , p, (58b)

where f0 and fi are posynomial and gi are monomial func-

tions. Moreover, x = {x1, · · · , xn} represents the optimization

variables. The SINR constraint in (58) is not a posynomial

function in its initial form, however it can be rewritten into

the posynomial function, given in (59) (defined at the top of

the next page). By applying a simple transformation, (59) is

equivalent to the following inequality:

q−1
k

(
K∑

k′,k

akk′qk′ +

K∑
k′=1

bkk′qk′ +

K∑
k′=1

ekk′qk′ + ck

)
≤ 1

t
, (60)

where akk′ =
uH
k

(
|φφφH

k
φφφk′ |2∆kk′∆Hkk′

)
uk

uH
k (ΓkΓHk )uk

, bkk′ =
uH
k

Dkk′uk

uH
k (NΓkΓHk )uk

,

ekk′ =
uH
k

(
|φφφH

k
φφφk′ |2Λk′

)
uk

uH
k (ΓkΓHk )uk

and ck =
uH
k

Rkuk

uH
k (ρNΓkΓHk )uk

.

The transformation in (60) shows that the left-hand side

of (59) is a posynomial function. Moreover, the spectral

efficiency constraint in (29b) is not a posynomial function

in its original form, however, through some mathematical

manipulation, it can be written as (61) (defined at the top of

the next page), where Ŝ
(r)
k
= 2

τc S
(r)
k

τc−τp − 1. By applying a simple

transformation, (61) is equivalent to the following inequality:

q−1
k

(
K∑

k′,k

akk′qk′ +

K∑
k′=1

bkk′qk′ +

K∑
k′=1

ekk′qk′ + ck

)
≤ 1

Ŝ
(r)
k

. (62)

Therefore, the power allocation problem P6 is a standard GP

(convex problem), where the objective function and constraints

are monomial and posynomial, respectively, which completes

the proof of Proposition 1. �
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APPENDIX D: PROOF OF PROPOSITION 3

Let us consider the following GP problem:

PGP : min f0(x) =
∑
i∈I0

ci0 exp{aTi x} (63a)

s.t. fj(x)=
∑
i∈Ij

ci j exp{aTi x} ≤ dj, j=1, · · · ,n3, (63b)

where x = {x1, · · · , xn1
} represents the optimization

variables, Ij are subset of the index set I = 1, · · · ,n2,

and all coefficients ci j are positive, j = 1, · · · ,n3 [61,

Chapter 10]. Based on the analysis in [61, Chapter 10],

the complexity of solving the GP problem given in (63) is

given by C = O
(
(n2 + n3)

1
2
(
n3n2

2
+ n3

2
+ n3

1

) )
. Therefore,

exploiting P11 defined in (32) and the transformation

in (59)-(62), we have n1 = K , n2 = 2K − 1 and

n3 = 2K . Note that n2 = 2K − 1 is obtained using the

transformation in (62) for the constraint in (32b), and also the

transformation in (60) for constraint (32d). Hence, Problem

P11, can be solved with a complexity equivalent to niter ×
O

(
(2K − 1 + 2K) 1

2

(
(2K) (2K − 1)2 + (2K − 1)3 + (2K)3

))
,

where niter refers to the number of iterations to solve P11

which depends on δ in (32f). Moreover, it can be shown

that Problem P12 can be solved with a complexity of

O
(
(2K−1+2K) 1

2

(
(2K) (2K − 1)2+(2K−1)3+(2K)3

))
. After

some manipulations, we end up with the values given in Table

II, which completes the proof of Proposition 3. �
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