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ABSTRACT 

 

Modifications to bone mineral as a result of diagenesis or heating include a marked increase in 
crystallinity.   Although these processes are not completely understood a number of simple, pragmatic 
approaches are in general use to quantify crystallinity and thus provide a relative metric for features such as 
preservation state.   A  preliminary investigation into the interpretation of crystallinity as measured by X-
ray diffraction has been undertaken.  

The microstructural changes associated with diagenetically altered (archaeological) and heated 
contemporary bone have been examined.  A common analysis approach was adopted and thus direct 
comparison between the physical features of these material systems has been possible.   

The data clearly demonstrate the pronounced anisotropic nature of the crystallite microstructure for 
both diagenetically altered and contemporary bone.  The limitations of adopting simple crystallinity indices 
for characterising such materials are explored.  Crystallite size and strain were shown to be dependent upon 
crystallographic direction.  Overall, the diagenetically altered bone mineral possessed greater long range 
lattice order than that of contemporary heated bone.  Further, significant differences between the directional 
nature of the microstructure of diagenetically altered and modern heated bone were observed.   

This study has enabled a direct comparison of the effects of heating and diagenesis upon bone mineral. 
It has demonstrated the need to consider bone microstructure anisotropically.   
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Contrasting the 'Crystallinity' of Heated and Diagenetically Altered Bone Mineral. 

 

1. Introduction 

The term `crystallinity` is used extensively throughout a number of disciplines to characterise a wide 

range of materials.   It is an attribute that is related to the amount of long range structural order within a 

material that can be moderated by features such as grain boundaries and point/linear/planar defects. These 

are of interest as they can significantly modify a materials` physical and chemical properties.  For 

archaeologists crystallinity measurement is regularly employed as an indicator of the degree of diagenetic 

change or thermal modification of bone mineral.   These two processes have implications for assessing 

preservation state and determining the isotopic composition of bone but a technique that reliably 

distinguishes them remains elusive (Pijoan et al. 2007).  

Crystallinity is frequently quantified by X-ray diffraction and infrared spectroscopy as these methods 

are sensitive to structural order.   However, due to the complex physio-chemical nature of bioapatites a 

pragmatic approach is often adopted for crystallinity quantification and thus a number of indices that 

provide some relative measure of average crystallinity have been adopted.    Within archaeological science, 

these indices derive from a number of practices including an infrared splitting factor (IRSF) which is based 

upon the degenerative splitting of a phosphate band (Surovell and Stiner, 2001;  Weiner et al. 1993),  a 

multiple peak IR summing method (Lebon et al. 2008), a simple measure of a single diffraction peak width 

(Hedges et al. 1995), or multiple diffraction peak widths (Person et al. 1995;  Quattropani et al. 1999).  The 

potential advantages of more sophisticated X-ray diffraction whole pattern fitting methods, although 

capable of providing direction dependent data (Stathopoulou et al. 2008;  Piga et al. 2008 ), have not yet 

been fully realised in this context.    Small angle X-ray scattering to characterise crystallite particle size has 

also been successfully applied to heated bone (Hiller et al. 2003). However the resultant values are difficult 

to compare directly to the more commonly used wide angle approach due to the confounding effect of 

microstrain.    

The use of crystallinity indicators as reliable proxies for mineral alteration and bone integrity remains 

somewhat controversial with several studies questioning its reliability (Puceat et al. 2004; Trueman et al. 
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2008). Regardless of these issues, it is important to appreciate the limitations of material crystallinity 

determination and ensure that, when used, methods are appropriate for the materials being examined.  For 

example, indices providing crystallinity indicator values averaged through a number of crystallographic 

directions (e.g. spectroscopy) may not provide an accurate indication of crystallinity changes in materials 

containing crystallites with a high morphological aspect ratio when this ratio becomes modified.   Further, 

and particularly for diffraction methods, calculation of crystallinity indicators are confounded by crystallite 

preferred orientation, stoichiometry and inherent differences in instrument dispersion.  These factors reflect 

the inherent anisotropic nature of bone minerals' mechanical properties that is essential for providing 

optimal weight bearing, e.g. bone mineral is formed in accordance with the principles of maximising 

resistance to stress.  

Studying the problem of reliable crystallinity measurement to map microstructure in the context of 

diagenetically altered and heated bone which have previously been described as possessing similar 

crystallinity indicator values is of some value.  Indeed both modification mechanisms have been 

extensively studied and are known to involve mineral recrystallisation.   It has also been reported (Stiner et 

al. 1995) that weathering produces crystallinity changes similar to those associated with heat treatment 

when characterised by infrared spectroscopy and that boiling can mirror diagenetic effects (Roberts et al. 

2002).  Crystallite dimensions within diagenetically modified mineral (Bartsiokas and Middleton, 1992;  

Hiller et al. 2003) have been determined to be of similar value to those of contemporary bone heated to 

~600 oC (Rogers and Daniels, 2002; Holden et al. 1995).  Distinguishing between the processes of 

diagenesis and burning would therefore be valuable in studies of archaeological bone when both processes 

contribute to the recrystallisation state of the mineral.  Thus when examining cremated bone, details of 

funerary practices may be inferred with more confidence. 

 This work focuses upon X-ray diffraction characterisation and extends the crystallinity indicator 

concept to identify separate crystallite size and microstrain contributions to structural disorder.  The 

direction dependence of these features has also been examined.    For archaeology, there is a desire to 

provide a more complete description of the diagenetic and thermal processes affecting bone mineral. Native 

bone mineral crystallites display significant anisotropy in many of their physical characteristics e.g. 
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morphology and lattice strain.  It is therefore reasonable to suggest that any modifications to the mineral as 

a result of external factors should also display an anisotropic character which may be obscured using 

current crystallinity determinations. 

 

2. Source of bone 

The study compared bone mineral features from two principal groups, i.e. diagenetically altered and heat 

modified bone.   For each group five species were considered and for each species three individuals were 

examined.   For each principal group, the mineral was analysed in its native state and also following heat 

treatment. 

Archaeological (diagenetically altered) bone samples were obtained from the excavation of an Anglo-

Saxon settlement site at Fillingham, Lincolnshire (Chamberlain et al. 2000). The approximate stratigraphic 

period from which the bones were retrieved ranged from Anglo Saxon to the late 1700's A.D. and all were 

humeri except for three radii.  Contemporary tissues were sourced from the Veterinary Laboratories 

Agency of DEFRA, local abattoirs and the North London Tissue Bank (human samples) and were all 

femurs.  The archaeological material was identified anthropologically as deriving from the species of 

human, pig, cow and sheep/goat (undifferentiated).  Corresponding contemporary tissues were used except 

that the sheep and goat specimens were distinguished.   .   

 

3. Methods  

 

Samples of whole bone were cut transversely at the mid-shaft (approximately 5 mm in forming a ring, ~5 

mm in height).  Each ring was cut into equal segments to obtain, flat semi-lunar shaped fragments that 

possessed endosteum and periosteum surfaces.  Our pilot studies indicated, that similar diffraction peak 

widths to those observed for archaeological material were attained from contemporary tissue heated to  

~600 °C.   Samples were thus heated in air to 600 °C using a carbolite tube furnace (CTF 16/75), at a rate 

of 10 °C per minute. This temperature was then maintained for two hours after which, the furnace was 
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allowed to cool naturally (over a period of ~ 12 hours) to room temperature.  Prior to diffraction data 

collection, all fragments were independently pulversied using an agate pestle and mortar or a ball mill 

(Retsch MM2000). The powdered samples were then sieved through a 106 �m aperture stainless steel 

mesh.   

X-ray diffraction data was collected using a PANalytical X’Pert PRO powder diffractometer with CuKα 

radiation. The diffraction range was 10-80°/2θ, with a step size of 0.013°/2θ and an equivalent count time 

per step of 150 seconds. 

 

4. Data analysis 

 

Diffractogram parameterisation was performed using Topas (v4.1, Bruker-AXS).   A whole pattern 

fitting approach was employed although the unit cell contents were not refined.  Usually when employing 

such an approach, a smooth function is used to describe how peak widths vary with scattering angle  

(Piga et al. 2008;  Stathopoulou at al, 2008).  We removed this constraint so that each peak was treated 

independently.  This then enabled the determination of accurate and reliable values of diffraction peak 

shape parameters.  The structural model for apatite was based upon a hexagonal lattice (space group, 

P63/m) as this is the most appropriate model for biological apatites that contain no long range order along 

the OH- channels.   Crystallinity indicators based upon a single peak width (e.g. as used by Koch at al, 

1997; Hedges et al.  1995) and the Person method (Person et al. 1995) were derived for each sample.  Also 

for comparison with previous literature, coherence lengths were calculated from the Scherrer equation 

(Klug and Alexander, 1954) after correcting the peak widths for instrumental broadening.    

A silicon diffraction standard (NBS640c) was used to correct for instrumental broadening.  Peak shape 

analysis was performed with some circumspection.  Peaks were excluded from subsequent analysis when 

overlapping, caused by broadening, resulted in equivocal fitting.  This was especially the case for data from 

contemporary unheated tissue in the 2θ region 30-35o.    



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Simple crystallinity indicators were calculated for each diffractogram using the full width at half maximum 

(fwhm) of the apatite 002 peak and, following Person et al (1995), the resolution of the 202, 300, 211, and 

112 diffraction maxima.   As an alternative to the simple crystallinity indicators and to characterise the 

apatite`s direction dependent features, we also constructed Williamson-Hall (W-H) plots (Hall and 

Williamson, 1951; Langford et al. 1993; Rogers and Daniels, 2002) from the corrected peak widths.  Each 

point within a W-H plot represents the broadening of a particular diffraction peak (plotted on the abscissa 

as fwhm.cos(θ)) and thus represents the structural disorder along the corresponding crystallographic 

direction.  This data was also used to calculate size and strain estimates for particular crystallographic 

directions. Crystallite sizes were determined from W-H intercepts (size=λ/intercept) and microstrains 

determined from W-H gradients.   

Reproducibility for the determination of each parameter was assessed by examining intra-individual 

variation.   Extra material (human) from archaeological and contemporary groups was prepared, treated and 

analysed multiple times to determine the experimental repeatability. 

 

 

5. Results 

 

The reproducibility measurements showed that the difference in repeated parameter determination was 

<1% and thus the variability observed between groups could not be ascribed to measurement error. 

Differences between parameter values below are reported to be `significant` if, following a normality test, a 

students t-test p-value was found to be p<0.05. 

 

3.1 Conventional crystallinity indicators  

 

Visual inspection of the diffractograms (e.g. Fig. 1) indicated that both archaeological and heated 

sample groups possessed peak widths that were demonstrably narrower than those of the contemporary, 
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native bone and broader than those of a crystalline calcium hydroxyapatite standard (NIST SRM2910).  

Fig. 1 illustrates this by presenting the diffractograms for heated and unheated samples from one bovine 

individual and the highly crystalline, apatite standard.  Single (abscissa) and multiple peak crystallinity 

indicators (ordinate) for unheated archaeological and heated contemporary bone are presented for all 

samples within Fig. 2.   The single peak approach was based upon the width of the 002 maxima only and 

the multiple peak method that of Person et al (1995).  As a benchmark, the corresponding indices for the 

apatite standard were determined to be  0.11 (single peak) and 1.23 (multiple peak).  For each sample group 

there is a clear, but quantitatively different, correlation between the indices.   

 

3.2 Direction dependence approach 

 

Williamson-Hall plots illustrating the typical behaviour of diffraction peak widths as contemporary 

bone was heated to 600 °C is shown in Fig. 3.  Data from all species have been averaged (error bars are 

standard errors, number of samples for each point = 15).   There is a widely scattered distribution of peak 

widths for unheated bone indicating the marked direction dependence of the mineral crystallites' habit and 

microstrain.  Heating to 600 °C significantly reduces all the peak widths. This behaviour is typical of 

contemporary bone and may be used to characterise the lattice direction dependence of any such 

recrystallisation process. 

Fig. 4 shows Williamson-Hall plots that compare archaeological bone with heated (600 °C) 

contemporary material. There is a significant amount of dispersion within the broadening from both groups 

indicating lattice direction anisotropy in coherence length (long range lattice order).  Peak widths from the 

archaeological unheated tissue are significantly less than the corresponding contemporary bone widths 

(shown within Fig. 3).  This peak narrowing characterises the diagenetic recrystallisation, previously also 

characterised with the infrared 'splitting factor' (Surovell and Stiner,  2001).   Fig. 4 also serves to indicate 

that the recrystallisation is significantly different for the heated and diagenetically altered mineral.   

Comparing the populations within Fig. 4, it is apparent that there are differences in the microstructural 
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lattice dependence of these tissues.   Diffraction peaks arising from (hk0) planes are significantly narrower 

for the heated than the diagenetically altered mineral whereas the 00l peaks are broader for the heated bone.    

 

3.3 Quantification of crystallite size and strain 

 

Differences between diagenetically altered and heated mineral may be quantified by comparing coherence 

length ratios determined for specific crystallographic directions i.e. <00l> and <hk0>. For the 

archaeological and heated contemporary tissues these ratios (broadening of <00l >/broadening of <hk0>) 

are 3.1± 0.3 and 2.0 ±0.2 respectively, indicating a significant difference (p<0.05) between the lattice 

dependent broadening of these groups.  To examine the broadening in more detail, contributions to peak 

broadening from size and microstrain were determined from the 00l  peak widths.   Table 1 provides these 

semi-empirical values for each of the principal bone groups averaged for all species.  The estimated errors 

become greater as the crystallite size increases and/or the strain reduces as these situations both correspond 

to diffraction peaks becoming more similar in width to the instrument function.  Not surprisingly the 

unheated contemporary tissue group has the smallest crystallites possessing the largest microstrain (at least 

along <00l >). Crystallites of the unheated archaeological group are significantly greater in size than those 

of the contemporary group and the heat treatment of both groups results in significant increases in 

crystallite size.  Thus within the archaeological material, crystallite size increases associated with 

diagenetic change are further compounded by heating.  However, the processes are unlikely to be simply 

additive given the anisotropic nature of the changes that occur and the somewhat different recrystallisation 

mechanisms.  A further interesting observation is that, although heating the contemporary tissue results in a 

significant reduction in strain, heating the archaeological bone produces a significant increase in strain.    

 

3.4 Species dependence 
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Inter-species differences in microstructure were also examined.   Fig. 5 shows Williamson-Hall plots 

that compare archaeological bone for various species.  This illustrates the interspecies magnitude of 

variation and clearly demonstrates that the mineral of human bone possesses less disorder through all 

crystallographic directions when compared to other species.  In particular, significant differences in hk0 

coherence lengths were found between the human samples and those of all other species for both unheated 

archaeological and heated (600 °C) contemporary bone.   Further significant differences could be 

demonstrated when comparing diffraction peak width pairs (paired by crystallographic plane) between 

groups of species.  For example, for all the archaeological tissues, each species could be discriminated on 

the basis of peak broadening, with the exception of pig and sheep/goat.     

 

6. Discussion and Conclusions 

 

X-ray diffraction data have been used to contrast the crystallinity of diagenetically altered and heated 

bone mineral.   The two direction averaging methods examined were shown to be correlated but produce 

equivocal values when comparing bone mineral samples that possess significantly different direction 

dependencies.   For example, Fig. 2 illustrates that diagenetically altered and heated samples with similar 

Person crystallinity indicator values can simultaneously possess significantly different 002 peak widths.  

The converse of this is also shown to be the case.  This is a direct consequence of microstructural 

differences between the sample groups that are obscured by the single and multiple peak approaches to 

crystallinity determination.    This ambiguity is likely to occur if crystallinity is determined with 

spectroscopy as this also provides direction average values.  It is therefore conceivable that previous work 

using crystallinity as a marker for preservation state (e.g. Trueman et al. 2008) may have been confounded 

by the lack of direction dependence within the analyses e.g.  microstructrual changes may be occurring 

undetected.     

Using a method that embraces direction dependent characteristics, it has been shown that the 

recrystallisation processes associated with heating and diagenesis produce apatite crystallites with 
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significantly different physical microstructures. In general, the diagenetically modified mineral has, on 

average, significantly larger coherent scattering domains.     

Bone mineral crystallites have been reported previously to have rod and plate like morphologies.  In 

most tissues there is probably a mix of both, for example reflecting local variation in carbonate 

composition.  Coherence lengths derived from diffraction data are a spatial average over a large population 

of crystallites, in contrast to TEM estimates that are derived from direct observation of relatively few 

crystallites.  The data presented here shows that the diagenetically altered mineral has rod shaped coherent 

domains with the long dimension significantly greater and the short dimension significantly less than that 

of contemporary bone heated to 600 °C.  This is in agreement with previous work where diffraction was 

used with some direction dependence to study human remains (Prieto-Castello et al. 2007).  The increase in 

strain observed when the archaeological bone is heated may possibly be due to an increased number of 

different foreign ions within the surrounding milieu becoming improperly incorporated within the lattice of 

the recrystallised apatite.  These results serve to reinforce the thesis that, at least up to 600 °C for 

contemporary and archeological material, the crystallite physical properties should not be direction 

averaged, but reported with lattice dependence.  Further, there are significant differences between 

coherence length and corresponding crystallite size values for all archaeological and contemporary mineral.  

This is due to the lattice microstrain which is clearly an important contributor to diffraction peak 

broadening.          

Previous work examining a range of modern mammalian bone and archaic human tissue did not reveal 

any significant difference between species when a single peak approach was employed (Koch et al. 1997).  

However, by examining groups of paired microstructural data, we have demonstrated significant 

differences between species that are apparent for both the archaeological and contemporary tissues.  In 

particular the human material is significantly different to all other species.   An exception to the species 

discriminating ability is that peak widths of the archaeological pig group were not significantly different to 

that of the corresponding sheep/goat group.  This may be due to the increased diversity in this parameter 

arising as a result of combining data from sheep and goat populations.  Where goat and sheep could be 
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treated separately (e.g. contemporary tissues), data associated with pig were significantly different to that 

from both sheep and goat. 
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Figure  & Table Captions 

Fig. 1.   Unprocessed diffractograms of (a) unheated contemporary human bone, (b) contemporary human 

bone heated to 600 oC,  (c) archaeological human bone, (d) archaeological human bone heated to 600 oC (e) 

a calcium hydroxyapatite, highly crystalline standard (NIST SRM2910).  The diffractograms have been 

offset for clarity.  
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Fig. 2.    Crystallinity indicators calculated from Person (1995) and the 002 full width at half maximum for 

all archaeological bone samples (◊) and contemporary bone heated to 600 oC (■). 
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Fig. 3.   Williamson–Hall plots indicating instrument corrected diffraction peak widths plotted for each 

unequivocal peak within the diffraction data.    Data presented are contemporary bone (X) unheated, and 

(■) heated to 600 oC.   Error bars are standard errors, (n = 15). 
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Fig. 4.   Williamson–Hall plots indicating instrument corrected diffraction peak widths plotted for each 

unequivocal peak within the diffraction data.    Data presented are unheated archaeological bone (◊), and 

contemporary bone heated to 600 oC (■).  Further, for the archaeological bone, widths corresponding to hk0 

(◊) and 00l reflections (♦) are indicated.  Error bars are standard errors, (n = 15). 
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Fig. 5.   Williamson–Hall plots indicating the instrument corrected diffraction peak widths plotted for each 

species with the archaeological series.  Data presented are (◊) cow,  (■) human, (�) pig, and 

undifferentiated (�) sheep/goat. 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 0.1 0.2 0.3 0.4 0.5

sinθ

fw
hm

.c
os

θ

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

Table 1.   Size and strain values measured along the <00l> crystallographic direction for archaeological and 

contemporary bone before and after heating.  

Size / nm strain x 1000

a-uht   96 ± 12   7.46 ± 0.17

a-600 141 ± 17 11.98 ± 0.20

c-uht   48 ± 3 16.38 ± 1.7

c-600   62 ± 2   8.65 ± 0.65
 


