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A B S T R A C T

A key dilemma in global health is how to allocate funds between disease-specific “vertical projects” on

the one hand and “horizontal programmes” which aim to strengthen the entire health system on the

other. While economic evaluation provides a way of approaching the prioritisation of vertical projects,

it provides less guidance on how to prioritise between horizontal and vertical spending. We approach

this problem by formulating amathematical programwhich captures the complementary benefits of funding

both vertical projects and horizontal programmes. We show that our solution to this math program has

an appealing intuitive structure. We illustrate our model by computationally solving two specialised ver-

sions of this problem, with illustrations based on the problem of allocating funding for infectious diseases

in sub-Saharan Africa. We conclude by reflecting on how such a model may be developed in the future

and used to guide empirical data collection and theory development.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The notion of health system strengthening (HSS) has become in-
creasingly important inglobalhealthdiscourse in recentyears,manifest
for example in a declaration at the 2008 G8 Toyako Summit (Takemi
and Reich, 2009). This focus of attention arises from a recognition
that attempts to implement disease-specific vertical projects often
founder in the faceofweakhealth systems: for example, adonormight
purchasemalariamedicationsor insecticide treatedbednets for a low-
income country, but the Ministry of Health as the implementing in-
countrypartner is unable todeliver themedicationsbefore theyexpire
or the bednets to the at-risk population before the end of the rainy
season. Thus, the reasoning goes, funding for such vertical projects
has to be complemented with funding for “horizontal” programmes
which aim at strengthening the health system as a whole.

As Ellner et al. (2011) remark, although the label health systems
strengthening is relatively recent, the dialectic between propo-

nents of vertical and horizontal approaches is a defining feature of
global health debate through much of its history. The eradication
of smallpox in the 1960s and 70s is an example of a “vertical project”
(as were the earlier, failed, attempts to eliminate malaria). On the
other hand, the Alma-Ata declaration (WHO, 1978), with its stress
on the role of primary healthcare, presents a holistic vision of health
services and is often taken as a statement of the philosophy and
principles of the horizontal approach. Hafner and Shiffman (2013)
describe how the focus on HSS marks a renewed interest and en-
gagement in horizontal approaches on the part of key actors,
including international organisations such as theWHO,World Bank,
and other international agencies and donors.

Evidence of the importance of HSS is provided by the wide varia-
tions in health system performance amongst Low andMiddle Income
Countries (LMICs). Balabanova et al. (2013) highlight six countries
and regions (Bangladesh, Ethiopia, Kyrgyzstan, Thailand, and the
Indian state of Tamil Nadu) which have achieved good health at low
cost and stress the vital role of systems-level elements in deliver-
ing success in what can be extremely challenging environments. The
achievements of these countries cannot be explained by increased
funding alone and can to some extent be attributed to the strength
of the health systems. Chowdhury et al. (2013) describe how
Bangladesh, for example, has higher life expectancy and lower infant,
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under-5 and maternal mortality than its South Asian neighbours,
India, Pakistan and Nepal, despite lower per head expenditure.

In this paper, we discuss a problem faced by donors who have a
primary mandate to deliver vertical projects targeted at particular
diseases, but at the same time, recognise the importance of (and seek
to fund) HSS. Statements on the websites of the Global Fund, Global
Alliance forVaccines and Immunizations (GAVI) andPresident’s Emer-
gency Plan for AIDS Relief (PEPFAR) indicate that many prominent
donors meet this description. One problem such donors face is that
of seeking an optimal balance of funding between disease specific
programmes and HSS. Our paper attempts to address that question.

We organise our paper as follows. In Section 2, we provide an
overview of the concept of HSS. In Section 3, we introduce ourmodel
through amotivating example. Section 4 presents our general model
and shows how to efficiently solve a special case. In Section 5, we
provide worked examples, based on the allocation of funds to in-
fectious disease programmes in sub-Saharan Africa. Section 6
summarises our contributions and discusses implications for
research and practice in this area.

2. Conceptual background

In this section to give the reader a clearer picture of what is cap-
tured in the concept of HSS, we present theWHO framework (WHO,
2007), which has played a key role in framing discussions of HSS.
In this conception, the health system has six building blocks. These
building blocks and the associated priorities are cited below.

1. Service delivery: packages; delivery models; infrastructure;
management; safety and quality; demand for care;

2. Health workforce: national workforce policies and investment
plans; advocacy; norms, standards and data;

3. Information: facility and population based information and
surveillance systems; global standards, tools;

4. Medical products, vaccines, and technologies: norms, standards,
policies; reliable procurement; equitable access; quality;

5. Financing: national health financing policies; tools and data on
health expenditures; costing

6. Leadership and governance: health sector policies; harmoniza-
tion and alignment; oversight and regulation (WHO, 2007).

This framework has been used by Warren et al. (2013) to track
Global Fund expenditures, and similar frameworks have been sug-
gested and used for expenditure tracking by Shakarishvili et al. (2011)
and Goeman et al. (2010). Such expenditure tracking is clearly in-
formative but limited. For example, it is impossible to infer whether
funds are or are not optimally allocated across the building blocks
without further information about cost-effectiveness. Note that a
focus on HSS recognizes the importance of economies of scope that
exist within any health system. In particular, resources such as service
delivery platforms and information systems are shared by many in-
terventions, and their nature and effectiveness will therefore be
important determinants of cost structures within the system.

Investing inHSSpresents a significantphilosophical challenge from
the point of view of economic appraisal. Of course, the difficulties of
performing a sound economic analysis of the costs and benefits of a
vertical project – delivering a course of TB treatment, or rolling out
rotavirus vaccination – should not be underestimated. Obtaining re-
liable anduseable empirical studies and transferringfindings to anew
setting with a different population, disease pattern, and service in-
frastructure requires considerable analytic capacity.

Nevertheless, appraisal of vertical projects falls squarely within
the standard paradigmof economic analysis as it has developed over
the last several years, and so can take place in a well developed the-
oretic frameworkaccording toclear standards (Drummondetal., 2005;
Gold et al., 1996; Tan-Torres Edejer et al., 2003). In particular, because
health benefits – whether measured in reduced number of infec-

tions, avoided mortality or gains in QALYs or decreases in DALYs –
can be ascribed to a specific project, it is possible to assess their cost-
effectiveness. Thewell-established decision rule of cost-effectiveness
is to rank interventions in decreasing order of their benefit to cost
ratios andproceeddown the list frommost to least cost-effective until
the budget is exhausted (Weinstein andZeckhauser, 1973;Weinstein,
2012).

Investments in HSS cannot be easily accommodated within this
framework. Unlike funding vertical projects, funding HSS interven-
tions such as policy development or information systems does not
contribute to health directly, but is instead complementary to ex-
istingdelivery systems. To take a concrete example, according toWHO
(2007), in over 60 countries, less than a quarter of deaths are re-
corded by vital registration systems. Of course, vital registration by
itself does not save lives. However, in such countries, if a system of
vital registration existed, the ability of planners to target suchmedical
resources as do exist on those in most needs may be massively im-
proved.Yet suchqualitativeconsiderationsdonothelpadecisionmaker
with a mandate focused on (say) malaria control and elimination in
deciding how much to invest in upgrading the system of vital
registration.

Frenk (2010)has called for a “diagonal” approach to thinking about
health systems,which recognises the complementarity betweenhor-
izontal and vertical programmes. In this paper, we respond to that
challenge. The way we think about this is as follows. We conceptu-
alise the effect of a weak health system in terms of the gap between
efficacy and effectiveness. In principle, one could estimate the effect
which a treatment will have on a population by taking efficacy data
from a laboratory study and multiplying up at the population level.
In practice, of course, in all health systems, effectiveness in the field
never attains the level of efficacy in the laboratory. In actual clinical
practice, many of the population in need may not be able to secure
access to medical care; they may be diagnosed wrongly or treated
inappropriately; or theymay refuse care, fail to complywith the treat-
ment regimeor terminate the course before completion– all ofwhich
maybeconsequencesof aweakor failinghealthsystem. Inotherwords,
we conceptualise the impact that a weak health system has on the
delivery of a vertical project as one of dilution of the health benefits.

3. Motivating example

In this section, we present a motivating example of a decision
problem for a donor looking to allocate resources between differ-
ent HIV prevention projects (with data based on Hutton et al., 2003).
In Table 1 we present data for nine vertical projects on the total cost
of full implementation, the number of infections averted and
incremental cost-effectiveness ratios, ranked in descending order
of cost-effectiveness.

Assuming the projects are independent, the standard cost ef-
fectiveness rule for approaching this problem is to proceed down
the table funding interventions until the budget b is exhausted.
For example, if the donor has $2m, the optimal solution is to im-
plement interventions 1–4 completely and then intervention 5
fractionally. This rule is the optimal solution to an implied math-
ematical program, the linear knapsack problem, (LK).

max

. .

v x

c x b LK

i i

i I

i i

i I

∈

∈

∑
∑ ≤ ( )s t

In (LK), I is the index set of projects (typical member denoted
i); the ci terms are the monetary costs, the vi terms are the health
benefits, i.e. the number of infections averted and the xi are the de-
cision variables, indicating the proportion of project i implemented.
We assume that projects are ordered in decreasing value for money
order, i.e. the larger i, the smaller vi/ci.
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However, let us consider a variation on this problem (HV1) where
the donor may also spend its money on health system strengthen-
ing as well as on vertical projects.

max

. .

y v x

y c x b HV

y P

y p

x i I

i i

i I

i i

i I

i

γ

∈

∈

∑
∑+ ≤ ( )

≤
≥
≤ ≤ ∀ ∈

s t 1

0 1

Compared to the previous decision problem, this program in-
troduces a new decision variable y, representing the chosen
expenditure on HSS. The effect of spending $y on health system
strengthening is to scale the effectiveness of the HIV prevention proj-
ects by a dilution factor of yγ. For example in this context, health
system strengthening may take the form of destigmatising HIV
among health service workers, resulting in more effectively deliv-
ered interventions across the board. We enforce upper (P) and lower
(p) bounds on the amount of expenditure that goes to health system

strengthening. In practice, there may be reasons for limits on y, for
example, policy limits set by a donor on the amount of budget which
they are prepared to invest in HSS.

The chosen parameters γ > 0 allows us to model diminishing
returns to HSS, as illustrated in Fig. 1 for three different values of
γ, namely γ = 0.25, γ = 0.5, and γ = 0.75. For these values of γ the func-
tion is concave, reflecting that the first incremental dollar has greater
impact on improving the health system than the last incremental
dollar. As γ increases towards 1, the function becomes progressive-
ly more linear. A value of γ > 1 implies increasing returns to HSS.

Intuitively, what is the solution to this mathematical program?
For a given value of y = y0, the answer seems clear: we have a re-
maining budget of b − y0, and we should prioritise this budget by
ranking the projects in descending order of cost-effectiveness and
spending until we run out of money. The problem is that we do not
know the optimal value of y. There is nevertheless a relatively simple
way to identify an optimal solution, which is as follows.

1. Set y0
= p, rank the projects by cost-effectiveness, and proceed

down the list until the residual budget b − y0 is exhausted. Cal-
culate the value of this solution.

2. Set y0
= P, rank the projects by cost-effectiveness, and proceed

down the list until the residual budget b − y0 is exhausted. Cal-
culate the value of this solution.

3. Consider implementing project 1 completely and devote the re-
sidual budget to health systems strengthening; projects 1 and
2 completely and devote the residual budget to health systems
strengthening; projects 1 to 3 completely and devote the resid-
ual budget to health systems strengthening; and so on. Eliminate
infeasible solutions identified by this procedure (e.g. those in
which the residual budget is negative) and calculate the value
of the solutions which remain.

4. Consider implementing project 1 fractionally and devote the re-
sidual budget to health systems strengthening; project 1
completely and project 2 fractionally and devote the residual
budget to health systems strengthening; projects 1 and 2 com-
pletely and project 3 fractionally and devote the residual budget
to health systems strengthening; and so on. Eliminate infea-
sible solutions identified by this procedure and calculate the value
of the solutions which remain.

5. Compare the values of the solutions identified by all the above
four procedures and choose the one with the highest value.

Table 1

Data for HIV prevention projects.

Intervention Total

cost (US$)

Number of

infections

averted

Incremental

cost-effectiveness

ratio

1 2 3

1. Peer group education –

sex workers

39,575 2473 0.0625

2. Safe blood transfusion 50,000 595 0.0119

3. Peer group education –

young people

423,500 799 0.00189

4. Mass media and social

marketing of condoms

1,300,000 2434 0.00187

5. Peer group education –

high-risk men

500,000 862 0.0017

6. Targeted AZT to

pregnant women

300,000 319 0.0011

7. Voluntary counselling

and testing

310,000 261 0.0008

8. Targeted advice for

breast feeding

150,000 62 0.00041

9. Targeted treatment of STIs 560,000 204 0.00036

Fig. 1. Dilution of health benefits as a function of y for three different values of γ.
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The algorithm as outlined above is incompletely specified, as in
step 4 there are multiple (actually infinite) possible fractions which
can be chosen at each stage. In the ensuing technical discussion, we
show how to specify this fraction so that we can guarantee that this
algorithm does indeed return the optimal solution to problem (HV1).

4. Towards a more general model

In this section, we develop a mathematical model that seeks to
reflect the search for an optimal balance between vertical and hor-
izontal programmes. By introducing more than one potential target
of HSS, this model generalises the model of the previous section
and provides a framework for analysing and discussing it.

In contrast to (HV1), we introduce the additional requirement
that the projects can be clustered into programmes that rely on a
common infrastructure, which may comprise factors such as work-
force, capital, or information systems. These are indexed as j, so that
we are considering a set of projects, clustered within programmes,
which are referenced as (i, j). The important observation is that all
projects i within a programme j benefit from the extent and quality
of the common infrastructure, which can be thought of as the health
system for that programme j. Thus, an investment in strengthen-
ing the programmes system will benefit all projects within the
programme, without being assigned specifically to any one project.

As discussed in the previous section, the conventional decision
maker’s problem is to decide which projects to fund. However, our
reformulationextends the scopeof decisionmaking to includeachoice
of howmuch to invest in each programme’s infrastructure, in other
words, strengthening elements of its health system. Such strength-
ening imposes costs, but also yields benefits, in the formof improved
effectivenessof a rangeof projects. Themodel seeksanoptimalbalance
between such strengthening and the direct expenditure on individ-
ual projects, subject to an overall budget constraint.

Our model requires the same estimates of project costs and ben-
efits as conventional cost-effectiveness analysis. However, while CEA
conventionally considers projects independently, our key addition-
al information requirement is an estimate of the extent to which
an investment in health system j will improve the effectiveness of
each of the projects (i, j) within that programme. This allows us to
model the impact of the health system on projects. Such informa-
tion is traditionally not available. However, we argue that estimates
of such impact are essential if informed decisions about health
system strengthening are to be made.

Generalising the one-dimensional concept of the health system
discussed in the previous section, our model is as follows:

max

. .

, ,

, ,

w y v x

y c x

j j

j J

i j i j

i I j

j

j J

i j i j

i I jj J

γ

∈ ∈ ( )

∈ ∈ ( )∈

∑ ∑

∑ ∑∑+ ≤s t BB HV

p y P j J

x i I j j J

j j j

i j

( )

≤ ≤ ∀ ∈
≤ ≤ ∀ ∈ ( )∀ ∈0 1,

The interpretation of this model is as follows:

• J m= { }1, ,… is an index set of programmes of projects, clus-
tered according to whether they share the same underlying
delivery system (for example countries may have highly inte-
grated programmes for particular diseases which are separate
from the rest of the healthcare system; the same vaccination pro-
grammemay contain diphtheria, pertussis andmeasles projects;
or in health systemswith a strong regional tier, it maymake sense
to cluster disease projects by region).

• I j n j( ) = { }1, ,… are a family of index sets of health projects at
the population level within each programme j (e.g. a project to
provide ACTs for malaria, a project to provide ART for HIV).

• yj, j ∈ J are decision variables representing investment in health
system strengthening within each programme j.

• The functions w yj j
γ , j ∈ J model the effectiveness of the health

system for programme j given an investment of yj. This is a
weighted power term: wj is a scaling factor and γ is an expo-
nent. In terms of interpretation, wj may incorporate two elements:
one is a normalisation to ensure that w yj j

γ is less than 1 and
hence can still be interpreted as a dilution of health benefits, and
another is a weighting term which reflects the relative priority
given to the programme j by the funder.

• xi j, , j J i I j∈ ∈ ( ), are decision variables, indicating the extent to
which the project i ∈ I(j) is funded with 0 indicating no funding
and 1 indicating full funding.

• ci j, , j J i I j∈ ∈ ( ), are (positive) coefficients representing the
costs of the projects in the current planning period assuming full
implementation. B is the overall budget.

• vi j, , j J i I j∈ ∈ ( ), are (positive) coefficients representing the
health benefits of the projects assuming full implementation and
perfect operating conditions.

• B represents a monetary budget. We assume that B p j

j J

>
∈
∑ to

ensure feasibility. We refer to B p j

j J

−
∈
∑ as the “discretionary

budget”.

This model makes the following major assumptions.

• Vertical projects are characterised by constant returns to scale

for a given level of HSS. Investment in HSS exhibits varying
returns to scale as captured by the power function. This assump-
tion is less strong than it might appear in that it is possible to
break down projects into arbitrarily fine pieces (rather than
“bednets in Mozambique”, one could have “bednets in Cabo
Delgado”, “bednets in Nampula”, “bednets in Zambezia” and so
on, or even down into the county level), assuming that the data
will allow such fine discrimination.

• Vertical projects are independent for a given level of HSS.

Vertical projects are assumed to have been selected from amongst
mutually exclusive alternatives in a “competing choice” frame-
work. The vertical projects can be seen as analogous to
Weinstein’s shopping spree paradigm – where a decision maker
with a fixed budget must choose to allocate funds amongst a set
of interventions in a way that maximises health gains. Indepen-
dence means that for a given level of HSS, there are well-
defined costs and benefits which can be associated with a project,
irrespective of what other projects are implemented. Failures of
mutual exclusivity can be handled by augmenting themodel with
logical constraints which enforce relations of exclusion or pre-
cedence between alternatives for vertical projects. Failure of
independence can be handled by augmenting the existing for-
mulation by including “dummy” projects to represent the positive
synergies or negative dis-synergies, and adding logical con-
straints to the model to enforce that if two projects are chosen,
then their interaction is chosen also.

• Costs can be disaggregated into project costs and system costs.

This is a somewhat different cost definition to that usually used
in applications, where the project costs used are often fully loaded
unit costs. Fortunately over the last few years, costing data in
global health is becoming better andmore consistent across coun-
tries; thanks to greater use of tools such as the Onehealth tool
endorsed by the World Health Organization (WHO, 2015).

• Costs are assumed to fall within a single time period. The time
period is meant to be representative of national strategic plans
of countries or funding agencies, typically around 3 to 5 years
over which countries receive a fixed budget for implementa-
tion of vertical projects and HSS. The intertemporal trade-offs
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and associated uncertainties of irreversible investments that are
characteristic of HSS expenditures and some vertical projects
(such as life-long antiretroviral treatment for HIV positive in-
dividuals) are not explicitly modelled. However, the current
assumption is often representative of the reality faced by either
donors or countries who cannot make provision for financing for
more than a few years due to uncertain revenue streams and have
to make implementation decisions without explicit consider-
ation of future uncertainties.

We make the following minor assumptions, which we label so
we can refer to them later.

Assumption 1. Within each programme jo, projects are indexed in order
of decreasing v c

i j i jo o, , .

Assumption 2. Within a given programme jo, all projects i differ in
their cost-effectiveness ratio v c

i j i jo o, , .

Assumption 3. p j Jj > ∀ ∈0 .

Assumption 4. c Bi j

i I jj J

, .
∈ ( )∈
∑∑ ≤

Assumption 5. γ > 0.

Assumptions 1–5 are not material assumptions and are made
for presentation and computational convenience. In the case of
Assumption 1, we can label the projects how we like. In the case
of Assumption 2, if we have more than one project with identical
cost effectiveness ratio we can bundle these projects together in a
single project. Assumption 3 reflects the notion that it is neces-
sary to spend something (at least one cent) on health systems
before delivering vertical projects. Assumption 4 requires that we
do not have enough money to implement all the vertical projects.
Assumption 5 requires that investing in the health system has a
positive impact on health system performance, but still admits
considerable generality, e.g. it does not specify whether the func-
tion which models the efficacy of a given funding level is convex
or concave.

The model (HV) thus captures the notion that the total health
benefit is composed of health benefits from multiple health proj-
ects grouped in programmes. For each of these programmes, the
health benefits arise from the combination of individual funded proj-
ects and the “health systems strengthening” investments in the
programme as a whole. If no interventions are funded in some par-
ticular programme j, then there will be no health benefits,
irrespective of whether there is investment in the health system:
there is no point investing extensively in building a network of com-
munity health workers for finding TB cases if there are no funds for
TB medication after cases are identified.

Math programming models have enjoyed some popularity in
health economics in recent years as a way of providing a frame-
work to discuss issues such as concerns about budgets, divisibility,
and equity (Anand, 2003; Birch and Gafni, 1992; Birch and Gafni,
1993; Cleary et al., 2010; Earnshaw and Dennett, 2003; Epstein et al.,
2007; Johannesson andWeinstein, 1993; Morton, 2014; Stinnett and
Paltiel, 1996). The model (HV) is a quite different and specifically
more complex model than any we have seen in the literature hith-
erto: as shown in Appendix A, it has a highly nonlinear and in fact
nonconvex objective function. Our model is nevertheless devel-
oped according to the principles underlying the standard cost-
effectiveness model in widespread use in health economics. The
intention is to demonstrate the modelling implications of incorpo-
rating HSS into that model, and the feasibility of deriving optimal
solutions.

While HV does echo some aspects of the Cobb–Douglas pro-
duction function, it is mathematically more complicated (the Cobb–

Douglas function is a product of powers; the function in HV is a sum
of products, one of which is a power, but the other is a sum). In terms
of economic interpretation, our model can be seen as capturing the
concept of economies of scope (Panzar and Willig, 1981). This fun-
damental economic concept has been surprisingly neglected in health
economics. Unlike the existing health economic literature on econo-
mies of scope (see Wholey et al., 1996 and Preya and Pink, 2006),
we take a primarily theoretic rather than empirically driven ap-
proach in this paper. In Panzar andWilligs formulation, the concept
is expressed through superadditivity of the cost function: the cost
of saving x lives through an optimal mix of TB treatment andmalaria
treatment saving y lives from TB and z lives frommalaria is less than
the sum of the costs of saving y lives from TB plus the costs of saving
z lives from malaria (see also Morris et al., 2007). In our analysis,
we model the complementarity between different healthcare proj-
ects arising from the shared health system which is necessary for
the delivery of both projects. This complementarity can be easily
seen to imply the superaddivity of the cost function as described
by Panzar and Willig.

Our problem is also reminiscent of certain models in the
production optimisation literature where (in terms of the context
of this model), there is a fixed charge (e.g. due to administrative
overheads) associated with operating a disease programme, irre-
spective of what projects are implemented under that programme.
In this setting, one has to decide both which programme to set up
(and hence which fixed charges are incurred) and what is imple-
mented under each programme. The structure of such models is
well-understood (Hooker, 2012). However, these models are not
really relevant in modelling investment in health system strength-
ening. Such investment is best understood as an investment in
quality of the existing programmes of delivery (e.g. investing in
education about the transmission mode of a disease may result
in greater effectiveness of prevention activities across the board)
rather than a precondition for investment in vertical programmes
to take place.

Despite the complexity of this program (HV), it is possible to
gain some insights into the structure of the optimal solution. Full
details of the model and the proof of the optimization conditions
are given in Appendix B. In particular, Theorem 1 in the appendix
indicates that, at the optimum, there is within each programme a
single critical project that is implemented wholly or in part.
Projects with higher cost-effectiveness ratios than the critical
project are rejected while projects with lower cost-effectiveness
ratios are implemented in full. Thus, despite the additional com-
plexity of our model, within each programme the core insight of
Weinstein and Zeckhauser (1973) still holds – there is a unique
“critical” intervention that separates the funded and unfunded
interventions.

5. Examples

5.1. Preventing HIV infections: an algorithmic solution of (HV1)

The analysis of Appendix B also suggests an algorithmic solu-
tion to (HV1), the version of (HV) with just a single health system
programme, as has already been sketched in Section 3. In this
section, we present an example in which the optimal solution can
be computed in this manner. Theorem 2 presents the technical
details of calculating the optimal solution. The approach is sum-
marized in the box Algorithm 5.1, yielding a set of ‘candidate
solutions’ to the optimization problem. Those that do not satisfy
the constraints on xi and y are deleted, and the remainder are
chosen so as to maximise the value function. Note that computa-
tion time for the algorithm is a function of n the number of
projects, so the algorithm is capable of yielding an exact optimal
solution, even when n is large. Optimizing the general problem
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(HV) requires more complex solution concepts, and therefore we
resort to a generic optimization routine, as discussed in the next
section.

Here, we present a worked example of (HV1) as a decision
problem for a donor looking to allocate resources between
different HIV prevention projects (with data based on Hutton
et al., 2003). We use Table 1 where we presented data for nine
projects on total cost of full implementation, the number of
infections averted, and the incremental cost-effectiveness ratios
and ranked the projects in descending order of cost-effectiveness.
In Table 2, we present values for the other inputs in our worked
example.

Algorithm 5.1 can be applied in the case of a single programme
(disease) to recover the optimal solution. In the online supplementary
materials, we demonstrate an application of the algorithm using data

presented in the tables above. We begin by applying the four pro-
cedures presented in Algorithm 1 to calculate all candidates for the
optimal solution ( , *)y xi* , assuming a budget of approximately $2.8
million and a value of 0.5 for γ (later in this section we discuss sen-
sitivity analysis around γ).

Table 2

HV1 Inputs.

Value

b $2,816,537.5

γ 0.5

p $250,000

P $1,500,000
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Table 3 gives the level of expenditure in each of the projects in
our optimal solution. In this example, the donor will spend approx-
imately $1.46 million on health system strengthening and choose
to implement interventions in order of cost-effectiveness until the
remainder of the budget is spent. Following Theorem 1 in Appen-
dix B, there is only one intervention (mass media and social
marketing of condoms) in which there is fractional implementa-
tion and projects with higher vi/ci are fully implemented
v c v ci i i i′ ′ >( )* * while projects with lower values receive no spend-
ing v c v ci i i i* * >( )′′ ′′ .

In our example, we model the maximum output from spend-
ing in HSS through the γ parameter. γ influences the shape of the
production function for HSS by altering its concavity. The health eco-
nomics literature offers little evidence or insight on what the
production function for HSS spendingmight look like. In our worked
example above, we chose an arbitrary value of 0.5 for γ.

For illustration purposes, we simulate changes in the optimal so-
lution and the expenditure on HSS by varying γ between 0.2 and
0.8. The results are presented in Figs. 2 and 3. Fig. 2 shows the optimal
level of health system strengthening as a function of γ. Fig. 3 shows
the optimal level of spending on each of the projects for different
values of γ. Fig. 2 clearly shows nondecreasing expenditure on HSS
as γ rises. Two things stand out in this graph. The first is the upper
bound for expenditure on HSS occurs at γ = 0.5. In principle, the
optimal level of expenditure on HSS will be either the level above
which it is no longer efficient for a donor to increase expenditure
in HSS for a given level of gamma or the upper bound of y, i.e. P,
whichever is reached first. Second, at γ = 0.3, we see a plateau in
the function values. Investigating this further in Fig. 3 shows that
at this point peer group education for high risk men drops out of
the optimal solution. In our simulation as γ increases, the optimal
solution involves increasing levels of HSS while cutting spending
on the least cost-effective projects.

Our example highlights the importance of understanding the
returns to spending on HSS and its effectiveness. Our data allow us
to identify specific patterns for expenditure on HIV prevention and
HSS, however we emphasize that the shape of the investment func-
tion for HSS is specific to the data we have used and the relationship
between the optimal solution and γ might be different in other cases.

5.2. Balancing expenditures on HIV, TB, and malaria

In this section, we present a worked example of (HV) for a donor
who wishes to support HIV, TB, and malaria vertical projects and
also in HSS for these three diseases. (This is exactly the situation
faced by, for example, the Global Fund). The data for our example
is given in Table 4. In Table 5, we present two sets of input param-
eters (default and extreme) which we use in our example below.
The data for vertical projects is notional but realistic, based on our
consulting work (Thomas et al., 2013). The handling of the effects
of HSS on outcomes is necessarily somewhat more sketchy, con-
sidering the lack of relevant quantitative evidence: in our model,
for each of the three diseases, the funder has the opportunity to
spend up to $10m in that disease and such spending will double
the effectiveness of the vertical projects for that disease.

As Algorithm 1 only solves (HV1) rather than the more general
(HV), we use theMATLAB nonlinear optimisation algorithm MultiStart
(Ugray et al., 2007). We conducted preliminary testing which re-
vealed that MultiStart performed consistently as well as or better
than other nonlinear optimisation algorithms available for the
MATLAB environment. In particular, optimisation algorithms that
rely on techniques suitable (and indeed efficient) for convex prob-
lems such as those based on hill-climbing principles do not perform
well on this problem due to the significant nonconvexities of the
objective function. Such algorithms typically become trapped in a
local optimum and give a misleading picture of the optimal solu-
tion. Our MATLAB code is provided in the supplementary online
material to this paper.

To give a sense of the performance of the model, we vary the
discretionary budget between 0 and $110m and solve the model
for increments of $2m. We track the optimal horizontal and verti-
cal spending for the default parameter values in Fig. 4. Data points
associated with HIV are marked with a square, TB with a triangle,
and malaria with a diamond. The marker is empty for horizontal
HSS and solid for vertical projects. The interpretation here is: first
the decisionmaker should first fund ACTs (amalaria vertical project);
then malaria health systems strengthening; then HIV testing and

Table 3

Optimal solution for HV1.

Peer group education – sex workers 1

Safe blood transfusion 1

Peer group education – young people 1

Mass media and social marketing of condoms 0.65

Peer group education – high-risk men 0

Targeted AZT to pregnant women 0

Voluntary counselling and testing 0

Targeted advice for breast feeding 0

Targeted treatment of STIs 0

Fig. 2. Investment in HSS as function of γ.
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around the same time in IPT for malaria; once a testing project is
in place, fund HIV HSS alongside scaling up testing; then around
the $60m–$70mmark the decision maker should start funding the
TB interventions, TB HSS and finally ARTs for HIV.

The graph presented in Fig. 4 shows expenditure on both hori-
zontal and vertical programmes increasing as the budget increases.
Because of the nonconvexity in the objective function, this behaviour,
although intuitively sensible, will not always be exhibited. Consid-
er the following example, with data as shown in the right hand
column of Table 5 (the data are contrived to make a theoretical point
about model behaviour – there is no suggestion that the following
represents an actual policy recommendation). In this set up, being
able to fund at scale in a programme is critically important, because
by funding HSS we can radically scale up the effectiveness of a pro-
gramme. When we run the algorithm for discretionary budgets
between $0 and $350m we get results as shown in Fig. 5.

The logic of the results is as follows: as long as the decisionmaker
has a limited budget, she should fund malaria projects, because she
cangethealthgainswithouta largeoutlay. Butonce thebudget reaches
about $20m, it is optimal to switch some expenditure from malaria
toHIV,which iswhere the big gains are in thismodel (there aremore
DALYs tobegained fromthevertical projects than for anyotherdisease
category). Intuitively, at this point she has the funds to build an HIV
organisationwhichwill have a transformative effect on a disease that
has a massive associated burden of illness. Then, eventually at very

high budget levels, the demand for HIV services is exhausted (since
the entireHIV positive population is onART) and it is optimal to start
fundingmalariaagain. FundingTBservices isnotoptimal foranybudget
level in this model in the range considered here.

6. Conclusion

In this paper, we have shown how economic analysis of hori-
zontal programmes – of Health Systems Strengthening – can be
brought within the scope of analysis using principles that are con-
sistent with standard cost-effectiveness analysis. We show that our
models are computationally tractable and can provide insights that
may not be immediately obvious. They illustrate the complexity of
the task of prioritising HSS funding and underline that the choice
of best distribution of expenditure for a given country is likely to
be highly context dependent. Also in our formulation of the problem,
the cost effectiveness ordering of projects is invariant with respect
to global rescaling of assessments of benefits to reflect health system
frailty. Our paper can be seen as an exploration of the neglected eco-
nomic concept of economies of scope to better understand a key
policy concept in the global health setting.

All health systems are different, and have different frailties. In
some health systems, the priority should be on providing training
for community health workers, in others on implementing hospital
regulation, in others on providing data and analysis tools for local

Fig. 3. Optimal solutions by gamma.

Table 4

Data for HIV, TB, and malaria example.

Intervention Target

population

Unit cost of

intervention (US$)

Total cost

(US$)

$ per DALY Adherence DALYS

averted

Ratio of benefits to costs

(cost-effectiveness)

1 2 3 4 5 6 7

HIV

Testing 1,700,000 17 28,900,000 38.27 0.39 294,512.67 0.0102

ART first line treatment 500,000 511 255,500,000 451.50 0.80 452,713.18 0.0018

TB

DOTS treatment 20,000 755 15,100,000 132.96 0.95 107,889.59 0.0071

Diagnosis 140,000 9.98 1,397,200 126.35 0.34 3759.78 0.0027

MDR-TB treatment 100 7595 759,500 521.96 0.80 1164.07 0.0015

Malaria

Treatment with ACTs 5,000,000 2.03 10,150,000 13.91 0.60 437,814.52 0.0431

Intermittent preventive

treatment in pregnancy

(IPTp)

945,000 0.30 283,500 25.68 0.40 4415.89 0.0156
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managers. We believe that the functional relationship betweenmon-
etary investment and the strength of the health system will always
have to be judgmentally assessed by local planners and policymakers
based on their understanding of the particularities of their health
system. However, we also believe that their task would be mas-
sively aided if there were a body of high quality and comparable
empirical studies that show how particular spending on health
systems have has improved the realised health gains from vertical
projects. If one interprets the multiplicative rescaling of health ben-
efits in our model as an efficacy – effectiveness gap, as we propose
in the introduction, this suggests a possible approach to the em-
pirical question: by calculating the ratio of health benefits from field
studies and from clinical trials of the same interventions one could
in principle assess the extent towhich health system frailties (broadly
conceived) dilute the maximum clinically realisable benefits.

In a recent book chapter (2012), Weinstein has reminded us that
the linear knapsack problem, on which the models of this paper are
based, requires restrictive assumptions, in particular on the absence
of interdependencies between projects and multiple resource con-
straints, and the divisibility of projects. The models of the current
paper suffer from some of the same limitations. But as explained
by Weinstein (2012), some of these restrictions can be relaxed
without abandoning the framework by redefining the vertical proj-
ects as combinations of projects or as different levels of individual
vertical projects. Indeed, it is rather easy to formulate and (with
today’s optimisation solvers) computationally solve still more general

models which relax even the restrictions which remain. However,
the models we present in the current paper are simple enough to
have relatively easily characterised solutions, but also sufficiently
complex to exhibit surprising and counterintuitive behaviour.

These limitations aside, we hope that our current paper will help
focus and direct further empirical research in this area. Although
as we note above, there are to our knowledge no current esti-
mates to the parameter γ in our model, yet knowing this seems
critical for making sensible decisions. Fortunately the availability,
comparability, and quality of data in global health has been stead-
ily improving over recent years, both in terms of relevant outcome
measures (such as treatment completion rates) and in terms of de-
tailed costings. We hope that it should soon be possible to make
first-cut estimates of γ using standard econometric techniques for
estimating productivity and growth.

Wealso consider that there are several interesting theoretic issues
which could be usefully studied within an expanded version of the
framework presented in this paper. For example, expenditure onHSS
is a way of building sustainability into the health system: many of
theassets that are created throughhorizontal programmeswill persist
over time. In a country that is making rapid (but hard-to-predict)
progress through thedevelopment cycle, there is a real questionabout
how best to frame the intertemporal tradeoff and handle the as-
sociated uncertainties. Another interesting and related issue is the
alignment or non-alignment of donor and country objectives, par-
ticularly in the case where these two parties have different time
preferences. Further, in a multi-donor environment, there is un-
certainty about who should be the donor providing the funding for
HSS – one can easily envisage a situationwhere a stand-off between
donors may lead to underinvestment in HSS. However, addressing
these questions would take us beyond the scope of this paper, and
we leave them open for future investigators in this area.

Acknowledgements

Ranjeeta Thomas is supported by funding from the HIV Preven-
tion Trials Network 071 Study (HPTN 071). HPTN 071 is sponsored
by the National Institute of Allergy and Infectious Diseases (NIAID)
under Cooperative Agreements UM1-AI068619, UM1-AI068617, and
UM1-AI068613, with funding from the U.S. President’s Emergency
Plan for AIDS Relief (PEPFAR). Additional funding is provided by the

Table 5

HVQ inputs.

Default parameters Extreme parameters

γ 1 1

B $0 to $108,000,000 $0 to $336,000,000

p HIV: $10,000,000 HIV:$ 0

TB: $10,000,000 TB: $ 0

Malaria $10,000,000 Malaria: $ 0

P HIV: $20,000,000 HIV: $ 56,880,000

TB: $20,000,000 TB: $ 3,451,340

Malaria: $20,000,000 Malaria: $ 2,086,700

w HIV: 0.6 HIV: 0.6

TB: 0.7 TB: 0.7

Malaria: 0.5 Malaria: 0.5

Fig. 4. Investment in different diseases for different budget levels with default

parameters.

Fig. 5. Funding in different diseases for different budget levels with extreme

parameters.

105A. Morton et al. / Journal of Health Economics 49 (2016) 97–108



International Initiative for Impact Evaluation (3ie) with support from
the Bill & Melinda Gates Foundation, as well as by NIAID, the Na-
tional Institute on Drug Abuse (NIDA) and the National Institute of
Mental Health (NIMH), all part of NIH. The content is solely the re-
sponsibility of the authors and does not necessarily represent the
official views of the NIAID, NIMH, NIDA, PEPFAR, 3ie, or the Bill &
Melinda Gates Foundation. Peter Smith was in part funded by the
International Decision Support Initiative (www.idsihealth.org), a
global initiative to support decision makers in priority setting for
universal health coverage. Alec Morton would like to thank the Uni-
versity of Science and Technology of China, City University of Hong
Kong, and the Singapore University of Technology and Design for
their hospitality while working on this paper, as well as the gov-
ernment of Anhui province for their support under the 100 Talents
scheme, and Mara Airoldi, Sumitra Sribhashyam, Gwyn Bevan and
the other members of his consulting team. The authors would also
like to express thanks to the editor and two anonymous reviewers
for their constructive comments, which helped us to improve the
manuscript, Michael Borowitz and Shufang Zhang of the Global Fund
for making us aware of this issue, Ashwin Arulselvan and Kerem
Akartunali for helpful discussions on optimisation aspects, Jeremy
Lauer for general encouragement and the participants at a meeting
of the International Decision Support Initiative organised by Mark
Sculpher in York for stimulating and constructive feedback.

A Nonconvexity of HV

To see why HV is nonconvex, consider the following specialisation
(HVQ).

max

. .

, ,

, ,

w y v x

y c x B

j j

j J

i j i j

i I j

j

j J

i j i j

i I jj J

∈ ∈ ( )

∈ ∈ ( )∈

∑ ∑

∑ ∑∑+ ≤s t HHVQ

p y P j J

x i I j j J

j j j

i j

( )

≤ ≤ ∀ ∈
≤ ≤ ∀ ∈ ( )∀ ∈0 1,

In this new formulation (HVQ), γ is set to 1: thus each currency
unit that is allocated to HSS for programme j within the pre-
scribed limits improves the effectiveness of the health system by
wj. (HVQ) is a quadratic program but its objective function is
nonconcave, and so the Karush–Kuhn–Tucker conditions are nec-
essary but not sufficient for a feasible point to be optimal. To see
this, consider Example A.1.

Example A.1

Recall that for a function F(z) to be concave it must be the case
that F z F z F zα α α( ) ≥ ′( )+ −( ) ′′( )1 where z z zα α α= ′ + −( ) ′′1 for all
points z′ and z′′ in the domain of F and α ∈ [0,1]. Consider an in-
stance of (HVQ) with J = {1} and I 1 1 2( ) = { }, and w v v1 11 21 1= = =, , .
Consider the point defined by y1 1′ = , x11 1 10,′ = , x21 2 10,′ = : the
value of the objective function of (HVQ) for this point is
1 1 10 1 2 10 3 10× + × = . Consider the point defined by y2 2″ = ,
x11 4 10,″ = , x21 3 10,″ = : the value of the objective function of (HVQ)
for this point is 2 4 10 2 3 10 14 10× + × = . The average of the ob-
jective function values of these two points is thus 17/20. However,
y1
1 2 3 2= , x11

1 2 5 20, = , x21
1 2 5 20, = , and so the value of the objective

function of (HVQ) for this point is 3 2 5 20 3 2 5 20 15 20× + × = .
Since 15 2 17 2< , the objective function of (HVQ) cannot be concave.

B Technical Appendix

Theorem 1. (i) For each jo
∈ J, there is at most one i j

o
∈

each I j xo

i jjo o( ) ∈( ): ,
,

0 1 (i.e. at most one intervention is fractionally
implemented) – all other x

i jo,
* either = 0 or = 1. Moreover, (ii)

v c v c
i j i j i j i jo o o o′ ′ ′′ ′′>
, , , , ∀ ′ ∈ ( )i I jo and ∀ ′′ ∈ ( )i I jo and if ∃ ∈( )x

i j
o* ,0 1 ,

then v c v c v c
i j i j i j ii j i j i jo o jo o jo o o o′ ′ ′′ ′′> >
, , , , , , ∀ ′ ∈ ( )i I jo and ∀ ′′ ∈ ( )i I jo .

Wedemonstrate this theorem through the proof of two Lemmata.
To state the first Lemma, we introduce a formulation of a subprob-
lem of (HV), which is the restriction of (HV) to a single programme
jo. Note that wewrite this program as being parametric in the budget
constraint b.

max
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Now we are able to state our first Lemma.

Lemma 1. Given ( *, * ),y xj i j is an optimal solution to (HV), for each jo

there exists a b
jo such that ( * , * )

,
y x

j i jo o is an optimal solution of HV b
j jo o( )( ) .

Proof of Lemma 1. For given jo let b* be the value of y c x
j i j i j

i I j

o o o

o

* *
, ,

+
∈ ( )
∑ .

We claim that b* is the desired b
jo of the statement of Lemma. To

demonstrate this, suppose the contrary. In this case, theremust be a
solution ( **, **)

,
y x

j i jo o which is feasible with respect to the constraints

of HV b
jo

*( )( ) such that w y v x w y v x
j j i j i j

i I j
j j i j i j

i I j

o o o o

o

o o o o( **) ** ( **) *
, , , ,

γ γ

∈ ( ) ∈
∑ >

oo( )
∑ . But

then, we can define a new solution to the constraints of (HV)
called ( **, **),y xj i j which has y

jo
** and x

i jo,
** as defined above and

y y j J jj j
o** *= ∀ ∈ { }} and x x i I j j J ji j i j

o
, ,** *= ∀ ∈ ( )∀ ∈ { }. This solution

is guaranteed feasible in (HV) but must have strictly higher objec-
tive function value that that associated with the solution ( *, * ),y xj i j ,

which contradicts theassumedoptimalityof ( *, * ),y xj i j . Hence the claim
is proved. ■

To formulate our second Lemma, we will find it useful to rewrite

HV b
jo
( )( ) as (HV1) to eliminate the now-redundant j subscript. This

makes it less cumbersome to present the proof of the Lemma. We
also take this opportunity to separate out the constraints representing
the bounds on y and associate dual variables with the constraints.

max

. .

wy v x

y c x b HV

y P

y p

x

i i

i I

i i

i I

i

γ

λ

θ

∈

∈

∑
∑+ ≤ ( ) ( )

≤ ( )
− ≤ − ( )
≤ ≤

s t 1

0 1

Θ

∀∀ ∈ ( )i I iµ

(HV1) modifies (HV) by simply dropping the j subscripts
(we presume it is not necessary to explain the notation again).

Analogously to (HV) we denote the values of an optimal solutions
of (HV1) as ( , *)y xi* and define I i I xi= ∈ ={ : * }0 and I i I xi= ∈ ={ : * }1 .

Lemma 2. (i) There is at most one i*: xi** ,∈( )0 1 (i.e. at most one in-
tervention which is fractionally implemented) – all other xi* either = 0
or = 1. Moreover, (ii) v c v ci i i i′ ′ ′′ ′′> ∀ ′ ∈i I and ∀ ′′ ∈i I and if
∃ ∈( )xi** ,0 1 , then v c v c v ci i i i i i′ ′ ′′ ′′> >* * .

Proof of Lemma 2. The Lagrangean of problem (HV1) is

as follows: L x y wy v x b y c xi i i i

i I

i i

i I

, , , , ,λ θ µ λγΘ( ) = − + − +⎛
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⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥∈ ∈

∑ ∑⎡
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The Karush–Kuhn–Tucker conditions for a local maximum are as
follows (Jensen and Bard, 2003):

δ
δ

γ λ θγL
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⎣⎢

⎤
⎦⎥
=

∈
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Θ(P − y) = 0 (10)

θ(y − p) = 0 (11)
µi ix1 0−( ) = ∀i ∈ I (12)

with all of x yi i, , , , ,λ θ µΘ non-negative ∀i ∈ I. A useful way to make
these conditions easier to interpret is to rewrite constraints (1) to
(6) using non-negative slack variables υ χ σ π ζ, , , , ,i iΠ , respectively,
which case we get the following.

γ λ θ υγwy v xi i

i I

−

∈
∑ − − + + =1 0Θ (1’)

wy v ci i i i
γ λ µ χ− − + = 0 ∀i ∈ I (2’)
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i I
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y + Π = P (4’)

−y + π = − p (5’)

xi + ζi = 1 ∀i ∈ I (6’)

yυ = 0 (7’)

xiχi = 0 (8’)

λσ = 0 (9’)

ΘΠ = 0 (10’)

θπ = 0 (11’)

μiζi = 0 ∀i ∈ I (12’)

with all of x yi i i i, , , , , , , , , , ,λ θ µ υ χ σ π ζΘ Π non-negative ∀i ∈ I.
Suppose in contradiction to part (i) of the Lemma, there were

two projects i′ and i″ for which xi′ and ζi′ (resp. xi′′ and ζi′′) both ≠ 0.
If there were such projects, then χ µ χ µ′ ′ ′′ ′′= = = =i i i i 0 (from (8’) and

(12’)). But in this case, it follows from (2’) that
v

c wy
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′

′′
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= =
λ

γ
, and

this cannot be the case (as it contradicts Assumption 2). So there
it is indeed the case that at optimality there is only one xi* ,∈( )0 1

which is part (i) of the Lemma.
Forpart (ii)of theLemma,observethat∀ ′ ∈i I , (8’) givesusχi′ = 0and

(2’) gives us wy v c wy v c v c wyi i i i i i i
γ γ γλ µ λ λ′ ′ ′ ′ ′ ′ ′− − = ⇒ − ≥ ⇒ ≥0 0 .

Similarly ∀ ′′ ∈i I , (12’) gives us μi′′ = 0 and (2’) gives us
wy v c wy v c v c wyi i i i i i i

γ γ γλ χ λ λ′′ ′′ ′′ ′′ ′′ ′′ ′′− + = ⇒ − ≤ ⇒ ≤0 0 . Hence,
v c v ci i i i′ ′ ′′ ′′≥ and Assumption 2 ensure that this inequality is
strict. This gives us part (ii) of the Lemma. ■

The proof of Theorem 1 follows from Lemmata 1 and 2 in a
straightforward way.

Theorem 2. The optimal solution can be identified by checking whether
each of the candidate solutions identified by Algorithm 1 satisfies the
constraints on the decision variables 0 ≤ xi ≤ 1 and p ≤ y ≤ P, deleting
those which do not, and of the remainder selecting the candidate(s)

which maximise(s) y v xi i

i I

γ

∈
∑ .

Now we make clear the utility of Algorithm 1. Recall that since
wehave a nonconvex program, the KKT conditions are necessary but
not sufficient for optimality. We refer to such solutions as “candi-
date solutions” as they are candidates for optimality. We claim that

the solutions identified by Algorithm 1 include all candidate solu-
tions.We begin by recalling Assumption 1 (that projects are indexed
in order of decreasing vi/ci) and making a couple of observations.

Observation 1. Assumption 4 in conjunction with constraint (3’)
ensures that σ = 0 (otherwise we could reach a level of expenditure less
than the budget constraint but with respect to which no further ex-
penditure would yield additional value).

Observation 2. Assumption 3 in conjunction with constraint (7′) implies
that υ = 0.

We now consider four cases.

Case 1: The candidate solution where y = p. Since we know the
value of y (by assumption), σ (by Observation 10), constraint (3’)
gives us an equality budget constraint on the xis. But Lemma 2
part (ii) also tells us that the xis of higher numbered projects
cannot bemade non-zero until the xis of all lower numbered proj-
ects have been made 1. Denote as io the minimal element of

I c x b pi i

i io

:
,∈{ }
∑ + > −
1…

σ . Every project from 1 to io
−1must be imple-

mented at optimum, or projects will have been chosen out of
sequence and Lemma 2 will have been contradicted. No project
with index higher than io can be implemented, otherwise the
budget constraint would be broken; and io itself must be imple-
mented fractionally in order that the budget constraint it met.
The candidate solution characterised in this way is computed by
procedure A.
Case 2: The candidate solution where y = P. By reasoning here
exactly parallel to that of the previous case, procedure B. yields
this candidate solution.
Case 3: The candidate solutions where y ∈ (p, P) and
∄i I xi∈ ∈( ): ,0 1 . By Lemma 2 part (ii) the candidate solutions sat-
isfying this condition are thosewhere the lower indexed projects
are 1 and the higher indexed projects aremade 0. Constraint (3′)
gives us the value of y for each of the candidate solutions which
can be characterised in this way. Procedure C explicitly enumer-
ates these solutions and computes the corresponding value of y.
Case 4: y ∈ (p, P) and ∃ ∈ ∈( )i I xi: ,0 1 . Again by Lemma 2 part (ii)
the candidate solutions are those where the projects indexed
lower than the critical project are 1 and those indexed higher
are 0. The problem here is we have two unknowns: we do not
know the value of decision variable associated with the critical
project, and we do not know the value of y. Fortunately, we are
able to form two equations in these two unknowns. Call the index
of the critical project i*. Now, because π and Π are both nonzero,
(10’) and (11’) require that θ and Θ are zero, which means that

(1’) gives us equation γ λγy v xi i

i i

−

∈{ }
∑ =1

1, *…

and since xi* ,∈( )0 1 , (8”)

and (12”) give us µi* and χi* = 0 , hence y v ci i
γ λ* * = . Substitut-

ing out λ gives us γ γ γy v x y v ci i

i i

i i
−

∈{ }
∑ =1

1, *

* *

…

and rearranging gives

us y c v v c xi i i

i i

i iγ = +
∈ −{ }
∑* *

, *

* *

1 1…

. This is our first equation in y

and xi* . The budget constraint (3’) gives us our second equa-

tion. According to this constraint y c c x bi

i i

i i+ + =
∈ −{ }
∑
1 1, *

* *

…

(using

Observation 10 again). Eliminating the c xi i* * terms, we can get
γ
γ
+⎛

⎝⎜
⎞
⎠⎟

= + −
∈ −{ } ∈ −{ }
∑ ∑1

1 1 1 1

y c v v b ci i i

i i

i

i i

* *

, * , *… …

and we can then solve

the budget constraint equation for the value of xi* . Procedure
D supposes that each project in turn is the critical project and
then proceeds to compute corresponding values of y and xi* .

Since the KKT conditions are necessary for optimality (though
not sufficient) and the above four cases are exhaustive, the solutions
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identified above include all solutions satisfying the KKT condi-
tions and making the remaining feasibility checks against p ≤ y ≤ P
and identifying the highest valued solution from the list remain-
ing will produce an optimal solution to problem (HV1) (since the
budget constraint is satisfied by construction).

Appendix: Supplementary material

Supplementary data to this article can be found online at
doi:10.1016/j.jhealeco.2016.06.001.

References

Anand, P., 2003. The integration of claims to health-care: a programming approach.
Journal of Health Economics 22, 731–745.

Balabanova, D., Mills, A., Conteh, L., Akkazieva, B., Banteyerga, H., Dash, U., Gilson,
L., Harmer, A., Ibraimova, A., Islam, Z., Kidanu, A., Koehlmoos, T.P., Limwattananon,
S., Muraleedharan, V.R., Murzalieva, G., Palafox, B., Panichkriangkrai, W.,
Patcharanarumol, W., Penn-Kekana, L., Powell-Jackson, T., Tangcharoensathien,
V., McKee, M., 2013. Good Health at Low Cost 25 years on: lessons for the future
of health systems strengthening. Lancet 381, 2118–2133.

Birch, S., Gafni, A., 1992. Cost-effectiveness utility analyses – do current decision rules
lead us to where we want to be. Journal of Health Economics 11, 279–296.

Birch, S., Gafni, A., 1993. Changing the problem to fit the solution – Johannesson and
Weinstein (Mis) application of economics to real-world problems. Journal of
Health Economics 12, 469–476.

Chowdhury, A.M.R., Bhuiya, A., Chowdhury, M.E., Rasheed, S., Hussain, Z., Chen, L.C.,
2013. The Bangladesh paradox: exceptional health achievement despite economic
poverty. Lancet 382, 1734–1745.

Cleary, S., Mooney, G., McIntyre, D., 2010. Equity and efficiency in HIV-treatment
in South Africa: the contribution of mathematical programming to priority setting.
Health Economics 19, 1166–1180.

Drummond, M.F., Sculpher, M.J., Torrance, G.W., O’Brien, B.J., Stoddart, G.L., 2005.
Methods for the Economic Evaluation of Health Care Programmes. OUP, Oxford.

Earnshaw, S.R., Dennett, S.L., 2003. Integer/linear mathematical programmingmodels
– a tool for allocating healthcare resources. Pharmacoeconomics 21, 839–851.

Ellner, A., Bukhman, G., Famer, P., 2011. Pathways to health systems strengthening
for the bottom billion. In: Routledge Handbook of Global Public Health. Routledge,
Abingdon, p. 2011.

Epstein, D.M., Chalabi, Z., Claxton, K., Sculpher, M., 2007. Efficiency, equity, and
budgetary policies: informing decisions using mathematical programming.
Medical Decision Making 27, 128–137.

Frenk, J., 2010. The global health system: strengthening national health systems as
the next step for global progress. PLoS Medicine 7.

Goeman, L., Galichet, B., Porignon, D.G., Hill, P.S., Hammami, N., Elouma, M.S.E.,
Kadama, P.Y., Van Lerberghe, W., 2010. The response to flexibility: country
intervention choices in the first four rounds of the GAVI Health Systems
Strengthening applications. Health Policy Plann 25, 292–299.

Gold, M.R., Siegel, J.E., Russell, L.B., Weinstein, M.C., 1996. Cost-effectiveness in health
and medicine. OUP, Oxford.

Hafner, T., Shiffman, J., 2013. The emergence of global attention to health systems
strengthening. Health Policy Plann 28, 41–50.

Hooker, J.N., 2012. Integrated methods for optimization, 2nd ed. Springer, New York.
Hutton, G., Wyss, K., N’Diekhor, Y., 2003. Prioritization of prevention activities to

combat the spread of HIV/AIDS in resource constrained settings: a cost-
effectiveness analysis from Chad, Central Africa. International Journal of Health
Planning and Management 18, 117–136.

Jensen, P.A., Bard, J.F., 2003. Operations Research Models and Methods. Wiley,
Chichester.

Johannesson, M., Weinstein, M.C., 1993. On the decision rules of cost-effectiveness
analysis. Journal of Health Economics 12, 459–467.

Morris, S., Devlin, N., Parkin, D., 2007. Economic Analysis in Healthcare. Wiley,
Chichester.

Morton, A., 2014. Aversion to health inequalities in healthcare prioritisation:
amulticriteria optimisation perspective. Journal of Health Economics 36, 164–173.

Panzar, J.C., Willig, R.D., 1981. Economies of scope. The American Economic Review
71 (2), 268–272.

Preya, C., Pink, G., 2006. Scale and scope efficiencies through hospital consolidations.
Journal of Health Economics 25, 1049–1068.

Shakarishvili, G., Lansang, M.A., Mitta, V., Bornemisza, O., Blakley, M., Kley, N., Burgess,
C., Atun, R., 2011. Health systems strengthening: a common classification and
framework for investment analysis. Health Policy Plann 26, 316–326.

Stinnett, A.A., Paltiel, A.D., 1996. Mathematical programming for the efficient
allocation of health care resources. Journal of Health Economics 15, 641–653.

Takemi, K., Reich, M. The G8 and global health: emerging architecture from the Toyako
Summit. G8 Summit Follow-up, Global Action for Health System Strengthening,
Tokyo: Japan Center for International Exchange; 2009.

Tan-Torres Edejer, T., Baltussen, R., Adam, T., Hutubessy, R., Acharya, A., Evans, D.B.,
Murray, C.J.L., 2003. WHO Guide to Cost-Effectiveness Analysis. World Health
Organisation, Geneva, p. 2003.

Thomas, R., Smith, P., Ezzati, M., Hallett, T.B., Moreno-Serra, R. A formula to support
the Global Fund’s new funding model. The Global Fund to Fight AIDS, TB and
Malaria: Geneva; 2013.

Ugray, Z., Lasdon, L., Plummer, J.C., Glover, F., Kelly, J., Mart, R., 2007. Scatter search
and local NLP solvers: a multistart framework for global optimization. INFORMS
Journal on Computing 19 (3), 328340.

Warren, A.E., Wyss, K., Shakarishvili, G., Atun, R., de Savigny, D., 2013. Global health
initiative investments and health systems strengthening: a content analysis of
global fund investments. Globalization Health 9.

Weinstein, M., Zeckhauser, R., 1973. Critical ratios and efficient allocation. Journal
of Public Economics 2, 147–157.

Weinstein, M.C., 2012. Decision rules for incremental cost-effectiveness analysis. In:
Jones, A.M. (Ed.), The Elgar Companion to Health Economics, second ed. Elgar,
Cheltenham, p. 2012.

Wholey, D., Feldman, R., Christianson, J.B., Engberg, J., 1996. Scale and scope
economies among healthmaintenance organizations. Journal of Health Economics
15, 657–684.

WHO. Declaration of Alma-Ata. 1978.
WHO, 2007. Everybody’s business – Strengthening health systems to improve health

outcomes. WHO’s framework for actions. World Health Organization, Geneva.
WHO, 2015. OneHealth Tool. World Health Organization: Geneva. <http://www

.who.int/choice/onehealthtool/en/> (accessed 07.01.15).

108 A. Morton et al. / Journal of Health Economics 49 (2016) 97–108


	 Decision rules for allocation of finances to health systems strengthening
	 Introduction
	 Conceptual background
	 Motivating example
	 Towards a more general model
	 Examples
	 Preventing HIV infections: an algorithmic solution of (HV1)
	 Balancing expenditures on HIV, TB, and malaria

	 Conclusion
	 Acknowledgements
	 A Nonconvexity of HV
	 Example A.1
	 B Technical Appendix
	 Supplementary material
	 References


