UNIVERSITYW

This is a repository copy of A SysML Profile for Fault Trees:Linking Safety Models to
System Design.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152499/

Version: Accepted Version

Proceedings Paper:

Clegg, Kester Dean orcid.org/0000-0002-4484-3291, McDermid, John Alexander
orcid.org/0000-0003-4745-4272, Grigg, Alan et al. (1 more author) (2019) A SysML Profile
for Fault Trees:Linking Safety Models to System Design. In: Romanovsky, A and
Troubitsyna, E, (eds.) Computer Safety, Reliability, and Security:SAFECOMP 2019.
Lecture Notes in Computer Science . Springer , pp. 85-93.

https://doi.org/10.1007/978-3-030-26601-1_6

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A SysML Profile for Fault Trees — linking
safety models to system design*

Kester Clegg', Mole Li?, David Stamp?, Alan Grigg?, and John McDermid!

! University of York, United Kingdom, YO10 5DD
{kester.clegg, john.mcdermid}@york.ac.uk
2 Rolls-Royce (Controls) PLC, Derby, United Kingdom
{mole.li,alan.grigg,david.stamp}@rolls-royce.com

Abstract. Model Based Systems Engineering (MBSE) has encouraged
the use of a single systems model in languages such as SysML that fully
specify the system and which form the basis of all development effort.
However, using SysML models for safety analysis has been restricted by
the lack of defined modelling standards for analytical techniques like
Fault Tree Analysis (FTA). In lieu of such standards, the ENCASE
project has formulated a simple SysML profile that captures the infor-
mation required to represent fault trees and which enables the linkage
of failure modes to other parts of the SysML model. Unlike traditional
fault trees that can be difficult to validate against a system design, as-
sociating failure modes with system functions and hardware components
means that consistency checks between the two models are possible, and
changes to the SysML design are easier to identify against the corre-
sponding fault tree model. Common definitions of the system specifica-
tion improves the quality of both safety analysis and assurance, and the
alignment of the two models enables us to make the first steps towards
the automatic translation of parts of the system design into fault trees.

Keywords: SysML - Fault Tree Analysis - Failure Modes

1 Introduction

Systems Modelling Language (SysML)? is an extension of the Unified Modelling
Language (UML) that focuses on systems modelling. SysML supports the speci-
fication, analysis, design, verification and validation of a broad range of systems
and systems-of-systems. However, ‘support’ in this sense is intended to mean a
well-defined specification to describe the system, so that development and analy-
sis can be performed using tools that take their data from a single model repos-
itory. The approach is widely described as Model Based Systems Engineering
(MBSE) and among its benefits is the hope it will remove most of the errors and

* Development supported by Rolls-Royce PLC and funded as part of Innovate UK’s
ENCASE project (Enabling Novel Controls and Advanced Sensors for Engines).

3 This paper refers to the current Object Modelling Group (OMG) SysML v1.5, not
the upcoming 2.0 standard. See http://www.omgsysml.org/

2 K. Clegg et al.

wasted development effort caused by conflicting sources of information. However
there are also benefits for safety analysis, provided that the tool chains typically
used in traditional critical systems development can be brought under the sin-
gle SysML model. Unfortunately support for safety analysis has lagged behind
the Object Modelling Group’s (OMG) SysML specification. This paper details
our progress in the setting of Rolls-Royce’s UltraFan engine demonstrator devel-
opment to provide SysML support to Fault Tree Analysis. The profile outlined
here will form part of a wider safety and reliability profile similar to that recently
proposed by the OMG (see below).

1.1 Background and previous work

To date, SysML has focused on supporting the requirements capture and func-
tional side of systems engineering. However for safety critical systems, non-
functional forms of analysis can be essential to argue that the system meets
a required safety standard. Fault logic is typically modelled using a graphical
representation of logic gates that traces the fault from base event to effect and
which can contain additional information, such as failure rate, dispatch infor-
mation and descriptive failure modes. A typical example is shown on the right
hand side of Fig. 3 and the technique is defined in standards like IEC 61025 [4].

ENCASE’s initial starting point to model fault trees in SysML was an early
paper from National Aeronautics and Space Administration (NASA)’s Jet Propul-
sion Laboratory on fault protection modelling, which captured fault logic using
activity diagrams [2]. We investigated using this approach but found issues with
it. For example, there is no provision for AND gate representation in Activity
Diagrams and the fault logic modelling at Rolls-Royce requires this to express
the redundancy provided by a dual channel FADEC (Full Authority Digital En-
gine Control)[5]. Secondly activity diagrams were never intended to model fault
trees. Activities on Activity Diagrams become Call Behaviour Actions, which
semantically seems at odds with fault logic, which is generally expressed as logic
gates and failure modes. Although there are other potential diagram types none
offer specific support for fault tree analysis and we decided we could best meet
our needs by creating a bespoke diagram type.

In 2017 the OMG issued a Request for Proposals on how to represent fault
trees in SysML as part of the Safety and Reliability Analysis Profile for UML,
which will extend the SysML language with “the capability to model safety
information, such as hazards and the harms they may cause, model reliability
analyses, including Fault Tree Analysis (FTA) and Failure Mode and Effects
Analysis (FMEA), and use structured argument notation to organize the model
and specify assurance cases”[1]. As part of this, an early profile for Fault Tree
Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) has been devel-
oped and published [1] and is likely to form part of SysML 2.0. However, while
the new profile is a step in the right direction, there were several pragmatic as-
pects that made it unsuitable to adopt for the development of UltraFan within
Rolls-Royce. These are primarily to do with how the Failure Mode and Effects
Analysis (FMEA) results are kept and used as part of FTA in the existing tool

A SysML Profile for Fault Trees 3

chain, and discussions around how failure modes could be linked to functional
specifications in the model. This is discussed in more detail in Section 2.

There is also recent work investigating the formal translation of Activity Di-
agrams in UML / SysML to fault trees [3]. While this is a rigorous method, that
entails a one to one correspondence between the two models, at this stage in
the ENCASE project a more pragmatic approach is required due to the variety
of ways engineers model activities. For example there are parts of Activity Di-
agrams, such as Join Nodes, that are semantically ambiguous and can be used
/ interpreted differently by users which would make automated translation dif-
ficult. More importantly there is a different approach to modelling between the
system engineers (who model how things work) and the safety analysts (who
model how things fail). The primary practical concern for the safety team was
that the SysML fault tree models should be capable of modelling the system
fault logic as it had been done historically and exporting it in a format where it
could be analyzed by their existing tools such as FaultTree+ (part of Isograph’s
Reliability Workbench suite). It is relatively simple to model the fault logic to
the point at which the base events are specified, the base event details (failure
rates from the FMEA / FMECA, exposure periods, etc) can then be extracted
from the Failure Modes and Effects Summary (FMES) database (see [6]) using
spreadsheet macros and exported as a workbook to be imported by FaultTree+.
This gives a low risk migration strategy from the existing approach to that of-
fered by MBSE, even though as we discuss in Section 2.1 changing the way fault
logic is currently modelled will be necessary to maximize the benefits of MBSE.

Rolls-Royce currently use failure modes as human readable placeholders or
descriptions within the fault tree that describe the fault logic gate below them
(see right hand side of Fig. 3). Their primary purpose is to help safety an-
alysts understand and keep track of the fault logic of the system, which can
be extremely large (i.e. hundreds of pages) and complex. By associating them
with specific functional behavior modelled as activities in SysML, the system
engineers gain visibility of failure modes while modelling system functions and
can view the associated fault logic. However, this linkage (through failure mode
linked elements) also gives the future possibilty of validating fault trees against
a system function or associated hardware when changes to the SysML model are
made. See Fig. 1 and its description below for more details.

2 A Bespoke Fault Tree Profile for SysML

To meet the challenges of traditional safety engineering that uses separate mod-
els from system models, and in a similar spirit to the OMG RFP mentioned
earlier, we propose part of a new Model Based Safety Assurance (MBSA) profile
that allows safety analysis models to link to existing system models. Our profile
remains a work in progress — we are aware there are additional logic gates (such
as vote gates) to add to the profile. However what we outline is sufficient to start
to migrate the existing fault tree models into the SysML repository. Similar to
SysML extensions in UML, the proposed Fault Tree Profile reuses a subset of

4 K. Clegg et al.

UML 2.5 and provides additional extensions to aid Fault Tree analysis in UML
and SysML [1].

«profiles
i
MBSA

«stereotyper «stereotyper
AND Gate Logic Gate
= ——> {Avstracy
(D String i é - b Togic gates
Description : String :;'w:"'f" S «stereotype» «stereotyper
Failure Mode Relationship Fault Tree Diagram
"‘;:‘""p”' [Scripté - Failure Mode - ToolbarCommand

Ou < Scriptt - AND Gate : ToolbarCommand

D : String "c""‘“”m Scripts - OR Gate : ToolbarCommand
iption : String . Script7 - BASE Event : ToolbarCommand
Nlinked failure mode Script2 - Temp Solution Link : ToolbarCommand
= = = 5 e Seripta - FM Decomposiion Dependency : ToobarCommand
BASE Event House Event Failure Mode [Scripk4 < FM logic relationship - TookarCommand
Script1 : OnDrop
[Base Event Description : String| D - String Name : String
D : String IDescription : String Seript1 - Sub Fault Tree :
Description : String
Source BASE Event Source Failure
FMES Links
«stereotyper «stereotyper «stereotyper
Base Event Linked Element Failure Mode Linked Element Hazard

Name : String

IHazard Log ID : String

IHazard Description : String

[Script1 - Sub Fault Tree : MenuCommand|

«metaclass» «metaclass»
Class. Activity
‘«metaclass»
/ \ Composite Structure Diagram
«stereotype» «stereotype» «stereotype»
SysML Profile::Ports and SysML SysML
Flows.InterfaceBlock Profile::Blocks.Block Profile::Allocations. Allocated
isEncapsulated : Boolean isEncapsuated:

Fig. 1. Meta model of the proposed Fault Tree Profile, which will form part of a larger
MBSA profile. The Fault Tree Diagram scripts are not part of the profile but serve to
recreate a familiar user interface for safety analysts in PTC Integrity Modeller (PTC
IM).

The meta-model of our Fault Tree profile is shown in Fig. 1. In software
engineering, a meta-model is a mechanism for representing a well-formed formula
or the abstract syntax of a modelling language [7]. The definitions and semantics
of each concept of the meta-model are introduced as follows:

Logic Gate Abstract meta-class (i.e. no concrete entity in the SysML model) and im-
plemented as a stereotype (i.e. an applied extension) that generalises the
common attributes of AND Gate, OR Gate, Base Fvent and House Fvent.
As it is a general modelling concept, its ID tag definition specifies the unique
reference for gates in the fault tree. Description allows users to specify tex-
tual information to assist identification.

AND & OR Gate Concrete meta-classes that represent the two most common gates in fault
trees. Implemented as the stereotyped UML: Class meta-class making AND
& OR Gates first-class entities. As they generalize the Logic Gate meta-class,
they inherit ID and Description tag definitions.

Base FEvent

House Fvent

Failure Mode

Failure Mode Relationship

Hazard

Base FEvent Linked Element

Fuailure Mode Linked Element

FMES Code

Fault Tree Diagram

2.1

A SysML Profile for Fault Trees 5

Concrete meta-class that represents lowest level of a fault tree diagram.
Meta-modelling mechanism similar to AND & OR Gates. Links to hardware
components via Base Fvent Linked Element meta-class. The Base Fvent
FMES code allows scripts to retrieve its failure rates, probabilities, exposure
periods and dispatch information from the FMES database.

Concrete meta-class similar to a base event except that it serves as a Boolean
flag or switch to isolate parts of the fault tree under a particular analysis
(i.e. it’s a “normal event” expected to happen, not a “failure”).

Concrete meta-class that represents a descriptive placeholder used to de-
scribe the fault logic at that point in the fault tree. The meta-modelling
mechanism is similar to the logic gates.

Concrete meta-class that defines the relationship between Logic Gate such
as AND Gate, OR Gate, Base Event, House Event and Failure Mode. Imple-
mented as a stereotyped UML: Dependency meta-class to represent Failure
Mode Relationship as a first-class entity. Two reference-type tag definitions
Logic Gates and Linked Failure Mode connect Logic Gate and Failure Mode.
Concrete meta-class that represents the top level Hazard in a fault tree.
We intend this class to be part of wider profile used to capture Functional
Hazard Analysis (see ARP4761 [6]). It generalises Failure Mode and extends
the tag definitions Hazard Log ID and Hazard Description.

Meta-class that links one or more Base FEvent to system hardware com-
ponents defined in SysML Internal Block Diagrams and Block Definition
Diagrams. Not implemented as a first-class entity, therefore cannot exist by
itself. The stereotype applies to UML: Class (SysML Block is a stereo-typed
UML: Class) in order to increase safety visibility for systems engineers. In
addition, it has a reference type tag definition Source Base Fvent to connect
stereotyped system hardware component and Base Event.

Meta-class that links one or more Failure Mode to abstract hardware spec-
ifications defined in SysML Internal Block Diagrams and Block Definition
Diagrams, and system features and functions in SysML Activity Diagrams.
The meta-modelling mechanism is similar to Base Event Linked Element.
Concrete meta-class that represents FMES Base Event codes. Linked with
zero or more Base Event via reference tag definition FMES Links of Base
Event. The Value tag is a unique identifier in the FMES database.

A bespoke diagram type to model fault logic using fault trees. In order to
make the current SysML modelling tool (PTC’s Integrity Modeler) a user
friendly interface for safety analysts accustomed to working with Isograph’s
FaultTree+, user defined scripts provide some Ul behaviour (more details in
Section 2.1). The extension mechanism is the same as the SysML Internal
Block Diagram that extends UML Composite Structure Diagram.

Implementation

For the UltraFan demonstrator, Rolls-Royce are using SysML as the focus of
their systems specification and development. The current modelling environment
is provided by PTC’s Integrity Modeler. The use of scripts enable user defined

6 K. Clegg et al.

i File Edit View Toos Window Help _ex
hepenf{oesEBoe@8o=0- DB 8ns e s slo—>b=0[v-2-AJ
; Packages v ax T FuclFlow Contiol x| 8 Protectfrom LP Shaft Overspeed X][54 Own chonnel LP overspeed prot, x| EfautTectol x| <
@ +R/SSDD/LPRI 7 28] Check for LP Shaft Overspeed... x[[28 Channel ALP averspeed protec. x| £3 [Profile] MBSA |
+R/SSDD/LPR/2 - =
® E] el ; Check for LP Shaft Overspeed Evert | Funcloral Deployment Diagram 1|
28 + Detect LP Shaft Overspeed
(4 @ + Checkfor LP Shaft Overspeed Event
@ +Non-Functional Requirements
-3 +SSDD level Accuracy Requirements etc
i LA Detect LP Shaft Overspeed
~[Package] Detect LP Shaft Overspeed [1] (A)
{52 +Protection Function Heakth Monitoring —
&5 +SystemInput Acquisition ”?‘]‘W LPOverSpdDet
Systemn Output Provision
5 +Utilities (Sub-Functions)
+Functionsl Component Library _
+Physical Component Library NLGftW LPOvesSpdEvt
+Physical Instance Model [21 2]
i" Detect LP Shaft Overspeed
rgonomics o
MBSA (B)
Safety Model]
| +Foult Trees NLSIW - LPoverspaDet [
55 +Inhibit Fuel Flow - Modular FT m
~HO1: NLOS PROT LOSTA
5 +LP Shaft Overspeed ineffective
[+Other channel LP overspeed protection ineffective T i R R e
-5 +Own channel LP overspeed protection ineffective ks Eiftar Checkfor L2.Shat Quesspesd Event: Faikise Mode
[B +Own channel LP overspeed pratection inffecth,
Types v
£ +HOL: NLOS OWN PROTLOST_A it Carcel
- + Channel ALP overspeed protection ineffective Selected lems
[82 +Channel A LP overspeed protection ineffecti -+ SEAllEbore N
S ADNBRDRPOST-A PName || ¥l] Chamnel A LF overspeed protection neff
-0 +Overthreat shutdown ot available I [Dispatchable Fault - NL Overspeed Protec I] Dispatchable Faul -NL Overspeed Frote
B ~Overthrest shutdonn not avalsble 1 F nabilty to diive SOV closed by protectior | | ¥] Ovethreat shutdonn ot avaiable
{1 +5D: OVT SD UNAVA-A] s o mutdor via St % Bl shutgonn ot commandedin erox
- [+Overthreat shutdown not available b
] Bl inabiity to shutdown via SOV_1
[+Inability to drive SOV closed by protectia -
St ok i [3 Loss of all own channel safety functionalit
[+Dispatchable Fautt - NL Overspeed Protectio LI E5LP shaft Overspeed incffective
[+Loss of all own channel safety functionality £ B Other channel LP overspeed protection in % +
™ @ Foverthrest shutdown not avaiable
NN A— - I Eoverthreat shutdown not avaiable
(5 L[] 5 0wn channel LP overspeed protection ine.
@ Fshutdown not commandedineror V. L
' Packages [Porks EXfOiograms] ta Relotionshps | ETORLE] @ B« » ||l < = N >
} Properties of ‘Check for LP Shaft Overspeed Event’ 2x
General Tet Options Signature Retum Changes Stle kems PLRequiement Faiure Mode Failure Mode Linked Bement
=)

Tag Defintion Name Tag Value:
Source Faitre Channel A LP overspeed protection neffective, Dispatchable Fauit - NL Overspeed Protection Lost Ch fabl

Fig. 2. Assigning failure modes (RHS dialogue box) from the fault tree level ‘Channel
A LP overspeed protection ineffective” (LHS tree hierarchy) via a Failure Mode Linked
Element on the Activity ‘Check for LP Shaft Overspeed Event’ (RHS top panel).

toolbars and actions on a bespoke diagram type. A typical screenshot is shown
in Fig. 2. This has one “level” in a branch of the fault tree defined as an AND
gate, with failure modes describing the junction point above and below. Double
clicking on either of the failure modes below will take the user to the next
level below or create a new level (defined as a failure mode) in the tree. The
hierarchical structure (i.e. the fault logic) of the fault tree is shown in the left
hand panel. At the lowest level of this branch in the fault tree are the base
events with their FMES codes. Scripts will be able to “walk” the fault tree
hierarchy down to the base events and export this to a spreadsheet within the
FMES database, where macros can combine it with information linked to the
Base Event FMES codes to be imported into FaultTree+ for analysis.

The most striking difference between our profile and the initial safety profile
published by the working group for the OMG [1] is our decision not to bring the
FMEA information directly into the SysML model. Instead, the base events keep
their unique identifier that can allow that information to be extracted from the
FMES database. The reason for this is that the FMES is quite large (>3K rows)
and there has to be an explicit case made for bringing that information into the
SysML model where it is less easy to keep it maintained and checked. In the case
of dispatch events (these are faults that have an exposure period with respect

A SysML Profile for Fault Trees 7

Overthreat shutdown not
available

Overthreat
shutdown not
available

v
SDOVINSD n /N 369
SO OV DT OST
/ \ X000K=X00X
/ T——

SOV responds slowly Inability to shutdown via
sov.

SOV responds Inability to
T T slowly shutdown via
. v y E sov
Feon™ v =
LN sprsbvor AN L\
\ J F01-SOV SLOW SD: SOV OP
_ O W
1 ™ L
7 [N XXKXXK BEXKXK
- | | h Q=XXXXX W=XXXX ‘
- v V i
SOV fails stuck SOV fails i i Inability to shutdown via | | SOV fails partially open SOV fails stuck SOV fails Inability to SOV fails.
SOVt indeteminate shutdown via partially open
Sov
. ‘ ! 1 RS = RS /\@
F}Mng ForsD Fossov0p oo [Fo1sov sTK] [Fo1sovIND | [Fo1-sov op | [Fo1-sov PoP|
(\ () ()
\) L) NG X TEUS X0 r=000000KBUXXX. =X U000 KKK XK
/ N — — Q=x w=x XXX 3=XOKK QEXWEXHKKX Q=XKK weXOKK

Fig. 3. Lower level of HO1 fault tree showing base events with FMES identifiers. The
LHS is our profile as rendered by PTC IM, the RHS shows the output from FaultTree+.

to maintenance intervals), a case can be made for linking them to derived safety
requirements kept elsewhere in the model and we will be issuing an updated
profile at a later date to reflect this, but otherwise all that is needed is the
FMES code. The FMES is a summary of the FMECA database (>25K rows),
and it is this database that is changed and maintained with the latest failure
rates. Therefore it is easiest if a new analysis is to be run to extract the summary
failure rate data directly from the databases, while keeping the fault logic and
knowledge of the failure modes within the SysML model. This is in keeping with
our belief that the SysML model represents a knowledge repository, whereas the
FMECA and FMES databases are designed to handle, import and export large
amounts of data efficiently and are able to interface with a wide range of tools.
Fig. 3 shows the implementation of our profile in PTC Integrity Modeler and
compares two fault tree structures. Removing the FMES data (which is not used
by the safety analysts when modelling the fault logic - it is added by FaultTree+
by combining the failure rates of base events) gives a much cleaner interface,
with greater opportunity to add explicit descriptions within the failure modes
that can then be linked outwards to activities or hardware components.

2.2 Alignment of safety and system models

Advocates of MBSE are quick to point out the improved fidelity and efficiency of
maintaining a single development model. However, as safety engineers have tra-
ditionally modelled their understanding of the system’s fault logic with respect
to a hazard independently of other system models, some abstract failure modes
may have little obvious connection to system functions. In such cases, a realign-
ment and reassessment of failure modes may be necessary. For example safety
engineers often model a system with respect to its redundancy and mitigation

8 K. Clegg et al.

against a hazard, thus an analysis for a dual channel control system might query
why the mitigation provided by the redundant channel has failed in addition
to the channel in control. Contrast this with the system engineer’s perspective,
which is to consider an engine protection feature in its abstract specification
first, then to consider its implementation and finally how it is implemented on
a respective channel. In MBSE, fault logic models should follow where possible
the functional breakdown of the system engineers. Fault trees are often “richer”
models that can include physical or external factors outside the system’s func-
tional specification but required to understand how that function could fail. To
maximise benefits such as being able to cross-check models for inconsistencies, or
auto-generate fault trees from parts of the model, the profile must allow failure
modes to be associated with and traceable to specific parts of the SysML model.

3 Conclusions

The use of MBSE may lower development costs but it is not proven that it
results in safer systems. Such an approach has to ensure the single model does
not contain any flawed logic that is then replicated throughout different forms
of safety analysis, as the analyses will all use the same source data. Losing the
additional assurance of an independent model of the system’s fault logic needs to
be justified by demonstrating the value of validation and being able to identify
changes between models during development. Bringing safety and system models
together to share their definition of system artifacts improves the quality of safety
analysis, helps assure compliance and moves us a step closer to auto-generating
parts of the fault tree model from the system design.

References

1. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating Safety and Reliabil-
ity Analysis into MBSE: overview of the new proposed OMG standard. INCOSE
International Symposium 28, 1322-1336 (07 2018). https://doi.org/10.1002/j.2334-
5837.2018.00551.x

2. Day, J., Murray, A., Meakin, P.: Toward a model-based approach to flight system
fault protection. In: Aerospace Conference, 2012 IEEE. pp. 1-17. IEEE (2012)

3. Dickerson, C.E., Roslan, R., Ji, S.: A Formal Transformation Method for Auto-
mated Fault Tree Generation From a UML Activity Model. IEEE Transactions on
Reliability 67(3), 1219-1236 (Sep 2018). https://doi.org/10.1109/TR.2018.2849013

4. TEC 61025: Fault tree analysis (FTA). Standard, International Electrotechnical
Commission, Geneva, CH (August 2006)

5. Li, M., Batmaz, F., Guan, L., Grigg, A., Ingham, M., Bull, P.: Model-based systems
engineering with requirements variability for embedded real-time systems. In: 2015
IEEE International Model-Driven Requirements Engineering Workshop (MoDRE).
pp. 1-10 (Aug 2015). https://doi.org/10.1109/MoDRE.2015.7343874

6. Guidelines and methods for conducting the safety assessment process on civil air-
borne systems and equipment ARP4761. Standard, SAE International, Warrendale,
PA, USA (1996-12-01)

7. Seidewitz, E.: What Models Mean. IEEE Softw. 20(5), 26-32 (Sep 2003)

