
This is a repository copy of Anomalous weak values and contextuality: Robustness, 
tightness, and imaginary parts.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152481/

Version: Published Version

Article:

Kunjwal, Ravi, Lostaglio, Matteo and Pusey, Matthew Fairbairn orcid.org/0000-0002-6189-
7144 (2019) Anomalous weak values and contextuality: Robustness, tightness, and 
imaginary parts. Physical Review A. 042116. ISSN 1094-1622 

https://doi.org/10.1103/PhysRevA.100.042116

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



PHYSICAL REVIEW A 100, 042116 (2019)

Anomalous weak values and contextuality: Robustness, tightness, and imaginary parts

Ravi Kunjwal,1 Matteo Lostaglio,2 and Matthew F. Pusey 3

1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5
2ICFO–Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

3Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

(Received 4 September 2019; published 21 October 2019)

Weak values are quantities accessed through quantum experiments involving weak measurements and

postselection. It has been shown that “anomalous” weak values (those lying beyond the eigenvalue range of

the corresponding operator) defy classical explanation in the sense of requiring contextuality [M. F. Pusey, Phys.

Rev. Lett. 113, 200401 (2014)]. Here we elaborate on and extend that result in several directions. First, the

original theorem requires certain perfect correlations that can never be realized in any actual experiment. Hence,

we provide theorems that allow for a noise-robust experimental verification of contextuality from anomalous

weak values, and compare with a recent experiment. Second, the original theorem connects the anomaly to

contextuality only in the presence of a whole set of extra operational constraints. Here we clarify the debate

surrounding anomalous weak values by showing that these conditions are tight: if any one of them is dropped,

the anomaly can be reproduced classically. Third, whereas the original result required the real part of the weak

value to be anomalous, we also give a version for any weak value with nonzero imaginary part. Finally, we show

that similar results hold if the weak measurement is performed through qubit pointers, rather than the traditional

continuous system. In summary, we provide inequalities for witnessing nonclassicality using experimentally

realistic measurements of any anomalous weak value, and clarify what ingredients of the quantum experiment

must be missing in any classical model that can reproduce the anomaly.

DOI: 10.1103/PhysRevA.100.042116

I. INTRODUCTION

Weak measurements [1] are a class of minimally disturbing

quantum measurements whose practical as well as founda-

tional relevance is currently being investigated [2]. A weak

measurement of an observable O can be realized by weakly

coupling a quantum system to a one-dimensional pointer

device via a von Neumann–type interaction ∝ O ⊗ Ŵ, with

Ŵ the momentum of the pointer, so that a small amount of

information is imprinted in the pointer at the cost of a small

disturbance on the system.

Pivotal to any attempt to establish the presence of non-

classical effects in a given experiment is the formulation of

a rigorous no-go theorem based on a precise and operational

notion of nonclassicality. It has long been argued that the

average final position of the pointer—conditioned upon a

successful postselection performed on the system after the

weak measurement—is a witness to nonclassicality [1]; in the

quantum formalism this quantity is related to the (real part of

the) weak value, which is φ 〈O〉ψ := 〈φ|O|ψ〉 / 〈φ|ψ〉, where

O is the observable being weakly measured, |ψ〉 is the initial

preparation, and |φ〉 is the postselection. A long-standing

debate ensued between those supporting the thesis that these

experiments are indeed probing truly quantum effects and

those arguing that they can be easily understood from classical

statistics [3–8].

Recently, a precise no-go theorem was established [9]. The

theorem proves that anomalous weak values (AWVs), i.e.,

φ〈O〉ψ taking values beyond the spectrum of O, are associated

with operational statistics defying any noncontextual expla-

nation in the generalized sense introduced by Spekkens [10].

Nevertheless, the theorem of Ref. [9] leaves several questions

open:

(1) First of all, it assumes an exactly projective postselec-

tion |φ〉, which makes any experimental test [11] necessarily

inconclusive; in fact, any degree of noise makes the no-

go theorem inapplicable. Does the nonclassicality of AWVs

survive real-world conditions?

(2) Second, both Ref. [9] and the noise-robust theorems

presented here prove that AWVs are nonclassical in the pres-

ence of a set of extra operational conditions. Are these all truly

necessary?

(3) Third, the theorem only refers to the real part of the

weak value. Is a nonzero value of the imaginary part of the

weak value also nonclassical?

(4) Fourth, the relation between AWVs and contextuality

holds for a measurement with a continuum of outcomes. Can

it be extended to discrete systems, such as an experiment in-

volving only a single qubit pointer, or a coarse graining of the

standard weak-value experiment? This is also experimentally

relevant because the infinitely many operational constraints

required for the original theorem [9] to hold cannot be tested

by finite means, and a discrete pointer is often more practical

anyway.

(5) Finally, the theorem identifies a single noncon-

textuality inequality which is violated in the presence

of AWVs. However, is the inequality unique and is it

tight?
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Our investigation largely answers all these questions:

(1) We provide two proofs of contextuality from AWVs

that are robust to noise, based on Theorems 1 and 4. The

two proofs are complementary, each requiring the satisfaction

of a different set of operational constraints together with the

observation of the AWVs. These results show that at the price

of extending the set of operational tests required, the relation

between AWVs and nonclassicality extends beyond the ideal,

noiseless case. We also discuss the significance of these results

for current experimental tests (Sec. III B).

(2) We show that the extra operational conditions in our

theorems form a minimal set: dropping any one of them allows

us to reproduce the AWVs within a classical model (Sec. V).

This illuminates the debate around “quantumness” of AWVs

(e.g., [5–7]), since it rigorously shows that it is only in the

presence of all the operational facts listed in our theorems that

AWVs defy a classical explanation.

(3) The imaginary part of the weak value admits its own

contextuality theorem (Sec. II E, Theorem 2). Hence, any

AWVs can be related to contextuality. We clarify why this is

not in contradiction with recent studies [12,13] suggesting that

imaginary weak values admit a classical model.

(4) The contextuality of AWVs has nothing to do with

continuous measurements and extends to discrete pointers as

well (Sec. II F, Theorem 3). This makes the experiment suited

for conclusive experimental verification, since in this case

only a finite set of operational tests is required.

(5) The noncontextual bound in Ref. [9] is not tight, but

we provide an improved version and investigate its tightness

and uniqueness using computational methods from Ref. [14]

(Appendix B).

Our theorems are noise-robust in the sense of not requiring

perfectly projective measurements, but noise can also impact

the other operational conditions of our proofs. We view these

issues as being outside the scope of this work, because with

the form of noise robustness we provide in place, there are

generic approaches to tackling the main remaining idealiza-

tions, as discussed in Sec. IV.

II. NOISE-ROBUST NO-GO THEOREMS FOR

ANOMALOUS WEAK VALUES

A. Weak values

Let ρ be a quantum state, O an observable, and [y|MF ] a

postselection measurement, i.e., [y = 1|MF ] = �φ (success-

ful postselection), [y = 0|MF ] = 1 − �φ (failed postselec-

tion), with �φ = |φ〉 〈φ|. We can then define the (generalized)

weak value

φ〈O〉ρ =
Tr(�φOρ)

Tr(�φρ)
. (1)

This expression equals the standard expression of the weak

value of Ref. [1] when ρ = |ψ〉 〈ψ |. For φ〈O〉ρ to be well

defined, we take Tr (�φρ) > 0; i.e., the preselection and

postselection are nonorthogonal. The weak value can be ex-

perimentally accessed by a weak measurement of O. Specifi-

cally, couple O with a one-dimensional pointer device through

the Hamiltonian H = O ⊗ Ŵ, with Ŵ the momentum of the

pointer. Suppose the pointer is initialized in a Gaussian pure

state centered around the origin and with spread s:

|ψ〉P =
∫

dxGs(x) |x〉 ,

Gs(x) = (πs2)−1/4 exp[−x2/(2s2)]. (2)

In the limit s → ∞, if a projective measurement of the

pointer’s position is carried out after a unit time, we obtain

a so-called weak measurement of O (s → 0 would give a

projective measurement of O).

Suppose now the postselection measurement {�φ, 1 −
�φ} is carried out on the system, after the interaction with

the pointer. The average position of the pointer, conditioned

on observing �φ (successful postselection), is proportional

to Re(φ〈O〉ρ ), whereas Im(φ〈O〉ρ ) can be recovered from

the expected momentum of the pointer given a successful

postselection [15].

The weak value is called anomalous when it cannot be

written as a convex combination of the eigenvalues of O.

There are two ways this can happen:

(i) Re(φ〈O〉ρ ) is smaller than the smallest eigenvalue of O,

or larger than the largest eigenvalue;

(ii) Im(φ〈O〉ρ ) �= 0.

Only (i) was related to contextuality in Ref. [9], but our

results here show that both in fact lead to proofs of contextu-

ality.

Writing the spectral decomposition of O as O =
∑

i oiEi,

we have that

φ〈O〉ρ =
∑

i

oi φ〈Ei〉ρ (3)

and
∑

i φ〈Ei〉ρ = φ〈1〉ρ = 1. Then, if φ〈O〉ρ is anomalous, at

least one of the φ〈Ei〉ρ must be anomalous (i.e., not a standard

probability).1 This is because if all the φ〈Ei〉ρ are standard

probabilities then (3) shows that φ〈O〉ρ is in the convex hull

of the oi.

Since, then, whenever we have an anomalous weak value

for an observable O we can also find an anomalous weak value

for one of its eigenprojectors, without loss of generality we

will focus on weak values of projectors.

Furthermore, if a projector E is anomalous due to its

real part, then either Reφ〈E〉ρ < 0 or Reφ〈(1 − E )〉ρ < 0;

similarly, if a projector E is anomalous due to its imaginary

part, then either Imφ〈E〉ρ < 0 or Imφ〈(1 − E )〉ρ < 0. Hence,

without loss of generality we will focus on anomalous weak

values for projectors with negative real or imaginary part.

For calculations it will often be useful to refer to the nu-

merator of Eq. (1), which we write as 〈�φE〉
ρ

:= Tr(�φEρ).2

1Note that one can have instances in which some or all φ〈Ei〉ρ are

anomalous, but φ〈O〉ρ is not; e.g., if an observable has a zero eigen-

value then the weak value of the associated projector is irrelevant to

the weak value of the observable.
2〈�φE〉

ρ
coincides with the so-called Kirkwood-Dirac [16,17]

quasiprobability distribution, the real part of which is the Margenau-

Hills [18] distribution; see Sec. IV A of Ref. [19] for details. These

distributions are related to the “optimal” estimate of the observable

E from a measurement of �φ , under the prior information that the

initial state is ρ [20].
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ρ∗ MW

x

pMF

y

FIG. 1. Illustration of the three stages of a quantum weak-value

experiment.

Since the denominator Tr(�φρ) is a positive real number (in

particular, recalling that it must be nonzero for a well-defined

weak value), 〈�φE〉
ρ

has negative real or imaginary parts if

and only if φ〈E〉ρ does.

B. Setting the stage: The standard quantum experiment

Let us discuss the traditional experimental setting for weak

measurements and weak values [1] (see Appendix A for some

details of the calculations; later we will discuss extensions

to qubit pointers). As discussed above, we can focus on the

weak value of some projector E . There are three stages of the

quantum experiment (see Fig. 1):

Preparation. A system is prepared in some quantum state.

Since no difficulties arise from allowing a generic mixed state

ρ∗, we allow mixed preparations.

Weak measurement. A measurement is performed through

the following scheme: a pointer device, represented by a

one-dimensional continuous system with conjugate variables

X and Ŵ, is initialized in the Gaussian pure state |ψ〉P given

above. The system is coupled to the pointer through the

Hamiltonian H = E ⊗ Ŵ.

A standard calculation (see, e.g., the proof of Theorem 1

in Ref. [9]) shows that after a unit time, a measurement of

X on the pointer realizes a positive operator valued measure

(POVM) [x|MW ] = N†
x Nx on the system given by

Nx = 〈x|e−iH |�〉P = Gs(x − 1)E + Gs(x)E⊥, (4)

[x|MW ] = G2
s (x − 1)[y = 1|ME ] + G2

s (x)[y = 0|ME ], (5)

where [y = 1|ME ] = E , [y = 0|ME ] = E⊥ = 1 − E .

Let MW
x (·) = Nx(·)N†

x be the state update map for outcome

x. The channel induced by the weak measurement when the

outcome is not recorded is

M(·) =
∫ +∞

−∞
dxMW

x (·) =
∫ +∞

−∞
dxNx(·)N†

x . (6)

One finds M(ρ) = (1 − pd )ρ + pd (E − E⊥)ρ(E − E⊥),

with a “probability of disturbance” pd = 1−e−1/4s2

2
. Hence,

M = (1 − pd )I + pdM
D, (7)

with MD(ρ) := (E − E⊥)ρ(E − E⊥).

Postselection. Finally, one can measure [y|MF ] and com-

pute the probability of a negative x followed by a successful

pP∗(λ) pMW (x, λ |λ)

x

λ
pMF

(y|λ )

y

λ

FIG. 2. Illustration of an ontological model for the quantum

experiment in Fig. 1.

postselection

pideal
− =

∫ 0

−∞
dx Tr(�φNxρ∗N†

x ) =
∫ 0

−∞
dxTr

[

�φM
W
x (ρ∗)

]

,

which will be a central witness of nonclassicality in the

following theorems. Denoting the undisturbed probability of

postselection by pF = Tr (�φρ∗), one finds

pideal
− =

pF

2
−

Re(〈�φE〉
ρ∗

)
√

πs
+ o

(

1

s

)

. (8)

This is a simple calculation; see, e.g., the proof of Lemma 1 in

Ref. [21] (note, however, that we redefined pideal
− without the

normalization by the postselection probability). Recall from

the previous section that a weak value with an anomalous

real part implies an E with Re(〈�φE〉
ρ∗

) < 0. We will show

that this means pideal
− is larger than can be explained in a

noncontextual model.

C. Noncontextual description of the quantum experiment

We now analyze how a putative noncontextual ontologi-

cal model (Fig. 2) would describe the quantum experiment

(Fig. 1). Let us follow the three stages:

Preparation. The preparation of the quantum state ρ∗ can

be abstractly thought of as a set of instructions P∗ that initial-

ize the system. In an ontological model, this is associated with

sampling from a distribution pP∗ (λ) over some set of hidden

variables λ.

Weak measurement. The weak measurement is a quantum

instrument {MW
x } (also understood as a set of experimental

procedures) that, in the ontological model, is represented

by the function pMW
(x, λ′|λ). This describes the probability

that given as input the state λ, the weak measurement gives

outcome x and updates the state to λ′ (the update λ → λ′

models the potential disturbance induced by the measuring

apparatus). If pM(λ′|λ) represents the matrix of transition

probabilities associated to the channel M in Eq. (6), one

has pM(λ′|λ) =
∫ +∞
−∞ dxpMW

(x, λ′|λ). On the other hand,

the response function pMW
(x|λ) of the weak measurement

[x|MW ], giving the probability that the weak measurement

outputs x given the input state λ, is given by pMW
(x|λ) =

∫

dλ′ pMW
(x, λ′|λ).

Postselection. The measurement [y|MF ] is also represented

in the ontological model by a response function pMF
(y|λ).

While in the quantum experiment [y|MF ] would ideally be a

projective measurement, in contrast to Ref. [9], our theorems

042116-3
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will not rely on this being the case (in fact, our first theorem

makes no assumption about [y|MF ]). This is necessary in

any experimental verification of the relation between anoma-

lous weak values and contextuality, since no experiment can

achieve this idealization.

Operational statistics. The operational statistics collected

by the whole experiment is summarized by the following:

(1) p(x, y|P∗,M
W , MF ), the probability that if the prepa-

ration procedure P∗ is followed, sequentially performing the

weak measurement procedure MW and the postselection pro-

cedure MF returns outcomes x and y, respectively. In the

quantum setting this is given by Tr{[y|MF ]MW
x (ρ∗)}.

(2) p(y|P∗, MF ), the probability that if the preparation

procedure P∗ is directly followed by the postselection mea-

surement procedure MF , one gets outcome y. In the quantum

setting this is given by Tr ([y|MF ]ρ∗).

An ontological model for this experiment is a set of assign-

ments as described above and satisfying

p(x, y|P∗,M
W , MF )

=
∫

dλ′dλpP∗ (λ)pMW
(x, λ′|λ)pMF

(y|λ′),

p(y|P∗, MF ) =
∫

dλpP∗ (λ)pMF
(y|λ).

Noncontextuality. A generic ontological model description

of the experiment can always be found, whatever the opera-

tional statistics. However, noncontextual models (according

to the definition of Ref. [10]) are those that associate with

operationally indistinguishable procedures identical represen-

tation in the ontological model. In the present case, the weak

measurement procedure [x|MW ] is operationally equivalent,

due to Eq. (5), to measuring [y|ME ] and then sampling as

prescribed according to the distribution G2
s (x). Hence noncon-

textual models require

pMW
(x|λ) = G2

s (x − 1)pME
(y = 1|λ) + G2

s (x)pME
(y = 0|λ),

(9)

where pME
(y|λ) is the response function of the measurement

[y|ME ]. Similarly, the operational equivalence of Eq. (7) im-

plies that noncontextual models satisfy

pM(λ′|λ) = (1 − pd )pI (λ′|λ) + pd pMD (λ′|λ), (10)

where pI (λ′|λ) and pMD (λ′|λ) are matrices of transition

probabilities representing the channels I and MD in the

ontological model.

D. AWVs and contextuality beyond idealizations

In this section we will start our investigation by presenting

two results. First, the assumption of noncontextuality limits

the maximum value achievable by the quantity

p− :=
∫ 0

−∞
p(x, y = 1|P∗,M

W , MF )dx, (11)

even beyond the idealized scenario studied in Ref. [9]. Sec-

ond, in the quantum treatment the relation between p− and

the weak value presented in Eq. (8) extends to situations

where noise and imperfections are present. Combining these

two results we obtain our first proof that (real) anomalous

weak values are nonclassical beyond the idealized setting

of Ref. [9]. What is more, we can quantify how strong the

anomaly needs to be, for given noise, to prove contextuality.

To highlight the independence of our noncontextuality

theorems from the quantum formalism, we introduce the no-

tation ≃ to denote operationally indistinguishable procedures,

following Ref. [10]. For example, instead of the operator

equality of Eq. (5) we will write

[x|MW ] ≃ G2
s (x − 1)[y = 1|ME ] + G2

s (x)[y = 0|ME ],

which means that the above two measurement procedures give

rise to the same operational statistics for every preparation

procedure taken as input. Similarly, Eq. (7) becomes

M ≃ (1 − pd )I + pdM
D,

denoting that, for any preparation procedure used to initialize

the system, if we apply either of the above two transforma-

tions and then measure according to an arbitrary measurement

procedure, the outcome statistics will be identical. When the

relevant operational data arise from quantum experiments,

however, ≃ can be simply identified with the corresponding

operator identities, as we did in the previous section.

Theorem 1 (noise-robust contextuality from the real part of

the weak value). Suppose we have a noncontextual ontological

model and that

(1) there exists a 2-outcome measurement ME and a prob-

ability distribution q(x) with median x = 0 such that, for all

x ∈ R,

[x|MW ] ≃ q(x − 1)[y = 1|ME ] + q(x)[y = 0|ME ]; (12)

(2) if M :=
∫

MW
x dx, there exists pd ∈ [0, 1] such that

M ≃ (1 − pd )I + pdM
D, (13)

where I denotes the identity transformation and MD some

other transformation.

Then, if p− :=
∫ 0

−∞ p(x, y = 1|P∗,M
W , MF )dx and

pF := p(y = 1|P∗, MF ),

p− � pNC
− := pF

1
2

+ (1 − pF )pd . (14)

Remarks. It follows from the first assumption that the

marginal probability of the weak measurement MW giving

a negative result is at most 1
2
. If the system was totally

undisturbed then the postselection would occur independently

with probability pF . This would give a joint probability of

negative result and postselection of at most PF

2
. Our inequality

shows that noncontextual models cannot explain measurement

disturbance increasing the joint probability p− above this

no-disturbance bound by more than O(pd ).

We provide the proof of this theorem in Appendix B.

However, to give some intuition we give here a simplified

proof that holds for a finite ontic state space and only derives

a weaker noncontextuality bound (but still strong enough

that it suffices to prove that real anomalous weak values are

contextual).
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Proof (simplified version). In the ontological model

p− =
∫ 0

−∞

∑

λ′,λ

pMF
(y = 1|λ′)pMW (x, λ′|λ)pP∗ (λ)dx (15)

and

pF =
∑

λ

pMF
(y = 1|λ)pP∗(λ).

As discussed in Sec. II C, pMW
(x|λ) =

∑

λ′ pMW (x, λ′|λ).

Hence pMW
(x|λ) � pMW (x, λ|λ). Using measurement non-

contextuality and Eq. (12), one obtains Eq. (9), i.e.,

pMW
(x|λ) = G2

s (x − 1)pME
(y = 1|λ) + G2

s (x)pME
(y = 0|λ).

Since G2
s (x) has median zero, this immediately implies

∫ 0

−∞
pMW

(x|λ)dx �
pME

(y = 1|λ) + pME
(y = 0|λ)

2
=

1

2
.

Hence, for the terms in Eq. (15) with λ′ = λ we have
∫ 0

−∞

∑

λ

pMF
(y = 1|λ)pMW (x, λ|λ)pP∗ (λ)dx

�

∫ 0

−∞

∑

λ

pMF
(y = 1|λ)pMW

(x|λ)pP∗ (λ)dx

�
1

2

∑

λ

pMF
(y = 1|λ)pP∗ (λ) =

pF

2
.

Furthermore, as discussed in Sec. II C, pM(λ′|λ) =
∫ ∞
−∞ pMW (x, λ′|λ), hence pM(λ′|λ) �

∫ 0

−∞ pMW (x, λ′|λ)dx.

By Eq. (13) and transformation noncontextuality we have

Eq. (10), i.e.,

pM(λ′|λ) = (1 − pd )pI (λ′|λ) + pd pMD (λ′|λ).

Then, since pI (λ′|λ) = δλ′λ (e.g., using noncontextuality and

taking into account that I can be implemented by letting no

time pass, so that no dynamics can occur), one has that for

λ′ �= λ, pM(λ′|λ) = pd pMD (λ′|λ). Hence, for the terms of

Eq. (15) with λ′ �= λ we have
∫ 0

−∞

∑

λ

∑

λ′ �=λ

pMF
(y = 1|λ′)pMW (x, λ′|λ)pP∗ (λ)dx

�
∑

λ

∑

λ′ �=λ

pMF
(y = 1|λ′)pM(λ′|λ)pP∗ (λ)

= pd

∑

λ

∑

λ′ �=λ

pMF
(y = 1|λ′)pMD (λ′|λ)pP∗ (λ)

� pd

∑

λ

∑

λ′ �=λ

pMD (λ′|λ)pP∗ (λ)

� pd

∑

λ

pP∗ (λ)

= pd .

Summing the λ′ = λ and λ′ �= λ terms gives p− �

pF /2 + pd . �

Our first illustration of how this theorem operates is in

the idealized scenario discussed above. First, the operational

equivalences in Eq. (12) and Eq. (13) are satisfied with q(x) =

G2
s (x), due to Eq. (5) and Eq. (7), respectively. Furthermore,

pd = 1−e−1/4s2

2
= o(1/s2). Hence, from the above theorem, the

data can only be explained by a noncontextual ontological

model if the probability p− of passing the postselection and

displaying a negative pointer position is

p− � pF /2 + o(1/s). (16)

However, quantum mechanically p− = pideal
− as given by

Eq. (8). When Re(〈�φE〉
ρ∗

) � 0, p− is always smaller than

pF /2 for s large enough. However, whenever Re(〈�φE〉
ρ∗

) <

0 (anomalous real weak value) there exists an s large enough

for which pideal
− > pF /2 + o(1/s), from which we obtain a

proof of contextuality.

Note already that this statement does not require the prepa-

ration to be pure, as is the case in standard formulations.

However, going beyond this, our theorem does not require the

postselection to be exactly projective either. For example, let

us assume that unbiased noise is present in the postselection,

i.e., in the quantum description,

{[y = 1|MF ], [y = 0|MF ]} = (1 − 2ǫ){�φ, 1 − �φ}
+ 2ǫ{1/2, 1/2}, (17)

where ǫ ∈ (0, 1
2

). We show in Appendix D that the operational

equivalences of Eqs. (12) and (13) are still satisfied and,

furthermore,

p− = p
noisy
− :=

pF

2
−

1
√

πs
Re(〈[y = 1|MF ]E〉ρ∗

) + o

(

1

s

)

.

(18)

Hence, if p
noisy
− > pNC

− = pF /2 + o(1/s) the experiment

still provides a proof of contextuality. As is intuitive, p
noisy
−

is determined by a noisy weak value, whose relation with the

ideal one can be inferred from

Re(〈[y = 1|MF ]E〉ρ∗
) = (1 − 2ǫ) Re(〈�φE〉

ρ∗
) + ǫpE ,

where pE := Tr (Eρ∗). This clarifies that the noise,

parametrized by ǫ, linearly “damps” the potential negativity

of the weak value. In fact, using Re(〈�φE〉
ρ∗

) � −1/8 (Eq.

(41) of Ref. [22]), we can estimate the noise threshold for

p
noisy
− > pNC

− in Theorem 1 to be ǫ < 1
2+8pE

.

As an experimental proposal, one can consider the setup

of Ref. [11]. The measured p
noisy
− is well above pNC

− . Hence,

if Eqs. (12) and (13) were verified [only Eq. (12) is claimed],

the experiment would be a proof of contextuality from AWVs.

The importance of checking all the operational equivalences

≃ will be stressed later (Sec. V), when we show that, if even

one of them is dropped, a classical model exists reproducing

the anomaly.

We conclude this section by discussing in more detail

the relation between Theorem 1 and the main theorem of

Ref. [9]. One can note that Eq. (12) is exactly the first

operational equivalence used in Ref. [9], while Eq. (13) is a

stronger operational requirement than the second equivalence

of Ref. [9], as Eq. (13) involves the transformation rather than

the measurement. Importantly, Theorem 1 makes no reference

to the properties of [y|MF ] (for example, we do not require

any of the properties associated with projective measurements
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in quantum theory), which is what allowed the above dis-

cussion of experimental proofs of contextuality from AWVs

in nonideal scenarios. As a minor difference, the inequality

derived in Ref. [9] is3 p− �
1
2

pF + pd , whereas we now

obtain p− �
1
2

pF + (1 − pF )pd . Since 0 < 1 − pF < 1 our

bound is strictly stronger, although because pd will typically

be very small the improvement is minor. We will later provide

evidence that the improved bound is tight.

E. Contextuality from imaginary weak value

Our second theorem concerns the imaginary part of the

weak value. The theorem of Ref. [9] does not imply any con-

nection between Im(φ〈O〉ρ ) �= 0 and contextuality; further-

more, the imaginary weak value has analogs in classical mod-

els [12,13]. Nevertheless, we show that quantum-mechanical

imaginary weak values are contextual. This complements the

results of Ref. [9] by showing that every anomalous weak

value is nonclassical—not just those with an anomalous real

part.

Let us recall how the imaginary part of a weak value is

accessed experimentally. Suppose we keep the same initial

pointer state |�〉P as Eq. (2) and same interaction Hamiltonian

H = E ⊗ Ŵ applied for a unit time (E is some projector and Ŵ

the momentum operator of the pointer). However, the pointer

is measured in the momentum basis {|γ 〉}. This gives a POVM

[γ |MW ] = N†
γ Nγ on the system with

Nγ = 〈γ |e−iH |�〉P = 〈γ |�〉P [exp(−iγ )E + E
⊥], (19)

so that

[γ |MW ] = |〈γ |�〉P|2(E + E
⊥) = |〈γ |�〉P|21, (20)

with 〈γ |�〉P = π−1/4
√

s exp(− p2s2

2
). Note that these are ex-

actly the POVM elements for a trivial measurement sampling

from the probability distribution |〈γ |�〉P|2, which has median

zero.

The choice of measurement on the pointer does not affect

the marginal channel on the system and so Eq. (7) is still

satisfied with pd = o(1/s):

M(·) =
∫ +∞

−∞
dγMW

γ (·) =
∫ +∞

−∞
dγ Nγ (·)N†

γ

= (1 − pd )I (·) + pdM
D(·). (21)

Furthermore, we show in Appendix E that in the ideal case

we obtain a negative momentum and successful postselection

with probability

pideal
− =

pF

2
−

1
√

πs
Im(〈�φE〉

ρ∗
) + o

(

1

s

)

. (22)

Given the above setting, that nonzero imaginary values of

the weak values are a proof of contextuality is a consequence

of the following theorem, proven in Appendix B:

Theorem 2. Suppose we have a noncontextual ontological

model and that

3Notice that what was called p− in [9] is what we call
p−
pF

here.

(1) if Mtriv involves ignoring the system and sampling a

γ ∈ R that is negative with probability 1
2
,

[γ |MW ] ≃ [γ |Mtriv]; (23)

(2) if M :=
∫

MW
γ dγ , there exists pd ∈ [0, 1] such that

M ≃ (1 − pd )I + pdM
D, (24)

where I denotes the identity transformation and MD some

other transformation.

Then if p− :=
∫ 0

−∞ p(γ , y = 1|P∗,M
W , MF )dγ and

pF := p(y = 1|P∗, MF ),

p− � pNC
− = pF

1
2

+ (1 − pF )pd . (25)

Remarks. Note that the result requires no mention of ME .

The assumptions of the theorem are satisfied by the exper-

imental setting measuring the imaginary part of the weak

value. In fact, Eq. (23) and Eq. (24) follow immediately from

Eq. (20) and Eq. (21), respectively. Hence, since pd = o(1/s),

as before if we observe p− > pNC
− = pF

1
2

+ o(1/s) we have a

proof of contextuality. From Eq. (22) this happens whenever

Im(φ〈E〉ρ ) is negative (recall from Sec. II B that a nonzero

imaginary part can be taken negative without loss of general-

ity). Hence, imaginary weak values are contextual. Together

with the theorem of the previous section, this shows that all

(real or imaginary) anomalous weak values are contextual.

The theorem also covers noisy postselection in exactly the

same way as we discuss after Theorem 1, with pideal
− of

Eq. (22) substituted by a noisy analog involving a “noisy

imaginary weak value,” as discussed in Eq. (18) for the real

part.

The status of imaginary weak values

This result contrasts with the dismissal of the imaginary

parts of weak values in Ref. [9]. The discussion there begins

by pointing out that “the imaginary part [...] is manifested very

differently from the real part [15].”

This is true, and explains why the proof of contextuality

has to be adapted slightly to apply to this case. More for-

mally, we could note that the relevant Kraus operators of

the weak measurement on the system when we access the

pointer’s momentum are proportional to unitaries exp(−iEγ )

[see Eq. (19)]. Hence, the same instrument could be achieved

by classically sampling an “outcome” γ (as in Mtriv above)

and then directly performing the appropriate unitary. When

we do things this way, it is clear that the correlation be-

tween the sampled outcome and the postselection is purely

due to the fact we have disturbed the system by applying a

unitary. Yet, since the same instrument is implemented as in

the measurement of the imaginary part of the weak value,

the same proof of contextuality holds for this sampling

scheme. Nonclassicality arises in this case because the uni-

taries are strong enough to significantly affect the postselec-

tion and yet they average out to something very close to the

identity channel. While the leading-order effect of the uni-

taries on the postselection is captured by exactly the imaginary

part of the weak value, if one has actually implemented the

instrument by applying various unitaries it is unclear why this
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should be expected to reveal anything about the “value” of the

system observable.

This brings us to the next sentence of Ref. [9], which gives

a specific argument against imaginary weak values being non-

classical: “Indeed complex weak values are easily obtained

even in the Gaussian subset of quantum mechanics, which

has weak measurements (with the same information-tradeoff

disturbance [sic] utilized here) and yet admits a very natural

noncontextual model [12].”

Weak measurements in the referenced model have since

been explored in detail by Karanjai et al. [13]. The model

gives definite values to all the allowed observables and so

one can meaningfully talk about what values observables

truly have independently of any measurement. It is found in

Ref. [13] that the real part of the weak value reflects the true

average value of the observable given the information from the

preparation and postselection. Imaginary parts can also arise,

but they are purely an artifact of disturbance, in agreement

with the discussion above.

Since the model in Ref. [12] is noncontextual, the Gaussian

subset of quantum mechanics cannot violate any noncontex-

tuality inequalities. But the weak values in the theory do have

imaginary parts, and the weak measurements thereof satisfy

Eq. (23). Therefore the measurements must fail to satisfy

Eq. (24) with a sufficiently small pd . In other words, if we

measure disturbance using pd then, contrary to the claim in

parentheses in the quotation above, the weak measurements

considered in Ref. [13] do not have the favorable information-

disturbance tradeoff needed to prove contextuality.

We should clarify that this is not in contradiction with

our calculations of pd because those calculations are only

valid for the weak measurement of a projector, which has

eigenvalues 0 and 1. The only observables that can be weakly

measured in Ref. [12] are linear combinations of position and

momentum operators, which all have unbounded spectrum.

To get some intuition for why this makes a difference, we

can easily generalize the calculation of M to the case of

measuring an operator O =
∑

i oiEi with an arbitrary finite

number of eigenvalues {oi}, giving

M(ρ) =
∑

i, j

exp

(

−
(oi − o j )

2

4s2

)

EiρE j . (26)

Since I (ρ) =
∑

i, j EiρE j , to satisfy Eq. (24) we must have

MD(ρ) =
∑

i, j Ci jEiρE j with

Ci j =
1

pd

[

exp

(

−
(oi − o j )

2

4s2

)

− (1 − pd )

]

. (27)

Notice that the Choi-Jamiolkowski state associated with MD

has a block-diagonal structure in which Ci j appear. Hence,

MD is completely positive if and only if Ci j are the entries of a

positive matrix. In particular this requires |Ci j | � Cii+C j j

2
= 1,

where Cii = 1 follows directly from Eq. (27). The require-

ments that Ci j � −1 for all (i, j) can be written

pd �
1

2

[

1 − min
i, j

exp

(

−
(oi − o j )

2

4s2

)]

. (28)

Hence as we increase the difference between the smallest

and largest oi, we need a larger s to ensure a small pd .

This suggests that for operators with an unbounded spectrum

we should expect that Eq. (24) can only be satisfied with

pd �
1
2
, which is far too large to allow a violation of the

noncontextuality inequality in Eq. (25).

F. AWVs and contextuality with qubit pointers or coarse

graining

While Theorem 1 removed the idealizations of a perfectly

projective postselection and pure input states from the main

result of Ref. [9], we still followed the traditional approach of

introducing weak values using a continuous-variable pointer;

see Sec. II B. Correspondingly, Theorem 1 strictly requires

an infinite number of operational equivalences to be satisfied,

which cannot be checked by finite means. In the following, we

will solve this issue.

It is known that one can follow an experimental setting for

measuring weak values that is analogous to the one discussed

above but uses a qubit pointer only [23]; alternatively, one

can consider a coarse graining of x in the traditional setting

of Sec. II B. Either way, in these alternative scenarios with

finite degrees of freedom we are able to prove that (1) the

connection between AWVs and contextuality holds and (2)

as opposed to Theorem 1, the no-go theorem only requires

us to verify a finite number of operational equivalences. The

relevant no-go theorem, proven in Appendix B, is given by the

following:

Theorem 3 (noise-robust no-go theorem: finite version).

Suppose we have a noncontextual ontological model and that

(1) there exists a measurement ME and a probability pm

such that

[x|MW ] ≃ pm[x|ME ] + (1 − pm)[x|Mtriv], (29)

where Mtriv involves ignoring the system and sampling an x

that is negative with probability 1
2
;

(2) if M :=
∫

MW
x dx, there exists pd ∈ [0, 1] such that

M ≃ (1 − pd )I + pdM
D, (30)

where I denotes the identity transformation and MD some

other transformation.

Then if p− :=
∫ 0

−∞ p(x, y = 1|P∗,M
W , MF )dx and pF :=

p(y = 1|P∗, MF ),

p− � pF

1 + pm

2
+ (1 − pF )pd . (31)

Remarks. In Appendix F we describe a weak measurement

scheme using a qubit pointer with small parameter ǫ. The

outcome is a discrete x = ±1 so the integrals over x above

reduce to sums. We show that the operational equivalences of

Eq. (29) and Eq. (30) are satisfied with pm = 2ǫ + o(ǫ) and

pd = o(ǫ), respectively, and calculate

p− = pF

1 + pm

2
− 2ǫ Re(〈�φE〉

ρ
) + o(ǫ), (32)

giving contextuality for sufficiently small ǫ whenever

Re(〈�φE〉
ρ

) < 0, as before.

The same argument can be made for the standard quantum

experiment described in Sec. II B, once we coarse-grain the
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pointer position to a two-outcome measurement Mcoarse
W with

outcomes x � 1/2 and x � 1/2 (i.e., x closest to the eigen-

value 0 of E , or closest to the eigenvalue 1). If we now label

these outcomes x = −1 and x = +1, respectively, then the

conditions of Theorem 3 are satisfied with pd = o(1/s) and

pm = 1/(
√

πs) + o(1/s). Then, for the perfect postselection,

p− = pF

1 + pm

2
−

1
√

πs
Re(〈�φE〉

ρ∗
) + o

(

1

s

)

, (33)

which, with large s, violates the noncontextuality bound.

G. A remark on the debate concerning AWVs

Theorem 3 not only tells us that weak-value experiments

proving contextuality can be conducted with qubit pointers,

but also clarifies another issue of the weak-value debate.

When Ferrie and Combes presented discrete classical toy

models reproducing certain aspects of AWVs [5], questions

were posed as to whether these are a good analog of the

weak value due the intrinsic discreteness [6] (as opposed

to the standard quantum experiment which is continuous

or, when discrete, it is a coarse graining of a continuous

measurement [24]). Theorem 3 shows that the contextuality

of the weak value has nothing to do with the fact that we

are performing a measurement of a continuous quantity—the

pointer position or momentum: nonclassicality is present both

in the coarse graining of the standard experiment as well as

in an intrinsically discrete experiment. In particular, although

the weak value no longer appears simply as an average pointer

position, the correct “scaling procedure” to determine whether

a discrete outcome is sufficiently biased to be considered

anomalous can be determined operationally using pm.

III. AN ALTERNATIVE APPROACH TO THE

NO-GO THEOREMS

A. Theorem based on measurement and

preparation noncontextuality

In Theorems 1–3 we removed the idealization of exact

postselection in Ref. [9] and extended an operational equiva-

lence on a measurement to a correspondent operational equiv-

alence on a transformation, Eq. (13). In fact, Eq. (13) requires

us to check that every subsequent measurement on the system

is affected little by the weak measurement, whereas the orig-

inal assumption only required checking that the postselection

is affected little when preceded by the weak measurement.

Here we present an alternative approach in which we keep

the original, less demanding assumptions of Ref. [9] but we

introduce some extra preparations whose aim is to provide an

operational measure of how “close to projective” the postse-

lection is.4

To do so, we do the following:

(1) We introduce an ensemble of preparations [b|S], where

[b = 0|S] is prepared with probability q0 and [b = 1|S] is pre-

pared with probability q1 = 1 − q0. In practice, we will look

4This general strategy to “robustify” contextuality proofs was first

proposed in Ref. [25].

for S that maximizes the correlations with the corresponding

outcomes of the (imperfect) postselection, i.e., maximizing

CS := p(b = 0, y = 0|S, MF ) + p(b = 1, y = 1|S, MF ),

where p(b, y|S, MF ) is the probability that [b|S] is prepared

and an immediate measurement of [y|MF ] on [b|S] returns

outcome y.

(2) If P∗ denotes the input preparation in the standard

setting (as in Sec. II C), we include it in an ensemble where

P∗ is prepared with probability q∗ and P⊥ is prepared with

probability q⊥ = 1 − q∗. P⊥ and q∗ are chosen such that

q0[b = 0|S] + q1[b = 1|S] ≃ q∗P∗ + q⊥P⊥.

It is useful to spell out what this means in quantum terms

when the system being weakly measured is a qubit. We start

with {MF , 1 − MF }, the imperfect postselection POVM, and

the preparation ρ∗. Then we look for states σb, b = 0, 1, that

maximize Tr(MF σ1) and Tr[(1 − MF )σ0]. We then need to

find suitable qb, q∗, and ρ⊥ such that q∗ρ∗ + q⊥ρ⊥ = q0σ0 +
q1σ1, to satisfy the correspondent operational equivalence.

Note that if we accessed perfect postselections and prepara-

tions, then we would get CS = 1 by choosing σ1 = |φ〉 〈φ| and

σ0 = 1 − |φ〉 〈φ|. In practice the postselection is not exactly

projective and σb will never be exactly pure, so that CS < 1

experimentally.

We are now able to formulate a no-go theorem using this

second strategy. Denoting by p(x, y|P∗, MF ◦ MW ) the proba-

bility that if the system is initialized through the preparation

procedure P∗ and [x|MW ], [y|MF ] are sequentially measured,

one obtains outcomes (x, y), we have the following:

Theorem 4 (noncontextuality inequality based on prepa-

ration noncontextuality). Suppose we have a noncontextual

ontological model and that

(1) there exists a 2-outcome measurement ME and a prob-

ability distribution q(x) with median x = 0 such that, for all

x ∈ R,

[x|MW ] ≃ q(x − 1)[y = 1|ME ] + q(x)[y = 0|ME ]; (34)

(2) given the sequential measurement [x, y|MF ◦ MW ], we

define [y|M̃F ] :=
∫

dx[x, y|MF ◦ MW ]; then there exists pd ∈
[0, 1] such that

[y|M̃F ] ≃ (1 − pd )[y|MF ] + pd [y|MD], (35)

for some 2-outcome measurement [y|MD];

(3) there exists an ensemble

{{q∗, P∗}, {q⊥, P⊥}},

such that

q0[b = 0|S] + q1[b = 1|S] ≃ q∗P∗ + q⊥P⊥. (36)

Then, if p− :=
∫ 0

−∞ p(x, y = 1|P∗, MF ◦ MW )dx and

pF := p(y = 1|P∗, MF ),

p− � pF

1

2
+ (1 − pF )pd +

1 − CS

2q∗
. (37)

Remarks. The theorem is proved in Appendix C. It parallels

Theorem 1; in particular Eq. (34) is the same as Eq. (12).

Because the logical structure of Appendix C parallels that

of Appendix B, theorems parallel to Theorems 2 and 3 can
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also be proven, with the assumption in Eq. (24) and Eq. (30)

replaced by the conjunction of Eq. (35) and Eq. (36).

Now that the alternative theorem is stated, let us discuss

in more detail the differences with our first approach by com-

paring Theorem 4 with Theorem 1. The requirement Eq. (34)

is exactly the same; the operational equivalence of Eq. (35)

is strictly weaker than the correspondent Eq. (13), since

the latter requires us to verify that the weak measurement

affects only slightly any subsequent measurement, whereas

the former only requires us to check the same condition for the

postselection measurement MF ; the operational equivalence

of Eq. (36) is added, and involves the addition of preparations

S used for testing the quality of the postselection, as well

as of a preparation P⊥ that provides a nontrivial operational

equivalence; finally, the bound on p− matches the analog one

from Theorem 1, with an extra punishing term proportional

to 1 − CS . The bound hence becomes increasingly weak as

the postselection departs from the perfect predictability asso-

ciated with projective measurements in quantum theory.

B. Application: Assessing current AWV experiments

The second version of the theorem can also be compared

with the quantum-mechanical predictions. For example, in the

unbiased noise model presented in the previous section one

can show that all the operational equivalences of Theorem 4

are satisfied. Furthermore, one can use Eq. (18) and note that

CS = 1 − ǫ (see Appendix D).

We can once more compare with the experimental setting

of Ref. [11]. First, note that only the operational equivalences

of Eqs. (34) and (35) are claimed, so one would need to

complete this with Eq. (36) to get that the violation of the

bound of Eq. (37) is a proof of contextuality. In other words,

in principle the same data can be utilized by simply adding

an estimation of the sharpness of the postselection through an

extra preparation satisfying Eq. (36). We can, in fact, work

out from the experimental data how close to projective the

postselection needs to be for the claim of contextuality from

AWVs of Ref. [11] to hold. Specifically, one has pd = 0.0019,

s = 8.10336, pF = 0.0475865,
p−
pF

= 0.602927, and (with the

obvious choice of fair ensembles) q∗ = 1/2. One can then

estimate that Eq. (37) is satisfied only if CS > 0.996912. We

see that in this case the postselection needs to be very close to

ideal.5

IV. REMAINING IDEALIZATIONS: PERFECT

OPERATIONAL EQUIVALENCES

Some readers may have noticed that there is an idealization

that was not dealt with in Theorems 1–4. That is, any experi-

ment will only ever verify the operational equivalences ≃ up

to some approximation. Luckily, as discussed in Ref. [26],

this can be dealt with using a generic technique. One begins

by assuming access to a tomographically complete set of

procedures that enables the operational equivalences to be

checked. The basic idea is then that while the “primary” pro-

5Not unrealistically close. A quantity comparable to CS was re-

ported as 0.99709(7) in another contextuality experiment [26].

cedures (i.e., the ones actually implemented) will not satisfy

the operational equivalence exactly, we can use their statistics

to find “secondary” preparations in their convex hull6 that

do satisfy the equivalences exactly. It is to these secondary

preparations that we can apply Theorems 1–4. In particular, as

we discussed one can apply Theorem 3 both to the single qubit

pointer experiment, as well as the coarse-grained version of

the standard experiment—meaning that we only need to apply

the above discussion to a finite set of operational equivalences.

The price for using this technique is that the secondary proce-

dures are more mixed than the primary ones and hence will

give smaller values for CS and p−. In that sense, applying this

technique builds upon the noise robustness to nonideal values

of such parameters that we have provided here.

A last comment. The last remaining idealization at this

point is that we assumed we know a tomographically complete

set of measurements. Strictly, we cannot prove that a given set

of measurement procedures is complete without relying on the

quantum formalism. However, one can gather evidence from

the experimental data that a given set is complete. This goes

beyond the scope of the present work, but is discussed in detail

in Ref. [26], and techniques to address this issue have since

been introduced in Ref. [27].

V. NECESSITY OF OPERATIONAL EQUIVALENCES FOR

NONCLASSICALITY OF AWVs

We have seen that the statistics collected by the AWV ex-

periment cannot be reproduced by a noncontextual ontological

model in the presence of some extra operational constraints:

(1) Eqs. (12) and (13) in the case of Theorem 1, with

similar constraints for Theorems 2 and 3;

(2) Eqs. (34)–(36) in the case of Theorem 4.

At first sight this might seem rather involved, especially if

compared to broader claims of nonclassicality of the AWVs

that appeared in the literature. Here, however, we show that

dropping any of the operational equivalences in any of the the-

orems allows for the explicit construction of a classical (non-

contextual) ontological model that reproduces the anomaly. In

fact, the models even reproduce the full quantum statistics of

the sequential measurement on ρ∗ and not just the anomaly

of the pointer. Hence our conditions are not only sufficient,

but they are also necessary, showing that AWVs can only be

understood as unavoidably quantum in the presence of all the

operational constraints described. Hopefully this will help in

clarifying the debate that arose around this topic, showing that

both “sides” are indeed correct: in a way similar to that in

which nonlocal correlations are a quantum phenomenon only

in a setting in which signaling has been excluded, AWVs are

indeed fundamentally quantum, but only when accompanied

by certain extra operational facts.

6In general “supplementary procedures” have to be implemented to

ensure that the convex hull extends in all directions [26].
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FIG. 3. An illustration of the model in Sec. V A 1. On the left

are plots of pMW (x, λ′|λ) against x, and the numbers pM(λ′|λ) =
∫ ∞

−∞ pMW (x, λ′|λ)dx. On the right are plots of pMW
(x|λ) =

∑

λ′ pMW (x, λ′|λ) against x. The operational probabilities used are

quantum probabilities from the standard scheme with parameters

chosen so that pF = 1

5
, pd = 1

20
, and φ〈E〉ψ = − 1

2
. (In particular

those parameters include a rather small s ≈ 1.5 to ensure that all

features are visible. This s is still large enough for our noncontex-

tuality inequalities to be violated.) Notice on the left that λ = λ′ with

high probability, but on the right we see that the λ = 1 ontic state is

predisposed to give negative values of x.

A. Necessity of conditions in Theorems 1–3

In both of the following models, we take the ontic state λ

to be y, i.e., a determination of the outcome of MF , and we set

pP∗ (λ) = p(y = λ|P∗, MF ). (38)

1. Necessity of condition 1

The basic idea of our first model is to give results for the

weak measurement according to the operational distribution

under the predetermined postselection y = λ. That is, we set

pMW
(x|λ) ≈ p(x|P∗,M

W , MF , y = λ). (39)

Exact equality in Eq. (39) would allow us to reproduce

the operational distribution over x without any disturbance to

the ontic state at all, at the price of violating the conditions

on pMW
arising from measurement noncontextuality (a failure

of condition 1). However, we also want to reproduce the

operational fact that whether or not the weak measurement

is done affects the probabilities of MF and so we add the

minimal amount of disturbance necessary to achieve this. This

amount of disturbance is, unsurprisingly, bounded by the pd

from Eq. (13). We then actually sample x from the operational

distribution for y = λ′, the disturbed ontic state, which is why

Eq. (39) is only approximately true. The model is illustrated

in Fig. 3; for the full detail of how to implement the minimal

disturbance see Appendix G.

2. Necessity of condition 2

This time we ignore λ and simply distribute (x, λ′) accord-

ing to the operational probabilities for (x, y), at the expense of

a very large disturbance to the postselection:

pMW (x, λ′|λ) = p(x, y = λ′|P∗,M
W , MF ). (40)

λ
=

0
λ

=
1

λ = 0 λ = 1

−3−2−1 0 1 2 3

0.77

−3−2−1 0 1 2 3

0.77

−3−2−1 0 1 2 3

0.23

−3−2−1 0 1 2 3

0.23
λ

−3−2−1 0 1 2 3

−3−2−1 0 1 2 3

FIG. 4. As in Fig. 3, but for the model of Sec. V A 2. Notice on

the right that neither ontic state is predisposed to give negative x, but

on the left we see that the λ = 1 state is very likely to be disturbed to

λ′ = 0.

By construction

∑

λ′

pMW (x, λ′|λ) = p(x|P∗, MW ), (41)

so we satisfy any operational equivalences for MW (condition

1 is satisfied).

Intuitively, notice that λ = 1 is greatly disturbed by the

model since the probability of going to λ′ = 0 is p(y =
0|P∗,M, MF ) ≈ 1 − pF (the probability of not passing the

postselection). This is a failure of condition 2 whenever that

probability exceeds pd . These features can be seen in Fig. 4.

B. Necessity of conditions in Theorem 4

1. Necessity of condition 1

This follows from the first model above. To satisfy condi-

tion 3, we can set p(λ|P) = p(y|P, MF ) for any preparation

procedure P. This respects convexity and if two procedures

are operationally equivalent they will in particular have the

same p(y|P, MF ) and hence the same p(λ|P), as required by

preparation noncontextuality.

2. Necessity of condition 2

This follows similarly from the second model above.

3. Necessity of condition 3

The final ontological model we consider is the ψ-complete

model [28], which is well known to be measurement noncon-

textual. In fact we will consider the generalization of the ψ-

complete model to an arbitrary operational theory. The set of

ontic states λ is identified with the set of (convexly extremal)

preparations, pP(λ) = δ(λ − P), and the response functions

are given by the operational probabilities, pM (x|λ) = p(x|P =
λ, M ). This model reproduces the operational probabilities

and is measurement noncontextual (that is, satisfies conditions

1 and 2 of Theorem 4); however it does not satisfy preparation

noncontextuality, since it does not associate the same distribu-

tions to the ensembles associated with S and {P∗, P⊥}. Hence,

condition 3 cannot be dropped from Theorem 4.
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VI. CONCLUSIONS

Our results show that contextuality captures what is non-

classical about anomalous weak values in a way that is

experimentally relevant and wide ranging. In particular, the

postselection need not be a perfect projective measurement,

the pointer need not be a continuous-variable system, and if

there is an imaginary part to the weak value then the real part

need not be anomalous.

On the other hand, we have shown through explicit non-

contextual models that if any of the operational equivalences

we use are absent a classical explanation is possible.

Our results also answer some of the questions left open in

Ref. [21]. There, it was shown that the fluctuation theorem ex-

periments probing the Margenau-Hills work quasiprobability

introduced in Ref. [22] can witness contextuality. However, it

was left open how to make the argument robust to experimen-

tal imperfections. Here we gave the tools to do so.
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APPENDIX A: IDEAL, STANDARD QUANTUM SCENARIO

The channel induced by the weak measurement when

the outcome is not recorded is M(·) =
∫ +∞
−∞ MW

x (·) =
∫ +∞
−∞ Nx(·)N†

x . Using the integral
∫ +∞
−∞ Gs(x − a)Gs(x −

b)dx = e−(a−b)2/4s2

and Eq. (4), one finds for every ρ

M(ρ) = EρE + E
⊥ρE⊥ + e−1/4s2

(EρE⊥ + E
⊥ρE )

=
1

2
ρ +

1

2
(E − E

⊥)ρ(E − E
⊥)

+ e−1/4s2

[

1

2
ρ −

1

2
(E − E

⊥)ρ(E − E
⊥)

]

=
1 + e−1/4s2

2
ρ +

1 − e−1/4s2

2
(E − E

⊥)ρ(E − E
⊥)

= (1 − pd )ρ + pd (E − E
⊥)ρ(E − E

⊥),

with pd = 1−e−1/4s2

2
. Hence, M = pdI + (1 − pd )MD, with

MD(ρ) := (E − E⊥)ρ(E − E⊥). It is then clear that the

operational equivalences required by Theorem 1 are satisfied

in the ideal case.

Finally, one can compute pideal
− =

∫ 0

−∞ dx Tr

(�φNxρ∗N†
x ) = pF

2
− Re(〈�φE〉

ρ∗ )
√

πs
+ o( 1

s
). This is a simple

calculation; see, e.g., the proof of Lemma 1 in Ref. [21] (note,

however, that we redefined pideal
− without the normalization

by the postselection probability).

APPENDIX B: PROOF OF THEOREMS 1–3 AND

REMARKS ON TIGHTNESS OF THE INEQUALITIES

All three theorems follow from the same basic argument;

hence it is convenient to formulate all of them as corollaries

of the following technical lemma:

Lemma 1 (noncontextuality inequality template 1). Sup-

pose we have a noncontextual ontological model and that

(1) for any input λ, the probability of a negative outcome

of [x|MW ] is bounded by some value independent of the ontic

state:
∫ 0

−∞
pMW

(x|λ)dx � p̃; (B1)

(2) if M :=
∫

MW
x dx, there exists pd ∈ [0, 1] such that

M ≃ (1 − pd )I + pdM
D, (B2)

where I denotes the identity transformation and MD some

other transformation.

Then, if p− :=
∫ 0

−∞ p(x, y = 1|P∗,M
W , MF )dx and

pF := p(y = 1|P∗, MF ),

p− � pF p̃ + (1 − pF )pd =: pNC
− . (B3)

Proof. Define �λ
1 = {λ′ : pMF

(y = 1|λ′) � pMF
(y = 1|λ)}

(i.e., λ′ is undisturbed or uselessly disturbed, in terms of prob-

ability of passing the postselection) and �λ
2 = � \ �λ

1 = {λ′ :

pMF
(y = 1|λ′) > pMF

(y = 1|λ)} (i.e., λ′ usefully disturbed).

In the ontological model,

p− =
∫ 0

−∞
p(x, y = 1|P∗,M

W , MF )dx

=
∫ 0

−∞

∫∫

pMF
(y = 1|λ′)

× pMW (x, λ′|λ)pP∗ (λ)dλ′dλdx. (B4)

As described in Sec. II C, pMW
(x|λ) =

∫

�
pMW (x, λ′|λ)dλ′.

Also, note that
∫

pMF
(y = 1|λ)pP∗ (λ)dλ = pF . Hence, for the

�λ
1 part of (B4), using Eq. (B1),

∫ 0

−∞
dx

∫

�

dλ

∫

�λ
1

dλ′ pMF
(y = 1|λ′)pMW (x, λ′|λ)pP∗ (λ)

�

∫ 0

−∞
dx

∫

�

dλ

∫

�λ
1

dλ′ pMF
(y=1|λ)pMW (x, λ′|λ)pP∗ (λ)

=
∫ 0

−∞
dx

∫

�

dλpMF
(y = 1|λ)pMW

(x|λ)pP∗ (λ) − c

� p̃

∫

�

pMF
(y = 1|λ)pP∗ (λ)dλ − c = p̃pF − c, (B5)
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with a “correction” term which measures the contribution to

(B4) lost due to useless disturbance:

c =
∫ 0

−∞
dx

∫

�

dλ

∫

�λ
2

dλ′ pMF
(y = 1|λ)pMW (x, λ′|λ)pP∗ (λ).

(B6)

As described in Sec. II C, pM(λ′|λ) =
∫ ∞
−∞ pMW

(x, λ′|λ)dx. Hence, pM(λ′|λ) �
∫ 0

−∞ pMW (x, λ′|λ)dx. By

Eq. (B2) and (transformation) noncontextuality we have

pM(λ′|λ) = (1 − pd )pI (λ′|λ) + pd pMD (λ′|λ). Since I can

be implemented, for example, by letting no time pass so

that no dynamical evolution is possible, transformation

noncontextuality requires pI (λ′|λ) = δ(λ′ − λ). Hence,
∫

dλ
∫

�λ
2

dλ′[pMF
(y = 1|λ′) − pMF

(y = 1|λ)]pI (λ′|λ)p(λ) =
0. It follows that for the part of (B4) with λ′ ∈ �λ

2 we have

∫ 0

−∞
dx

∫

�

dλ

∫

�λ
2

dλ′ pMF
(y = 1|λ′)pMW (x, λ′|λ)pP∗ (λ)

=
∫ 0

−∞
dx

∫

�

dλ

∫

�λ
2

dλ′[pMF
(y = 1|λ′)

− pMF
(y = 1|λ)]pMW (x, λ′|λ)pP∗ (λ) + c

�

∫

�

dλ

∫

�λ
2

dλ′[pMF
(y = 1|λ′)

− pMF
(y = 1|λ)]pM(λ′|λ)pP∗ (λ) + c

= pd

∫

�

dλ

∫

�λ
2

dλ′[pMF
(y = 1|λ′)

− pMF
(y = 1|λ)]pMD (λ′|λ)pP∗ (λ) + c

� pd

∫

�

dλ

∫

�λ
2

dλ′[1−pMF
(y=1|λ)]pMD (λ′|λ)pP∗ (λ)+c

� pd

∫

�

[1 − pMF
(y = 1|λ)]pP∗ (λ)dλ + c

= (1 − pF )pd + c.

Summing the �λ
1 and �λ

2 contributions gives p− � pF p̃ +
(1 − pF )pd . �

Our inequality is slightly tighter than the p− � pF p̃ + pd

one would expect from [9]. In order to check whether our

inequality is in fact maximally tight, we applied the algo-

rithmic approach to noncontextuality inequalities described

in Ref. [14]. Since that approach requires fixed operational

equivalences, we repeated this procedure for many numerical

values of the parameters p̃, pd and verified that our inequal-

ities define facets of the corresponding “noncontextuality

polytope” [14] in each case (see Appendix H). It appears that

our inequality is unique and tight, with the exclusion of the

regime in which pd � p̃, for which the method returns the

trivial inequality p− � p̃, which follows immediately from

Eq. (B1). As we will see, in actual experiments one has

pd ≪ p̃.

We can now prove the theorems by obtaining specific

values for p̃ using noncontextuality and the operational equiv-

alence of condition 1 of each theorem.

Proof (proof of Theorem 1). By Eq. (12) and measurement

noncontextuality we have

pMW
(x|λ) = q(x − 1)pME

(y = 1|λ) + q(x)pME
(y = 0|λ).

(B7)

Since the median of q(x) is 0 we have
∫ 0

−∞ q(x − 1)dx �
∫ 0

−∞ q(x)dx = 1
2
. In any ontological model,

∑

y pME
(y|λ) = 1

for every λ. Integrating both sides of Eq. (B7) from −∞ to 0

then gives Eq. (B1) with p̃ = 1
2
. Hence, we can apply Lemma

1 to obtain the result. �

Proof (proof of Theorem 2). By Eq. (23) and measurement

noncontextuality we have

pMW
(γ |λ) = pMtriv

(γ |λ). (B8)

By definition pMtriv
(γ |λ) is independent of λ and

∫ 0

−∞ pMtriv
(γ |λ)dγ = 1

2
. Integrating both sides of Eq. (B8)

from −∞ to 0 then gives Eq. (B1) with p̃ = 1
2
. Hence, we

can apply Lemma 1 to obtain the result. �

Proof (proof of Theorem 3). By Eq. (29) and measurement

noncontextuality we have

pMW
(x|λ) = pm pME

(x|λ) + (1 − pm)pMtriv
(x|λ). (B9)

By definition pMtriv
(x|λ) is independent of λ and

∫ 0

−∞ pMtriv
(x|λ)dx = 1

2
. In any ontological model,

∫ 0

−∞ pME
(x|λ)dx �

∫ ∞
−∞ pME

(x|λ)dx = 1. Integrating both

sides of (B9) from −∞ to 0 then gives Eq. (B1) with

p̃ = pm + (1 − pm) 1
2

= 1+pm

2
. Applying Lemma 1 gives the

result. �

Notice that the tightness of the inequality proven in Lemma

1 does not automatically imply that the inequalities in The-

orems 1–3 are tight, because Eqs. (B7)–(B9) are stronger

constraints than Eq. (B1) with the relevant value of p̃. Since

Eqs. (B7) and (B8) reflect an infinite number of operational

equivalences (one for each value of x), for Theorems 1 and 2

this issue cannot be straightforwardly settled using the tech-

niques from [14] alone because those only apply to finite sets

of equivalences. It may be possible to gain some confidence

by using a series of increasingly fine-grained but nevertheless

finite operational equivalences. Theorem 3 is a somewhat

easier case: since it is intended to apply to a finite number

of outcomes, for each number of outcomes there will in fact

be a finite set of equivalences for which the relevant polytope

could be calculated. In this work we leave the tightness of the

inequalities in Theorems 1–3 as open problems, but we find

the tightness of the inequality in Lemma 1 quite suggestive.

APPENDIX C: PROOF OF THEOREM 4 (PLUS EXTENSION

TO IMAGINARY WEAK VALUES AND FINITE VERSION)

We will use the same structure as in Appendix B above,

with the main argument in the form of a lemma.

Lemma 2 (noncontextuality inequality template 2). Sup-

pose we have a noncontextual ontological model and that

(1) for any input λ, the probability of a negative outcome

of [x|MW ] is bounded by some value independent of the ontic

state:
∫ 0

−∞
pMW

(x|λ)dx � p̃; (C1)
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(2) given the sequential measurement [x, y|MF ◦ MW ], de-

fine [y|M̃F ] :=
∫

dx[x, y|MF ◦ MW ]; then there exists pd ∈
[0, 1] such that

[y|M̃F ] ≃ (1 − pd )[y|MF ] + pd [y|MD], (C2)

for some 2-outcome measurement [y|MD];

(3) there exists an ensemble

{{q∗, P∗}, {q⊥, P⊥}},

such that

q0[b = 0|S] + q1[b = 1|S] ≃ q∗P∗ + q⊥P⊥. (C3)

Then if p− :=
∫ 0

−∞ p(x, y = 1|P∗, MF ◦ MW )dx and pF :=
p(y = 1|P∗, MF ),

p− � pF p̃ + (1 − pF )pd +
1 − CS

q∗
max{ p̃ − pd , 1 − p̃}.

(C4)

Proof. Let us denote by pS (λ|b) the probability distribution

associated with [b|S].

From the definition of an ontological model, CS =
∑

b,y∈{0,1} δby

∫

�
dλpMF

(y|λ)qb pS (λ|b). From the definition of

conditional probability, qb pS (λ|b) = pS (λ)pS (b|λ). Then

CS =
∑

b,y∈{0,1}

δby

∫

�

dλpMF
(y|λ)pS (b|λ)pS (λ)

�

∫

�

dλ max
y∈{0,1}

pMF
(y|λ)

∑

b,y∈{0,1}

δby pS (b|λ)pS (λ)

:=
∫

�

dλζ (λ)pS (λ), (C5)

where ζ (λ) := maxy∈{0,1} pMF
(y|λ). We now work out some

inequalities that we need in order to bound p−. Let us now

split the set of ontological variables � in the union of two

disjoint sets: � = �0 ⊔ �1,

�0 = {λ ∈ �|pMF
(y = 0|λ) � pMF

(y = 1|λ)},
�1 = {λ ∈ �|pMF

(y = 1|λ) > pMF
(y = 0|λ)}.

Note that �0 (�1) is the set of λ’s that are more likely than

not to fail (pass) the postselection measurement.

Inequality 1. For every λ ∈ �,

∫ 0

−∞
dxpMF ◦MW

(x, y = 1|λ) �

∫ 0

−∞
dxpMW

(x|λ) � p̃, (C6)

where we have used (C1).

Inequality 2. For every λ ∈ �0,

∫ 0

−∞
dxpMF ◦MW

(x, y = 1|λ) �

∫ +∞

−∞
dxpMF ◦MW

(x, y = 1|λ) = (1 − pd )pMF
(y = 1|λ) + pd pMD

(y = 1|λ)

= (1 − pd )[1 − ζ (λ)] + pd pMD
(y = 1|λ) � (1 − pd )[1 − ζ (λ)] + pd , (C7)

where we used measurement noncontextuality applied to the operational equivalence of Eq. (C2) and the definition of ζ (λ)

in �0.

We can now use these inequalities to give an upper bound to p−. We are going to use Eq. (C6) for λ ∈ �1 and Eq. (C7) for

λ ∈ �0:

p− =
∫ 0

−∞
dxp(x, y = 1|P∗, MF ◦ MW ) =

1
∑

i=0

∫ 0

−∞
dx

∫

�i

dλpP∗ (λ)pMF ◦MW
(x, y = 1|λ)

� (1 − pd )

∫

�0

dλpP∗ (λ)[1 − ζ (λ)] + pd

∫

�0

dλpP∗ (λ) + p̃

∫

�1

dλpP∗ (λ). (C8)

Let us analyze the various terms separately:

∫

�0

dλpP∗ (λ) =
∫

�0

dλpP∗ (λ)pMF
(y = 0|λ) +

∫

�1

dλpP∗ (λ)pMF
(y = 0|λ)

+
∫

�0

dλpP∗ (λ)[1 − pMF
(y = 0|λ)] −

∫

�1

dλpP∗ (λ)pMF
(y = 0|λ) (C9)

= 1 − pF +
∫

�0

dλpP∗ (λ)[1 − ζ (λ)] −
∫

�1

dλpP∗ (λ)[1 − ζ (λ)], (C10)

where we used
∫

�
dλpP∗ (λ)pMF

(y = 0|λ) = 1 − pF and pMF
(y = 0|λ) = ζ (λ) for λ ∈ �0 and pMF

(y = 0|λ) = 1 − ζ (λ) for

λ ∈ �1. Similarly,

∫

�1

dλpP∗ (λ) = pF −
∫

�0

dλpP∗ (λ)[1 − ζ (λ)] +
∫

�1

dλpP∗ (λ)[1 − ζ (λ)]. (C11)
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Substituting these in Eq. (C8) we find

p− � p̃pF + (1 − pF )pd + (1 − p̃)

∫

�0

dλpP∗ (λ)[1 − ζ (λ)] + ( p̃ − pd )

∫

�1

dλpP∗ (λ)[1 − ζ (λ)]

� p̃pF + (1 − pF )pd + max{ p̃ − pd , 1 − p̃}
∫

�

dλpP∗ (λ)[1 − ζ (λ)]. (C12)

By preparation noncontextuality, Eq. (C3) implies pS (λ) = q∗ pP∗ (λ) + q⊥ pP⊥ (λ) � q∗ pP∗ (λ). Combining this with Eq. (C5),

we have

1 − CS =
∫

�

dλpS (λ)[1 − ζ (λ)] � q∗

∫

�

dλpP∗ (λ)[1 − ζ (λ)]. (C13)

Substituting in the previous equation, we obtain the

claimed bound. �

Concerning tightness, we used the same approach as for

Lemma 1, fixing the numerical values for p̃, pd , q∗, q0. For

relevant choices of parameters we observe that the inequality

defines a facet in the “noncontextuality polytope.” Further-

more, we provide numerical tools to derive all noncontextual

inequalities for all choices of parameters; see Appendix H.

Proof (proof of Theorem 4). By Eq. (34) and measurement

noncontextuality we have

pMW
(x|λ) = q(x − 1)pME

(y = 1|λ) + q(x)pME
(y = 0|λ).

(C14)

Since the median of q(x) is 0 we have
∫ 0

−∞ q(x − 1)dx �
∫ 0

−∞ q(x)dx = 1
2
. In any ontological model,

∑

y pME
(y|λ) = 1

for every λ. Integrating both sides of Eq. (C14) from −∞ to

0 then gives Eq. (C1) with p̃ = 1
2
. Noting that p̃ = 1

2
gives

max{ p̃ − pd , 1 − p̃} = max

{

1

2
− pd ,

1

2

}

=
1

2
, (C15)

we can apply Lemma 2 to obtain the result. �

The extensions to imaginary weak values and to finite

versions can be easily derived from Lemma 2 following the

same procedure as at the end of Appendix B. The situation

regarding tightness of the inequalities also mirrors the discus-

sion there.

APPENDIX D: NOISY IMPLEMENTATION OF THE WEAK

VALUE

Lemma 3. In quantum theory, a weak measurement of the

projector E with initial spread of the pointer s and imperfect

postselection of �φ with ǫ-unbiased noise as in Eq. (17)

achieves

p
noisy
− =

pF

2
−

1
√

πs
Re(〈[y = 1|MF ]E〉ρ∗

) + o

(

1

s

)

, (D1)

where CS = 1 − ǫ. The operational equivalences required by

Theorem 1 are satisfied, and those of Theorem 4 can be

satisfied by introducing the preparations (d ≡ Tr[1])

σ0 =
1 − �φ

d − Tr �φ

, σ1 =
�φ

Tr �φ

. (D2)

Remarks. Note that the preparations [b|S] were taken to

have singular density operators, but this assumption does not

imply an extra idealization. In fact, if we add unbiased noise

to S, σ1 = (1 − δ)
�φ

Tr �φ
+ δ 1

d
and similarly for σ0, we could

absorb δ by a redefinition of ǫ. Also note that exactly the

same proof shows that the operational equivalences required

by Theorems 2 and 3, as well as for the imaginary weak values

and finite versions of Theorem 4, do hold. Finally, for the

imaginary weak value version, p− has an expression similar to

Eq. (D1), but involving the imaginary part of the weak value.

Proof. The weak measurement scheme with ǫ-unbiased

noise in the postselection coincides with the standard scheme

described in Sec. II B with the only difference that the postse-

lection is taken to be

{[y = 1|MF ], [y = 0|MF ]} = (1 − 2ǫ){�φ,

× 1 − �φ} + 2ǫ{1/2, 1/2}.

Concerning the relation between CS and ǫ:

CS = q0 p(y = 0|b = 0, S, MF ) + q1 p(y = 1|b = 1, S, MF )

= q0[(1 − 2ǫ)p(y = 0|b = 0, S, {�φ, 1 − �φ}) + ǫ]

+ q1[(1 − 2ǫ)p(y = 1|b = 1, S, {�φ, 1 − �φ}) + ǫ]

= q0(1 − ǫ) + q1(1 − ǫ) = 1 − ǫ. (D3)

Operational equivalences. The operational equivalences of

Theorem 1 are satisfied by following the same argument as

described in the main text for the ideal case, since none of

them involve the postselection.

Concerning the equivalences required for Theorem 4 and

related imaginary or finite versions, the ones that do not

follow immediately from previous arguments are Eq. (35) and

Eq. (36).

To prove Eq. (35) we can start with the definition

[y|M̃F ] :=
∫ +∞

−∞
[x, y|MF ◦ MW ]

=
∫ +∞

−∞
dxN†

x [y|MF ]Nx = M
†([y|MF ]), (D4)

and, using Eq. (7), obtain

[y = 1|M̃F ] = M
†([y = 1|MF ])

= (1 − 2ǫ)M†(�φ ) + ǫ1 = pd [y = 1|MF ]

+ (1 − pd )[(1 − 2ǫ)M†
D(�φ ) + ǫ1]. (D5)

By defining a POVM {MD, 1 − MD} with MD = (1 −
2ǫ)M†

D(�φ ) + ǫ1, we can see that Eq. (35) is satisfied with

the same pd as in the ideal case, pd = (1 − e−1/4s2

)/2.
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Moving on to Eq. (36), to satisfy it we need a careful choice

of P⊥ with the aim of maximizing q∗ and hence the violation.

We will leave q∗ as a free parameter, but note that a choice

satisfying Eq. (36) always exists for any choice of P∗ given

by ρ∗:

q∗ = 1/d, ρ⊥ =
1 − ρ∗

d − 1
, q1 =

Tr[�φ]

d
.

In fact, with these choices,

q∗ρ∗ + q⊥ρ⊥ = q0σ0 + q1σ1 = 1/d. (D6)

Expression for p
noisy
− . For both the definition of p− of

Theorem 1 and that of Theorem 4, using Eq. (4),

p
noisy
− = ǫ

∫ 0

−∞
dx Tr(N†

x Nxρ∗)

+ (1 − 2ǫ)

∫ 0

−∞
Tr(N†

x �φNxρ∗)dx. (D7)

For the first term, since N†
x Nx = G2

s (x − 1)E + G2
s (x)E⊥,

using the integral
∫ 0

−∞ dxG2
s (x − 1) = 1

2
erfc ( 1

s
) expressed

using the complementary error function erfc(x) ≡ 1 −
erf (x) ≡ 1 − 1√

π

∫ x

−x
e−t2

dt and the expansion erfc(1/s) =
1 − 2/(

√
πs) + o(1/s),

∫ 0

−∞
dx Tr(N†

x Nxρ∗) =
1

2
erfc

(

1

s

)

pE +
1

2
(1 − pE )

=
1

2
−

pE√
πs

+ o

(

1

s

)

, (D8)

where pE = Tr(Eρ∗).

For the second term, from Eq. (4) and the integral
∫ 0

−∞ Gs(x − 1)Gs(x)dx = e−1/4s2

2
erfc ( 1

2s
) we get

∫ 0

−∞
Tr(N s†

x �φNxρ∗)dx

=
1

2
erfc

(

1

s

)

Tr(E�φEρ∗) +
e−1/(4s2 )

2
erfc

(

1

2s

)

× Tr[(E⊥�φE + E�φE
⊥)ρ∗] +

1

2
Tr(E⊥�φE

⊥ρ∗)

=
1

2
Tr(�φρ∗) −

1

2
√

πs
Tr[(�φE + E�φ )ρ∗] + o

(

1

s

)

,

(D9)

and we note that Tr [(�φE + E�φ )ρ∗] = 2 Re(〈�φE〉
ρ∗

).

Substituting everything into the expression for p
noisy
− ,

p
noisy
− =

pF

2
−

1
√

πs
Re(〈[y = 1|MF ]E〉ρ∗

) + o

(

1

s

)

. (D10)

�

APPENDIX E: MEASUREMENTS OF POINTER

MOMENTUM

Now we calculate p−, the probability of a negative value of

p under the postselection. For simplicity we will only consider

the ideal case, where [y = 1|MF ] is a projection �φ . However,

the noisy case can be derived extending the treatment below

in the same way as we did with the position measurement of

the pointer in Appendix D. Thus,

p− =
∫ 0

−∞
Tr(N†

γ �φNγ ρ∗)dγ

=
1

2
[Tr(E�φEρ∗) + Tr(E⊥�φE

⊥ρ∗)

+α Tr(E⊥�φEρ∗) + α∗ Tr(E�φE
⊥ρ∗)] (E1)

with integral [recalling Eq. (2)]

α = 2

∫ 0

−∞
|〈γ |�〉P|2 exp(−iγ )dγ

= exp

(

−
1

4s2

)[

1 + erf

(

i

2s

)]

. (E2)

To calculate α∗ recall that the erf of a purely imaginary

number is purely imaginary. Using α ≈ 1 + i√
πs

and Tr[(E +
E⊥)�φ (E + E⊥)ρ∗] = Tr(�φρ∗) = pF we find, at leading or-

der in 1/s,

p− ≈
pF

2
+

1
√

πs
Re[i Tr(E⊥�φEρ∗)]. (E3)

Since E⊥ = 1 − E and Im[Tr(E�φEρ∗)] = 0 this gives, at

leading order in 1/s,

p− ≈
1

2
−

Im(〈�φE〉
ρ∗

)
√

πs
. (E4)

APPENDIX F: QUBIT POINTERS

In Ref. [23] weak measurements using qubit pointers are

constructed, with the weakness controlled by a parameter in

the interaction between the system and pointer. It turns out

that, as in the continuous-pointer case, one can also use a fixed

interaction and control the weakness using a parameter in the

pointer state. For consistency we take that approach here.

The interaction we consider is U = E ⊗ Z + E⊥ ⊗ 1

where Z denotes the Pauli-Z operator on the qubit pointer.

This interaction is basically a controlled-phase gate where

the control is E versus E⊥. Indeed, by preparing the pointer

in |X = −1〉 = 1√
2
(|0〉 − |1〉) and measuring Pauli X on the

pointer one can carry out a strong measurement of E with

the usual disturbance. On the other hand, since Z |0〉 = |0〉,
preparing the pointer in |0〉 would mean U acts as identity on

the system and hence causes no disturbance. This suggests

we can achieve a weak measurement by taking an initial

pointer state of |�ǫ〉 = cos ǫ |0〉 − sin ǫ |1〉, where ǫ is small.

Measuring X on the pointer gives Kraus operators [here

|X = 1〉 = 1√
2
(|0〉 + |1〉)]

N±1 = 〈X = ±1|U |�ǫ〉

=
1

√
2

[E (cos ǫ ± sin ǫ) + E
⊥(cos ǫ ∓ sin ǫ)]

=
1

√
2

[cos ǫ 1 ± sin ǫ(E − E
⊥)], (F1)

and hence POVM elements

N
†
±1N±1 = 1

2
± cos ǫ sin ǫ(E − E

⊥), (F2)
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so that

N
†
+1N+1 = (1 − pm) 1

2
+ pmE,

N
†
−1N−1 = (1 − pm) 1

2
+ pmE

⊥, (F3)

where pm = 2 cos ǫ sin ǫ = sin(2ǫ). Hence, Eq. (29) is satis-

fied.

If we ignore the outcome of the measurement on the pointer

and then apply a channel

M(ρ) = N+1ρN
†
+1 + N−1ρN

†
−1

= cos2 ǫρ + sin2 ǫ(E − E
⊥)ρ(E − E

⊥)

= (1 − pd )ρ + pdM
D(ρ), (F4)

where pd = sin2 ǫ and MD(ρ) = (E − E⊥)ρ(E − E⊥),

Eq. (30) is satisfied.

Finally, considering a perfect postselection onto a projector

�φ , we can calculate

p− = Tr(N†
−1�φN−1ρ∗) = 1

2
{cos2 ǫ Tr(�φρ∗)

+ sin2 ǫ Tr[(E − E
⊥)�φ (E − E

⊥)ρ∗]

− sin ǫ cos ǫ Tr[(E − E
⊥)�φρ∗ + �φ (E − E

⊥)ρ∗]}.
(F5)

Expanding to first order in ǫ gives

p− ≈
pF

2
−

ǫ

2
Tr[(E − E

⊥)�φρ∗ + �φ (E − E
⊥)ρ∗]

=
pF

2
− ǫ Re{Tr[�φ (E − E

⊥)ρ∗]}

=
pF

2
− ǫ{2 Re[Tr(�φEρ∗)] − pF }, (F6)

and since pm ≈ 2ǫ we obtain, at leading order in ǫ,

p− ≈ pF

1 + pm

2
− 2ǫ Re(〈�φE〉

ρ∗
). (F7)

APPENDIX G: DETAILS OF MINIMAL-DISTURBANCE

ONTOLOGICAL MODEL

The weak measurement MW disturbs the system so that

the operational probabilities for the postselection following

it, p(y|P∗,M, MF ), differ from those that would be ob-

tained without the weak measurement, p(y|P∗, MF ). Normally

the postselection becomes slightly more likely, i.e., ǫ :=
p(1|P∗,M, MF ) − p(1|P∗, MF ) > 0, because the postselec-

tion is chosen almost orthogonal to the preparation and the

weak measurement makes the state of the system slightly

mixed. We will construct a model under this assumption, but

if the opposite is true then we simply need to exchange the

roles of y = 0 and y = 1 in the rest of the discussion. By nor-

malization ǫ = p(0|P∗, MF ) − p(0|P∗,M, MF ), and clearly

ǫ � 1 [indeed ǫ is just the total variation distance between

p(y|P∗, MF ) and p(y|P∗,M, MF )]. Hence we can define

D(y′|y) = δy′y +
ǫ

p(0|P∗, MF )
S(y′|y). (G1)

S(y′|y) =

⎧

⎪

⎨

⎪

⎩

−1, y = 0, y′ = 0,

1, y = 0, y′ = 1,

0, y = 1.

(G2)

This is a “minimally disturbing” [29] conditional distribution

such that

p(y′|P∗,M, MF ) =
∑

y

D(y′|y)p(y|P∗, MF ). (G3)

We use this disturbance in the representation of M in the

ontological model:

pMW (x, λ′|λ)= p(x|P∗, b=1,M, MF , y=λ′)D(y′ =λ′|y=λ).

(G4)

By construction

pM(λ′|λ) =
∫ ∞

−∞
pMW (x, λ′|λ)dx = D(y′ = λ′|y = λ),

(G5)

and we have that

D(y′|y) = (1 − pd )δy′y + pd

[

δy′y +
ǫ

p(0|P∗, MF )pd

S(y′|y)

]

,

(G6)

which suggests that in order to satisfy condition 2 of Theo-

rems 1–3 we should set

pMD (λ′|λ) = δλ′λ +
ǫ

p(0|P∗, MF )pd

S(y′ = λ′|y = λ). (G7)

It is easy to see that this is normalized and is clearly positive

except perhaps for

pMD (λ′ = 0|λ = 0) = 1 −
ǫ

p(0|P∗, MF )pd

, (G8)

which is positive provided pd �
ǫ

p(0|P∗,MF )
. To check this we

note that the operational equivalence of condition 2 on M̃F

tells us that

p(1|P∗,M, MF ) = (1 − pd )p(1|P∗, MF )

+ pd p(y = 1|P∗,M
D, MF ) (G9)

so that, since p(y = 1|P∗,M
D, MF ) � 1,

ǫ

p(0|P∗, MF )
=

p(1|P∗,M, MF ) − p(1|P∗, MF )

1 − p(1|P∗, MF )

= pd

p(y=1|P∗,M
D, MF )−p(1|P∗, MF )

1−p(1|P∗, MF )
� pd ,

(G10)

as required.

APPENDIX H: ALGORITHMIC APPROACH

TO TIGHTNESS

We discretize the problem and use the algorithmic ap-

proach of Ref. [14], to which we refer for extra details, in or-

der to verify that the noncontextuality inequalities of Lemmas

1 and 2 are indeed facet inequalities of the noncontextuality

polytope describing the relevant statistics. We first set up the

general algorithmic problem and then see how to apply it to

each theorem.

042116-16



ANOMALOUS WEAK VALUES AND CONTEXTUALITY: … PHYSICAL REVIEW A 100, 042116 (2019)

1. Setting up the problem

Since we will be dealing with arrays of procedures it will

be useful to number them as follows:

P⊥ ↔ P1, P∗ ↔ P2, [b = 0|S] ↔ P3, [b = 1|S] ↔ P4.

(H1)

The operational equivalence of Eq. (C3) can thus be written

as

q⊥P1 + (1 − q⊥)P2 ≃ q0P3 + (1 − q0)P4. (H2)

Since the definition of p− and the relevant constraints only

involve a coarse graining of the measurement outcome of MW

(the weak measurement), we denote a binary-outcome coarse

graining of MW as

[

X = −1
∣

∣Mbin
W

]

=
∫ 0

−∞
dx[x|MW ],

[

X = +1
∣

∣Mbin
W

]

=
∫ ∞

0

dx[x|MW ]. (H3)

Henceforth, we will consider the sequential measurement

MF ◦ Mbin
W rather than MF ◦ MW . The operational equivalence

of Eq. (C2) used in Lemma 2 is

[y|M̃F ] =
∑

X=±1

[

X, y
∣

∣MF ◦ Mbin
W

]

≃ (1 − pd )[y|MF ] + pd [y|MD]. (H4)

Finally Eq. (C1) (which appears in both lemmas) becomes the

condition

pMbin
W

(X = −1|λ) � p̃ ∈ [0, 1] ∀λ ∈ �. (H5)

Similarly we number the relevant measurements as

{M1, M2, M3} and their outcomes by m ∈ {1, 2, 3, 4}, defining

events [m|Mi] as

M1 : [1|M1] = [1|MF ], [2|M1] = [0|MF ],

M2 : [1|M2] = [1|MD], [2|M2] = [0|MD],

M3 : [1|M3] = [X = −1, y = 1|M],

[2|M3] = [X = −1, y = 0|M],

[3|M3] = [X = +1, y = 1|M],

[4|M3] = [X = +1, y = 0|M]. (H6)

The operational equivalence of Eq. (H4) can then be restated

as

(1 − pd )[1|M1] + pd [1|M2] ≃ [1|M3] + [3|M3],

(1 − pd )[2|M1] + pd [2|M2] ≃ [2|M3] + [4|M3], (H7)

while Eq. (H5) becomes

pM3
(1|λ) + pM3

(2|λ) � p̃ ∈ [0, 1]. (H8)

Applying measurement noncontextuality to Eq. (H7) gives

two linear constraints on the PMi
, on top of which we have

(H8), normalization, and positivity.

For any fixed λ, we can see an assignment of the pMi
(m|λ)

as an 8-component vector. The set of all assignments com-

patible with the above constraints defines a polytope in this

space, which we denote as weakvaluespolysymbN in the ac-

companying code [30]. Its vertices will be denoted by κ . The

vertex assignments in the polytope are denoted by pMi
(m|κ ).

For every λ, we can decompose pMi
(m|λ) as

pMi
(m|λ) =

∑

κ

w(κ|λ)pMi
(m|κ ), (H9)

where w(κ|λ) � 0,
∑

κ w(κ|λ) = 1. Hence, we can char-

acterize all possible assignments by computing the vertex

assignments. Doing the vertex enumeration with SageMath

we find there are 16 such vertices, κ1, . . . , κ16.

2. Tightness of the inequality in Lemma 1

Let us consider inequality in Lemma 1. Reference [14]

does not consider transformation noncontextuality, and it is

not obvious how to extend the approach there to transforma-

tion noncontextuality in general. But for checking tightness

in our scenario it happens that we do not require such an

extension. We will prove the following result, showing that

a transformation and measurement noncontextual model for

the weak-value experiment exists if there exists a model satis-

fying the original assumptions of Ref. [9]—i.e., measurement

noncontextuality and outcome determinism.

Lemma 4. Suppose there exists a given model which sat-

isfies Eq. (34), is measurement noncontextual for the equiva-

lence Eq. (35), and represents MF for all λ with pMF
(y|λ) ∈

{0, 1}. Then there exists a derived model which satisfies

Eq. (B1), is transformation noncontextual for the equivalence

Eq. (B2), and makes the same operational predictions as the

given model.

Proof. The derived model, probabilities of which we denote

using p, will take the ontic state λ to be a determination of

y (as in Sec. V A). In fact, it is constructed from the given

model, which we denote by the usual p, by coarse-graining

together all ontic states that assign the same outcome y to MF .

In particular we set

pP∗ (λ = y) :=
∫

�

pMF
(y|λ)pP∗ (λ)dλ, (H10)

so that we have the same predictions for an immediate mea-

surement of MF . We also set

pMW (x, λ′ = y′|λ = y)

:=
1

pP∗ (λ = y)

∫

�

pMF ◦MW
(x, y′|λ)pMF

(y|λ)pP∗ (λ)dλ.

(H11)

This gives
∑

y

pMW (x, λ′ = y′|λ = y)pP∗ (λ = y)

=
∫

�

pMF ◦MW
(x, y′|λ)pP∗ (λ)dλ, (H12)

so that we also have the same predictions for MW followed

by MF . From Eq. (H11), we can calculate

pMW
(x|λ = y)

=
∑

y′

pMW (x, λ′ = y′|λ = y)

=
1

pP∗ (λ = y)

∫

�

pMW
(x|λ)pMF

(y|λ)pP∗ (λ)dλ, (H13)
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and hence, since the given model satisfies Eq. (34),

∫ 0

−∞
pMW

(x|λ = y)dx

=
1

pP∗ (λ = y)

∫

�

[∫ 0

−∞
pMW

(x|λ)dx

]

pMF
(y|λ)pP∗ (λ)dλ

� p̃
1

pP∗ (λ = y)

∫

�

pMF
(y|λ)pP∗ (λ)dλ = p̃, (H14)

giving Eq. (B1) as claimed. Finally, we can calculate

pM(λ′ = y′|λ = y)

=
∫ ∞

−∞
pMW (x, λ′ = y′|λ = y)dx

=
1

pP∗ (λ = y)

∫

�

pM̃F
(y′|λ)pMF

(y|λ)pP∗ (λ)dλ. (H15)

Then since the given model is measurement noncontextual

for Eq. (35) we find

pM(λ′ = y′|λ = y)

=
1

pP∗ (λ = y)

[

(1 − pd )

∫

�

pMF
(y′|λ)pMF

(y|λ)pP∗ (λ)dλ

+ pd

∫

�

pMD
(y′|λ)pMF

(y|λ)pP∗ (λ)dλ

]

= (1 − pd )δy′y + pdpMD (λ′ = y′|λ = y), (H16)

where for the first term we have used outcome determinism to

find pMF
(y′|λ)pMF

(y|λ) = δy′y′ pMF
(y|λ) and in the second we

have defined

pMD (λ′ = y′|λ = y)

:=
1

pP∗ (λ = y)

∫

�

pMD
(y′|λ)pMF

(y|λ)pP∗ (λ)dλ. (H17)

Hence we satisfy transformation noncontextuality for

Eq. (2). �

We believe the converse also holds but we do

not strictly require that here, since we have already

proven that our inequality follows from transformation

noncontextuality.

Thanks to this result we get the following algo-

rithmic formulation for Lemma 1: consider the vertices

pMi
(m|κ ) from Appendix H 1 that satisfy the additional con-

straint pM1
(m|κ ) ∈ {0, 1}. To determine a set of achievable

p(m|Mi, Pk ) we consider outcome-deterministic measurement

noncontextual models given as

p(m|Mi, P∗) =
∑

κ

p∗(κ )pMi
(m|κ ), (H18)

where the sum is over the vertices κ satisfying the deter-

minism constraint. Of the 16 vertices determined before,

we find that 12 satisfy it and store them in 12 × 8 matrix

mncdetverticeswvN.

We now project the 12 vertices down to the subspace

that corresponds to the operational quantities we want to

relate via noncontextuality: p−, pF . This subspace corre-

sponds to the coordinates x1 and x5: x1 is for the effect

[1|MF ] (hence related to pF ), and x5 for [X = −1, y = 1|M]

(hence related to p−). This is done by restricting the 12

vertices to the coordinates (x1, x5) and constructing their

convex hull to yield the reduced polytope. This reduced

polytope, named mncreduceddetpolyN, constructed in this

subspace R
2 has 4 vertices. By trying several values of pd

and p̃ we find they are of the form (0, 0), (0, p′
d ), (1, 0),

(1, p̃) where p′
d = min{pd , p̃}, which will equal pd for typical

parameters. The H-representation of the polytope is given

by x1, x5 � 0, x1 � 1, and x1
p̃−p′

d

p′
d

p̃
− x5

p′
d

p̃
+ 1

p̃
� 0. The last

inequality gives an operational constraint of p− � pF p̃ +
(1 − pF )p′

d = min{pF p̃ + (1 − pF )pd , p̃}, as expected from

Lemma 1.

3. Analysis of the inequality in Lemma 2

For this case no new tricks are required and so we very

closely follow [14]. If there is a measurement noncontextual

model then the observed statistics p(m|Mi, Pk ) can be written

as

p(m|Mi, Pk ) =
∑

κ

pk (κ )pMi
(m|κ ), (H19)

where we now sum over all 16 vertices {κ}. Preparation

noncontextuality applied to Eq. (H2) gives

q⊥ p1(κ ) + (1 − q⊥)p2(κ ) = q0 p3(κ ) + (1 − q0)p4(κ ),∀κ.

(H20)

We thus we arrive at the following formulation for The-

orem 4. In order for a noncontextual model to satisfy

the assumptions of Theorem 4 and reproduce the statistics

p(m|Mi, Pj ), the following constraints must be satisfied:

∀κ, j : p j (κ ) � 0, (H21)

∀ j :
∑

κ

p j (κ ) = 1, (H22)

∀κ : q⊥ p1(κ ) + (1 − q⊥)p2(κ )

−[q0 p3(κ ) + (1 − q0)p4(κ )] = 0, (H23)

∀i, j, m :
∑

κ

pMi
(m|κ )p j (κ ) = p(m|Mi, Pj ). (H24)

The problem can be solved by eliminating the variables

pi(κ ), i ∈ {1, 2, 3, 4}, κ ∈ {κ1, κ2, . . . , κ16}. Since we do not

care about all of the p(m|Mi, Pj ), for computational efficiency

we first take the 16 vertices of the polytope weakvalue-

spolysymbN and cull all the coordinates from them except

x1, x5. This is because we want to look at constraints from

noncontextuality on the quantities (pF ,CS, p−) which are a

function of these two coordinates alone.

Using the resulting set of 16 vertices projected in the

(x1, x5) subspace, denoted mncx1x5verticesN, as an input to

SageMath’s Polyhedron(), we obtain a 2-dimensional 5-vertex

polytope in R
2, denoted mncreducedpolyN. We keep the ver-

tices κ ′ of this polytope in a 5 × 2 matrix redvtxN.

The problem is now to eliminate p j (κ
′), j ∈

{1, 2, 3, 4}, κ ′ ∈ {κ ′
1, κ

′
2, . . . , κ

′
5}. Using Eq. (H23) we

can manually eliminate p1(κ ′) = 1
q⊥

[q0 p3(κ ′) + (1 −
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q0)p4(κ ′) − (1 − q⊥)p2(κ ′)] and arrive at the following

constraints:

∀κ ′,∀ j ∈ {2, 3, 4} : p j (κ
′) � 0, (H25)

∀κ ′ : q0 p3(κ ′) + (1 − q0)p4(κ ′) − (1 − q⊥)p2(κ ′) � 0,

(H26)

∀ j ∈ {2, 3, 4} :
∑

κ ′

p j (κ
′) = 1, (H27)

5
∑

i=1

p2(κ ′
i )κ ′

i (0) = p(1|M2, P2) ≡ pF , (H28)

5
∑

i=1

p2(κ ′
i )κ ′

i (1) = p(1|M4, P2) ≡ p−, (H29)

q0

(

5
∑

i=1

p3(κ ′
i )[1−κ ′

i (0)]

)

+(1 − q0)

(

5
∑

i=1

p4(κ ′
i )κ ′

i (0)

)

=CS.

(H30)

[Here κ ′
i (a) denotes the ath entry of vertex κ ′

i = (κ ′
i (0), κ ′

i (1)),

where i ∈ {1, 2, 3, 4, 5}, a ∈ {1, 2, 3}].
We now carry out the remaining eliminations

as follows. We construct the polytope of vectors

([p2(κ ′
i )]5

i=1, [p3(κ ′
i )]5

i=1, [p4(κ ′
i )]5

i=1, pF ,CS, p−) in R
18

subject to the above constraints. This is a 12-dimensional

polytope in R
18 with 45 vertices, denoted robustawvpolyN.

We project the vertices down to just the coordinates

(pF ,CS, p−) and construct a polytope with these as an in-

put to Polyhedron(). This results in the polytope named

redawvpolyN, a 3-dimensional polytope in R
3 with 10 ver-

tices.

FIG. 5. The noncontextuality tradeoff between p−, pF and CS for

pd = 1/4, p̃ = 1/2, q0 = q∗ = 1/2. The facet corresponding to (37)

is shown in black.

For a representative case of (q∗, q⊥, pd , p̃) = ( 1
2
, 1

2
, 1

4
, 1

2
)

the facets of this polytope include our noncontextuality in-

equality Eq. (C4): pF − 4CS − 4p− + 5 � 0 or

p− �
pF

2
+

1 − pF

4
+

(

1 −
1

2

)

1 − CS

1/2

= p̃pF + pd (1 − pF ) + (1 − p̃)
1 − CS

p∗
. (H31)

The overall tradeoff between (pF ,CS, p−) for this case is

depicted in Fig. 5.

We also tried many other values of (q∗, q⊥, pd , p̃). Equa-

tion (C4) always appeared as a facet, except when pd > p̃.
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