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Density functional theory maps an interacting Hamiltonian onto the Kohn-Sham Hamiltonian, an explicitly

free model with identical local fermion densities. Using the interaction distance, the minimum distance between

the ground state of the interacting system and a generic free-fermion state, we quantify the applicability and

limitations of the exact Kohn-Sham model in capturing the various properties of the interacting system. As

a by-product, this distance determines the optimal free state that reproduces the entanglement properties of

the interacting system as faithfully as possible. The parent Hamiltonian of the optimal free state identifies

a system that can determine the expectation value of any observable with controlled accuracy. This optimal

entanglement model opens up the possibility of extending the systematic applicability of auxiliary free models

into the nonperturbative, strongly correlated regimes.

DOI: 10.1103/PhysRevB.100.075133

I. INTRODUCTION

Undoubtably, interactions give rise to a wide range of

quantum phases of matter with intriguing and exotic prop-

erties, ranging from many-body localization [1] to the frac-

tional quantum Hall effect [2]. Nevertheless, the theoretical

investigation of interacting systems is often formidable due

to their complexity [3–5]. A possible approach in studying

interacting systems is to approximate them by free models

that offer a simpler and intuitive description. To this aim,

physicists, chemists, and material scientists alike often use

density functional theory (DFT) [6–9].

In its basic formulation, DFT uniquely maps a many-body

system to an auxiliary noninteracting one, known as the Kohn-

Sham (KS) model [10], which has the same ground-state

fermion density as the interacting system. In principle, DFT

ensures that any physical observable could be written as a

functional of such ground-state density; in practice, with few

exceptions, the forms of these functionals are unknown, and

so it is often the case that the KS model itself is directly

used as a noninteracting approximation to the many-body

system, and the properties of the latter are then estimated

by using the KS wave functions in lieu of the many-body

ones. Here, we consider the KS model in this acceptation. In

this sense, and even with its known limitations in the strong

correlation limit, the KS model has been used to estimate

many-body properties, such as band-structure calculations

[9,11], quantum work [12], and entanglement [13]. As an

attempt to further understand the entanglement properties of

*py11kp@leeds.ac.uk
†irene.damico@york.ac.uk

the KS model, current research focuses on certain models and

the ability of KS to reproduce specific entanglement measures

[13]. Alternatively, entanglement is used to enhance current

DFT methods in order to find accurate ground states for very

large system sizes [14]. However, it is not known how optimal

the KS model is within the set of all possible free-fermion

theories.

To quantify the applicability of the KS model we employ

the concept of interaction distance DF [15]. This distance

measures how far the ground state of a given system is

from the manifold of all free-fermion states in terms of their

quantum correlations across a geometric bipartition of the

state [15–17]. This should be contrasted to other approaches,

such as one-particle reduced density matrix [18], where a

restricted free-fermionic manifold is implicitly assumed. The

interaction distance also identifies the optimal free state, a

state with bipartite entanglement properties as close as pos-

sible to the interacting system.

We demonstrate that, in the perturbative (weak-interaction)

regime, if DF ≈ 0, then the KS ground state is close to the

optimal free state, where the optimal free state has an error in

determining any observable of the interacting system bounded

by DF . We also show that, away from the perturbative regime

the reliability of the exact KS model as an approximation to

the interacting model is limited to finding only the (exact)

local densities, whereas large errors are associated to other

quantities, such as the entanglement entropy, even if DF ≈ 0.

Such a situation may appear, e.g., where interactions “freeze”

some fermionic degrees of freedom used to build the KS

model. To describe the interacting model as faithfully as

possible in all coupling regimes, we introduce the “optimal

entanglement model,” with a Hamiltonian that has the opti-

mal free state as its ground state. We demonstrate that the

2469-9950/2019/100(7)/075133(8) 075133-1 ©2019 American Physical Society
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optimal entanglement model reproduces all the ground-state

properties of the interacting system with an error bounded by

DF , even in the strong-correlation regime. This characteristic

of the optimal entanglement model is not shared by the

KS or other free approximations, e.g., Hartree-Fock, where

restrictions over the form of the free-fermion Hamiltonian,

and/or the focus on optimizing quantities such as the particle

density or the energy, limits their ability to accurately capture

the entanglement resulting from strong interactions.

To exemplify this approach, we employ the Fermi-Hubbard

model restricted to L = 2 sites: the Hubbard dimer. Due to

its small system size, it is possible to analytically obtain the

ground state of the interacting model, and thus determine the

exact KS model and the optimal entanglement model. As a

result, we can obtain a closed form for the interaction distance

DF of the Hubbard dimer as a function of the interaction

coupling U , and identify the regimes where the KS and the

optimal entanglement models are good approximations to the

interacting system and where their application is limited. Our

analytical treatment demonstrates that for the Hubbard dimer,

the interaction distance behaves like DF ∝ U −3 + O(U −5)

for large U . Hence, in the strongly correlated regime the

ground state of the Hubbard dimer admits a free-fermion

description within an error that goes to zero as U −3. In

the following section we introduce DFT and the interaction

distance.

II. DENSITY FUNCTIONAL THEORY

AND THE KOHN-SHAM MODEL

Let us consider a Hamiltonian

Ĥ = K̂ + V̂ + Ŵ (1)

on a lattice, built from a kinetic energy operator K̂ , a local po-

tential operator V̂ =
∑L

j v j n̂ j , where n̂ j is the site-occupation

operator, and a particle-particle interaction operator Ŵ . At

the core of lattice DFT are the one-to-one correspondences

between the ground-state wave function |ψ〉, the correspond-

ing ground-state density 〈n̂ j〉 for j = 1, . . . , L, and the local

potential [19] of an L-site many-body system [11]. With

the ansatz of n and v representability, these correspondences

imply that there exists a unique noninteracting model, the

so-called Kohn-Sham model [10], which is subject to the same

kinetic operator and having the same ground-state density

as the original N-particle interacting system. Through this

model, the density, and then in principle all other physical

many-body properties [9], can be obtained. The KS Hamil-

tonian is given by

ĤKS = K̂ + V̂KS, (2)

where the potential V̂KS is a combination of the original one-

body potential V̂ , the Hartree potential, representing the clas-

sical electrostatic interaction, and the exchange-correlation

potential. The latter contains contributions from the many-

body interactions of the original system. Apart from relatively

simple systems, determining the KS model requires approx-

imations [9]. Nevertheless, it is a significantly simpler task

than solving the interacting system.

III. OPTIMAL FREE STATE AND OPTIMAL

ENTANGLEMENT MODEL

A. Interaction distance

Let us now consider the entanglement properties of an

interacting system. For a given bipartition into a region A

and the complement B of its ground state |ψ〉 the reduced

density matrix is ρ int = trB |ψ〉〈ψ |, that has eigenvalues {ρ int
k }

related to the entanglement spectrum by E int
k = − ln ρ int

k . The

entanglement entropy is defined as S(ρ int) = − tr ρ int ln ρ int =
−

∑M
k=1 ρ int

k ln ρ int
k , that is maximal Smax = ln M when the full

set of M entangled modes are equally weighted.

The interaction distance [15] of ρ int is defined as

DF (ρ int) = min
ρfree∈F

Dtr(ρ
int, ρfree), (3)

where Dtr(ρ, σ ) = 1
2

tr |ρ − σ | is the trace distance metric

between the reduced density matrices ρ and σ , and the

minimization is over the whole set F of possible Gaussian

states ρfree. This distance measures how distinguishable a

fermionic state is from being free in terms of its ground-

state correlations across a bipartition. It is often amenable to

analytical calculations [17] and it can be numerically evalu-

ated efficiently for one-dimensional (1D) interacting systems

with density matrix renormalization group (DMRG) methods

[15,16]. We denote by ρopt the optimal free density matrix

that minimizes the trace distance Dtr(ρ
int, ρfree), and thus

reproduces the entanglement properties of ρ int as faithfully

as possible. Its parent Hamiltonian is generally unknown and

may offer complementary information with respect to the KS

Hamiltonian that optimizes over the local fermion densities.

B. Bounding observables with DF

As the trace distance is the maximum distance over all

positive-operator-valued measures [20], we expect the state

that minimizes it over all free states to best approximate not

only its bipartite entanglement, but also all other observable

quantities. Consider the expectation value of an observable O

for two density matrices ρ and σ given by 〈O〉ρ = tr [Oρ] and

〈O〉σ = tr [Oσ ], respectively. To compare these expectation

values, we define their difference by the metric

dO(ρ, σ ) = |〈O〉ρ − 〈O〉σ |, (4)

which reduces to dO = | tr [O(ρ − σ )]|. Let us express ρ − σ

in its diagonal basis ρ − σ =
∑

k φk|φk〉〈φk|, where φk are the

eigenvalues of ρ − σ . Then, via direct substitution into dO,

we find that

dO =

∣

∣

∣

∣

∣

tr

[

O

∑

k

φk|φk〉〈φk|

]
∣

∣

∣

∣

∣

(5)

=

∣

∣

∣

∣

∣

∑

k

〈φk|O|φk〉φk

∣

∣

∣

∣

∣

(6)

�

∣

∣

∣

∣

∣

max
k

〈φk|O|φk〉
∑

k

φk

∣

∣

∣

∣

∣

= |Omax|

∣

∣

∣

∣

∣

∑

k

φk

∣

∣

∣

∣

∣

, (7)
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where Omax is the largest eigenvalue of the operator O in

absolute value. It then follows that

dO � |Omax|
∑

k

|φk| = |Omax| tr |ρ − σ |, (8)

where the final equality explicitly contains the definition of the

interaction distance when σ = ρopt. Therefore, when ρ = ρ int

and σ = ρopt the difference in expectation values are bounded

by the interaction distance, i.e.,

|〈O〉ρint − 〈O〉ρopt | � CODF , (9)

with CO = 1
2
|Omax| that depends only on the operator O.

As a result, the expectation value of any observable O with

respect to the ground state ρ int of the interacting system can be

reproduced by the optimal free state ρopt with an accuracy that

is controlled by DF . In contrast to Eq. (9), other methods aim

to optimally determine a single observable at the expense of

introducing unbounded error on the rest of the complementary

observables [21]. This is the case for DFT, as explicitly shown

for in Fig. 3.

C. Bounding density with DF

We would like now to compare the applicability of the KS

ground state and the optimal free state. Let us apply inequality

(9) to the local density of fermions O = n̂ j . For a state with

reduced density matrix ρ at site j we define n̂ j,ρ = tr(ρn̂ j ).

The “natural” metric [22], between ρ int and ρopt, on the metric

space of local densities over all sites is given by

Dn(ρ int, ρopt) =
∑

j

|n̂ j,ρint − n̂ j,ρopt |. (10)

To arrive at this definition from Eq. (9), we must sum over all

sites. Then, Eq. (9) becomes
∑

j

|〈n̂ j〉ρint − 〈n̂ j〉ρopt | �
∑

j

Cn̂ j
DF . (11)

The left-hand side of this equality is the definition of the

natural metric and the right-hand side consists of a constant

C =
∑

j Cn̂ j
multiplied by the interaction distance. The bound

reduces to

Dn(ρ int, ρopt) � CDF . (12)

Due to the key property of the Kohn-Sham model, that

〈n̂ j〉ρint = 〈n̂ j〉ρKS , the bound may be cast in terms of the

optimal and Kohn-Sham ground states

Dn(ρKS, ρopt) � CDF . (13)

Hence, the interaction distance bounds the density distance

between the KS and optimal free state. This bound implies that

for DF ≈ 0, e.g., in the perturbative regime, the optimal free

state has fermion densities that are very close to the densities

of the KS ground state.

D. Trace distance bounding in perturbative limit

We now investigate when the KS model reproduces also the

entanglement properties of the optimal entanglement model.

Assume that the density matrices are a continuous functional

of the fermion densities, e.g., when the system is in the

perturbative regime with no phase transitions caused by the

interactions. We can write nF = n + δn, with nF the ground-

state density of the optimal free state, n the ground-state

density of the interacting/KS model, and δn a small linear

response.

First consider the limit δn → 0. In this limit

Dtr(ρ
KS, ρopt ) → 0 and DF → 0, so that the inequality

above is satisfied by the equality 0 = C · 0. Next, consider

the linear response to be small and nonzero. From Eq. (13), it

can be seen that the density metric is bound by the interaction

distance. When DFT Hohenberg-Kohn–type theorems apply,

any property of a pure state interacting system described by a

Hamiltonian Ĥ = K̂ + Ŵ + V̂ can be written as a functional

of the system ground-state density. So, in particular, the

(nondiagonal) density matrix elements can also be written

as a functional of the ground-state density, and thus as a

functional of n and δn. For small δn, we can approximate

Dtr(ρ
opt, ρKS) through a Taylor expansion around δn = 0. Up

to O(δn2), the trace distance becomes

Dtr(ρ
KS, ρopt )[δn, n] ≈

δ2Dtr

δn2

∣

∣

∣

∣

δn=0

(δn)2 > 0, (14)

which holds due to δn = 0 being a minimum (and the trace

distance being a metric). Similarly, we can approximate the

density metric about the minimum:

Dn(ρKS, ρopt ) = Dn(ρKS, ρopt )[δn, n] (15)

≈
δ2Dn

δn2

∣

∣

∣

∣

δn=0

(δn)2 > 0. (16)

Using Eqs. (14) and (16), and up to higher orders than (δn)2

in δn, we can then write

Dtr(ρ
KS, ρopt )[δn, n] ≈ f (n)Dn(ρKS, ρopt ), (17)

where f (n) = δ2Dtr

δn2 |
δn=0

( δ2Dn

δn2 |
δn=0

)
−1

is a functional of n, but

for a given n it will be a number greater than zero. Using

Eq. (13) we then obtain

Dtr(ρ
KS, ρopt ) � f (n)CDF . (18)

Therefore, when the interaction distance is small, then ρopt

and ρKS are nearly overlapping and exhibit very similar en-

tanglement properties. Hence, in the perturbative regime for

DF ≈ 0 the KS model offers a way to constructively obtain

the optimal free state.

E. Triangle inequality

We now investigate the bipartite entanglement of the

model. We employ the triangular inequality of the trace dis-

tance metric between the interacting ρ int, the optimal free

ρopt, and the KS ρKS, reduced density matrices, as shown

in Fig. 1. As in the perturbative regime, the interaction dis-

tance provides an upper bound for Dtr(ρ
KS, ρopt) we have

Dtr(ρ
int, ρKS) � (1 + c)DF . Moreover, due to the optimality

of ρopt we have that DF also lower bounds Dtr(ρ
int, ρKS), thus

giving

DF � Dtr(ρ
int, ρKS) � (1 + c)DF . (19)

Hence, in the perturbative regime when DF ≈ 0 the KS model

faithfully reproduces all the properties of the interacting

075133-3
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Crossover region

ρopt

ρint
Small U

Large U
ρ

int

ρ
KS

Dtr(ρ
int, ρopt)

Dtr(ρ
int, ρKS)

U

ρKS

Dtr(ρ
int, ρaux)

F

Fρ
opt

FIG. 1. A schematic illustration of the distances between in-

teracting ρ int, optimal ρopt, and Kohn-Sham ρKS reduced density

matrices. Two free manifolds of Gaussian states, F and F ′, are

depicted with possibly different number of degrees of freedom.

For small interaction coupling U , ρ int is close to F , while as U

increases ρ ′ int
can be close to another manifold F ′. The direction

of equal local fermion densities identifies the KS model on F . In the

perturbative regime (small U ), when DF ≈ 0, then Dtr(ρ
int, ρKS) and

Dtr(ρ
KS, ρopt) are also small, as dictated by (19). When U is large,

then the state ρ ′int
can effectively admit an optimal free description

ρ ′opt
, with a different number of fermions than the one from the

perturbative regime. This change makes the Kohn-Sham model ρ ′KS

unsuitable for reproducing the entanglement properties of ρ ′ int
.

system, while a nonzero DF bounds the errors in determining

the entanglement properties of the interacting model. Away

from the perturbative regime it is possible that the upper

bound in (19) fails, by having ρKS far from ρ int even if DF ≈
0, as shown in Fig. 1. Nevertheless, ρopt would still provide a

faithful description of ρ int.

The parent Hamiltonian of the optimal free state can be

used to define a suitable auxiliary free model that identifies

the effective degrees of freedom of the interacting model for

all coupling regimes. When DF ≈ 0 such an auxiliary model

not only faithfully reproduces the entanglement properties of

the interacting model but, due to Eq. (9), it can also estimate

all of its observables, such as the local fermion densities.

This “optimal entanglement” model generalizes the KS model

that can fail to reproduce the entanglement properties even if

DF ≈ 0. In fact, strong interactions may not only change the

effective local fermion potential V̂ , but also the kinetic term

K̂ . To build this auxiliary model, one first needs to identify

the effective fermionic degrees of freedom that correspond to

the quantum correlations of the model. If DF ≈ 0 for strong

interactions, then the number of fermionic degrees of freedom

of the emerging free theory can be either the same or smaller

than the initial theory without the interaction term: interac-

tions could freeze some of the initial fermionic degrees of

freedom but they cannot increase their number. To exemplify

this procedure we apply it next to the Fermi-Hubbard model

at half-filling, restricted to L = 2 sites.

IV. FERMI-HUBBARD MODEL

The 1D Hubbard model [23] has successfully reproduced a

number of physical phenomena, including interaction-driven

quantum phase transitions [24]. In some limits it has exact

solutions [25,26] and has been studied via many numerical

techniques including DFT [11]. It comprises spin- 1
2

fermions

with a creation (annihilation) operator c
†
j,σ (c j,σ ) at site j and

spin σ ∈ {↑,↓}, with Hamiltonian

Ĥ =
∑

j, σ

[−J (c†
j,σ c j+1,σ + H.c.) + ν j n̂ j,σ ] + U

∑

j

n̂ j,↑n̂ j,↓,

(20)

where n̂ j,σ = c
†
j,σ c j,σ is the number operator, J is the tun-

neling strength, U is the onsite particle-particle interaction

strength, and ν j is the site-dependent potential. At half-filling

N↑ = N↓ = L/2, the model in the thermodynamic limit has

two phases: for U = 0 it is described by the Luttinger-liquid

phase, where local fermion densities are free to change, and

for U > 0 it is described by the Mott-insulator phase, where

local densities are frozen by Coulomb repulsion [24]. For

finite system sizes and with anisotropic local potentials, the

fluid phase extends into some small range of interaction

strengths, leading to a “crossover region.” Hence, it is an

ideal system to demonstrate the applicability of the optimal

entanglement model.

To study in detail the efficiency of the KS and the optimal

entanglement models in representing the interacting ground

state, we focus on the half-filled Hubbard dimer (L = 2). This

model enjoys analytical solutions for the ground state ρ int and

its energy E [27]. For this system size, the KS model can

be numerically determined exactly. We can also derive exact

solutions for the optimal free state of a four dimensional ρ int,

as is the case of the Hubbard dimer when restricted to zero

total spin subspace (see Appendix). As a result, the interaction

distance of the ground state in the strongly correlated regime

is given by

DF =
2J2

N

∣

∣

∣

∣

(U − �ν − E )2 − (U + �ν − E )2

(U − �ν − E )2

∣

∣

∣

∣

, (21)

where N = 4J2 + 2(U + �ν − E )2 + 4J2(U + �ν − E )2/

(U − �ν − E )2, �ν = ν1 − ν2 the asymmetry of local

potentials, and E is its energy eigenvalue. The large-U limit

expansion of (21) for constant �ν and J is given by

DF =
4J2�ν

U 3
+ O(U −5), (22)

demonstrating that the interaction distance rapidly approaches

zero as U increases, while it becomes truly free at U = ∞. In

conclusion, as deduced from (9), any observable has a ground-

state expectation value that can be approximated by the op-

timal free-fermion state with an error given by (22). More-

over, we can analytically determine the optimal entanglement

model, that reproduces exactly the entanglement spectrum

of the optimal free state in the insulating phase, where we

expect the exact KS model to become a bad approximation.

We analyze this in detail below.

075133-4
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0 5 10 15 20 25
U

0

5

10

15

20

25
μ

FIG. 2. Behavior of the chemical potential μ, for the L = 2 opti-

mal entanglement mode at half-filling, against interaction strength of

the interacting model U . This chemical potential imitates the affect of

interactions in the interacting model and its explicit form is a func-

tion of the optimal free-state entanglement spectrum. In the strong

interaction regime we find μ ≈ JU to a very good approximation.

Inset: a sketch of the auxiliary model described by Hamiltonian (23).

The system is built from two noninteracting chains, each with a

single spinless fermion. The dashed line shows the partitioning of

the system into subsystems A and B.

A. An optimal entanglement model for the

Hubbard dimer at half-filling

When the Hubbard model is restricted to two sites

at half-filling the Hilbert space is spanned by the ba-

sis {|↑↓, 0〉, |↑,↓〉, |↓,↑〉, |0,↑↓〉}, where the basis state

|x, y〉 = |x〉 ⊗ |y〉 corresponds to x fermions at the first site

and y fermions at the second with the indicated spin ↑ or

↓. Eigenstates of this Hamiltonian have both occupation and

spin degrees of freedom that can be varied by tuning the

tunneling and repulsive interaction strength. By observation of

the optimal free-state entanglement spectrum in the insulating

phase, found using the exact solutions from the Appendix, it

can be seen that there exists a double degeneracy.

In order to reproduce this optimal free entanglement spec-

trum, we construct an auxiliary model with two spinless

noninteracting fermions hopping on separate two-site chains.

Then, by appropriately tuning a chemical potential μ on a

single site to imitate the affect of interactions, it is possible

to match exactly the double degeneracy of the optimal free

entanglement spectrum. This is akin to DFT where interaction

effects are tuned through a potential to find accurate local

densities; however, here we tune a potential to produce the

optimal free entanglement spectrum that results in a controlled

error over all observable quantities, as shown in Eq. (9). Such

a spectrum can be reproduced by the following Hamiltonian:

Ĥaux = −J (c†
1c3 + c

†
3c1) − J (c†

2c4 + c
†
4c2) −

μ

2
c

†
1c1, (23)

where μ = 2[

√

ρ
opt

1

ρ
opt

2

−
√

ρ
opt

2

ρ
opt

1

] and (ρ
opt

1 , ρ
opt

2 ) are the two dis-

tinct optimal entanglement levels. The partition that returns

the desired spectrum separates sites 1,2 into subsystem A

and sites 3,4 into subsystem B. We note that (20) and (23)

have, at half-filling, the same number of degrees of freedom:

in particular, this means that the auxiliary system (23) can

0.0

0.2

0.4

D
tr
(ρ

,σ
) DF

Dtr(ρ
int, ρaux)

Dtr(ρ
int, ρKS)

0.0

0.2

D
n
(ρ

,σ
)

Dn(ρint, ρopt)

Dn(ρint, ρaux)

Dn(ρint, ρKS)

0 5 10 15 20 25
U

0.6

0.8

1.0

1.2

1.4

S
(ρ

)

S = ln 4

S = ln 2

S
(

ρint
)

S (ρopt)

S (ρaux)

S
(

ρKS
)

FIG. 3. (Top) Trace distance, (middle) natural metric, and (bot-

tom) entanglement entropy for the interacting ρ int, optimal ρopt,

KS ρKS, and auxiliary ρaux reduced density matrices, as a function

of the interaction coupling U , for L = 2, J = 1, total spin Sz =
0, and ν1 − ν2 = 0.5. In the perturbative limit the KS is a good

approximation to the optimal entanglement model which describes

spin- 1

2
free fermions. In the large-U limit the KS model fails to

reproduce entanglement, while both the optimal and auxiliary states

that describe spinless free fermions provide faithful representations

of the local densities (middle) and the entanglement entropy (bottom)

of the interacting system. For large U the entanglement entropy of

the KS model tends to S = ln 4 corresponding to the maximally

entangled state |ψ〉 = (|↑↓, 0〉 + |↑, ↓〉 + |↓, ↑〉 + |0, ↑↓〉)/2 while

the interacting, optimal, and auxiliary systems tend to S ≈ ln 2 that

correspond to |ψ〉 = (|↑, ↓〉 + |↓,↑〉)/
√

2, signaling the freezing of

double occupations due to interactions.

reproduce the overall behavior of both spin and charge degrees

of freedom of (20).

As the optimal free entanglement levels are functions of

the couplings of the interacting model we have that μ =
μ(J, ν j,U ). Further, as shown in Fig. 2, we observe a linear

behavior μ ≈ JU within the insulating phase. Armed with

an optimal entanglement model, we now present numerical

results demonstrating its applicability compared to the exact

KS model.

B. Numerical results

The behavior of the corresponding ground-state reduced

density matrices ρ int, ρKS, ρopt, and ρaux are given in Fig. 3.

Note that DF is negligible for all values of U away from

the critical region U ≈ J . Surprisingly, the KS ground state

closely approximates the optimal free state not only in the

perturbative, but also in the intermediate coupling regime,

U ∼ |J|, |ν j |, up to the crossover. Here, the trace distance

between these states is small, so the KS is both exact in

fermion density and also reproduces the ground-state correla-

tions of the optimal model accurately. In the strong coupling
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regime U ≫ |J|, |ν j |, the KS model fails to reproduce the

correlation properties of the optimal entanglement model. As

it still describes correlations between spinful free fermions, it

cannot accurately capture the entanglement of the interacting

model. This is in contrast to the optimal entanglement model

that, in that regime, is described by spinless free fermions.

These degrees of freedom faithfully capture the quantum cor-

relations of the interacting model, as shown in Fig. 3 (bottom).

Nevertheless, they only approximate its local densities, as

shown in Fig. 3 (middle), with an error that is bounded by

the value of DF , as dictated by Eq. (13). The local densities

identify the change of the degrees of freedom from one

optimal model to the other via the observed kink.

From the properties of the optimal free state we see that

the effect of the strong interactions, in the U → ∞ limit,

is to freeze the local fermion populations to n j = 1 as an

eigenvalue of the local density operator. This can be witnessed

by the behavior of the entanglement entropy S. In Fig. 3 we

observe that the KS model saturates to the value S = ln 4

due to both spin and population fluctuations. In contrast, the

interacting model has entanglement entropy that tends to S =
ln 2 as U → ∞, due to only spin correlations.

The interaction distance is approaching zero for large U ,

signaling that the spin correlations can be faithfully repro-

duced by free fermions. In this case, the optimal entanglement

model with Hamiltonian (23) faithfully reproduces both the

local densities as well as the correlation properties of the

interacting system, as shown in Fig. 3. Hence, unlike the KS

model, it provides a faithful representation of the interacting

theory.

To schematically present why the optimal entanglement

model succeeds in faithfully representing entanglement prop-

erties of the interacting system for large U , while the KS

model fails, we refer to the schematic in Fig. 1. From the

above analysis of the dimer model we observe that interac-

tions have the effect of moving the optimal free state from

describing free spinful fermions (manifold F) toward the

description of free spinless fermions (manifold F ′). Due to

the fixed form of the kinetic term of the KS Hamiltonian,

its corresponding reduced density matrix will always live

in F . By choosing the auxiliary model to optimize over

entanglement, its degrees of freedom can change from F to F ′

that better describes the interacting system at large couplings

U . Thus, the optimal entanglement model is able to reproduce

all the properties of the interacting system for all U , with an

error that is bounded by DF .

V. CONCLUSIONS

With the help of the interaction distance DF , we are able

to identify the free model that approximates the interacting

system by optimizing over the corresponding entanglement

properties. We demonstrate that when the interaction distance

is small, then the optimal entanglement model reproduces all

observables of the interacting system with accuracy bounded

by DF . As such, it provides an accurate modeling of the

low-energy behavior of the system [15,28]. The exact KS

model, on the other hand, finds local densities exactly for all

strengths of interactions, but can dramatically fail to obtain

entanglement features even when the interaction distance is

small. Motivated by these results we envisage that a method

inspired by DFT, where the optimization of the free model is

performed with respect to entanglement properties rather than

local densities, can faithfully approximate strongly interacting

systems.

The idea of optimizing DFT calculations over entangle-

ment is not entirely novel. The authors of [14] show that,

through a combination of DMRG and DFT, it is possible to

obtain an accurate approximations to three-dimensional (3D)

physical systems through 1D calculations. DMRG inherently

optimizes over entanglement and is advantageous here as

it allows one to approach the continuum limit faster than

through a direct study of a large strongly correlated physical

system. However, what we propose is unique as the optimal

entanglement model reproduces the interacting state within

the bound of the interaction distance.

To exemplify the diagnostic power of the interaction dis-

tance, we considered the Fermi-Hubbard dimer. By study-

ing its ground-state entanglement spectrum we identified the

small range of U ’s up to the crossover region where the KS

model approximates well the optimal entanglement model.

Beyond the crossover, and when in an insulating phase, the

KS model entanglement spectrum diverges from the optimal

entanglement model due to the fixed kinetic operator, as

evidenced by its entanglement entropy. The optimal entan-

glement model is defined to have the optimal free state as its

ground state. From it, it is possible to obtain all properties

within the bound of the interaction distance for any choice

of interaction strength. In future work, we aim to generalize

DFT with entanglement for larger system sizes of the Fermi-

Hubbard model.
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APPENDIX A: EXACT OPTIMAL FREE STATE

FOR A FOUR-LEVEL SYSTEM

By careful consideration of the interaction distance, we

may obtain a full analytical solution for the optimal free-

state entanglement levels, and for DF itself, for a four-level

system ρ int. A system of N single-particle entanglement levels

{ǫ j} has a (2N × 2N )-dimensional entanglement Hamiltonian

Ĥ
f

E , with 2N levels in the many-body entanglement spectrum

{E j}. Therefore, a free spectrum with four many-body levels

has two single-particle levels, ǫ1 and ǫ2, that build the full

spectrum. It is convenient to work with probability densi-

ties ρopt = e−Ĥ
f

E , allowing the single-particle energies to be
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reparametrized as b1 and b2. The free many-body spectrum

can then be built in the following way:

ρ
opt

1 =
(

1
2

+ b1

)(

1
2

+ b2

)

, ρ
opt

2 =
(

1
2

− b1

)(

1
2

+ b2

)

,

ρ
opt

3 =
(

1
2

+ b1

)(

1
2

− b2

)

, ρ
opt

4 =
(

1
2

− b1

)(

1
2

− b2

)

.

To ensure the spectrum is normalized, these levels are subject

to
∑

j ρ
opt
j = 1, along with 0 � b1 � b2 �

1
2

which fixes the

ordering to that of interacting spectrum: 0 � ρ
opt

4 � ρ
opt

3 �

ρ
opt

2 � ρ
opt

1 � 1.

As a first attempt to minimize the interaction distance, one

may directly differentiate Eq. (3) of the main text, having sub-

stituted in the definitions above, to find the stationary points

for some choice of parameters b1 and b2. These parameters

contain all of the information required to build the free many-

body entanglement spectrum, so it is our goal to find the set

that minimizes DF . In doing so, we find that the derivatives are

not defined in the regions ρ
opt
j = ρ int

j for any j. We also find

that second derivatives are always zero when ρ
opt
j �= ρ int

j , thus

defining a saddle point and not a minimum. The minimum

trace distance must therefore live on one of the boundary

curves ρ
opt
j = ρ int

j or an intersection of two or more curves. Of

course, it is the low-level entanglement spectrum that provides

important information about the system. Therefore, if it is

possible to match the low levels, then the optimal free state

will more faithfully represent the interacting system. In some

cases, however, the intersection between the low-level curves

does not fall within the normalized and ordered region. In

that case, the most faithful representation lies on the curve

b1 = b2.

An exhaustive analysis yields the following set of solutions

for the interaction distance, where the superscript “int” has

now been dropped on all ρ int
j :

DF =

{

2
√

ρ1 − 2ρ1 − ρ2 − ρ3, ifρ1 � (ρ1 + ρ2)2

∣

∣

ρ1ρ4−ρ2ρ3

ρ1+ρ2

∣

∣, otherwise

(A1a)

(A1b)

and the following set of free parameter solutions:

(b1, b2) =

{(√
ρ1 − 1

2
,
√

ρ1 − 1
2

)

, if ρ1 � (ρ1 + ρ2)2
(

ρ1−ρ2

2(ρ1+ρ2 )
, ρ1 + ρ2 − 1

2

)

, otherwise.
(A2a)

(A2b)

These exact solutions allow for an accurate study of the inter-

action distance without any error of numerical optimization.

The solutions (A1a) and (A1b) correspond to the cases where

it is not possible and possible to match the lowest two levels

of the entanglement spectrum, respectively.

In Fig. 4 we show an example of the boundary curves

for the interacting spectrum {ρ j} = { 1
3
, 1

3
, 1

3
, 0} that pro-

duces DF = 1
6
. We are able to deduce this solution by first

−0.50 −0.25 0.00 0.25 0.50
b1

−0.50

−0.25

0.00

0.25

0.50

b 2

ρ
opt
1 = ρint

1

ρ
opt
2 = ρint

2

ρ
opt
3 = ρint

3

ρ
opt
4 = ρint

4

b1 = b2

b1 = 0

b2 = 0.5

FIG. 4. Free parameter values b1, b2 that produce boundary

curves ρ
opt

j = ρ int
j (solid lines) for {ρ int

j } = { 1

3
, 1

3
, 1

3
, 0}. The dashed

lines enclose the normalized and ordered regions for the free spectra.

There are two points of intersection within the normalized and

ordered region. The intersection that matches better the low-level

entanglement spectrum will give the most faithful representation of

the interacting system. Thus, it is the b1, b2 pair at the intersection

between ρ
opt

1 = ρ int
1 and ρ

opt

2 = ρ int
2 that give the interaction distance

DF = 1

6
.

considering the condition ρ1 � (ρ1 + ρ2)2. For our set {ρ j},
this inequality is not satisfied so b1 �= b2 and the minimum

trace distance must therefore live at an intersection between

the ρ
opt

1 = ρ1 and ρ
opt

2 = ρ2 curves. The pair b1, b2 at this

intersection result in the interaction distance.

APPENDIX B: CLOSED-FORM SOLUTION

OF DF FOR HUBBARD DIMER

In agreement with the result in Ref. [27], for the Hubbard

dimer with Hamiltonian (20) of the main text [with H → H −
(ν1 + ν2) and J �= 0], we find the ground-state energy in the

half-filled, Sz = 0 sector to be

E = −
2

3
A cos(θ ) +

2U

3
(B1)

with A = [U 2 + 3�ν2 + 12J2]
1
2 and cos (3θ ) =

U (36J2−18�ν2+2U 2 )

2(12J2+3�ν2+U 2 )
3
2

. The corresponding state is

|ψ0〉 =
1

N
1
2

[

2J|↑↓, 0〉+a|↑,↓〉 − a|↓,↑〉 + 2J
a

b
|0,↑↓〉

]
1
2

(B2)

with a = (U + �ν − E ), b = (U − �ν − E ), and N =
[4J2 + 2a2 + 4J2 a2

b2 ].

From the ground state, Eq. (B2), it is possible to extract the

entanglement spectrum of the interacting model. This can be

used together with Eqs. (A1a) and (A2b) to produce an exact

optimal free entanglement spectrum and the corresponding

interaction distance. In the strongly correlated regime, when

U ≫ J,�ν, the interaction distance is

DF =
2J2

N

∣

∣

∣

∣

b2 − a2

b2

∣

∣

∣

∣

. (B3)
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