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A Join-Based Hybrid Parameter for

Constraint Satisfaction⋆

Robert Ganian1, Sebastian Ordyniak2, and Stefan Szeider1

1 Algorithms and Complexity group, TU Wien, Vienna, Austria
2 Algorithms group, University of Sheffield, Sheffield, UK

Abstract. We propose joinwidth, a new complexity parameter for the Constraint Satisfaction Problem (CSP). The

definition of joinwidth is based on the arrangement of basic operations on relations (joins, projections, and pruning),

which inherently reflects the steps required to solve the instance. We use joinwidth to obtain polynomial-time

algorithms (if a corresponding decomposition is provided in the input) as well as fixed-parameter algorithms (if no

such decomposition is provided) for solving the CSP.

Joinwidth is a hybrid parameter, as it takes both the graphical structure as well as the constraint relations that appear

in the instance into account. It has, therefore, the potential to capture larger classes of tractable instances than purely

structural parameters like hypertree width and the more general fractional hypertree width (fhtw). Indeed, we show

that any class of instances of bounded fhtw also has bounded joinwidth, and that there exist classes of instances of

bounded joinwidth and unbounded fhtw, so bounded joinwidth properly generalizes bounded fhtw.

We further show that bounded joinwidth also properly generalizes several other known hybrid restrictions, such as

fhtw with degree constraints and functional dependencies. In this sense, bounded joinwidth can be seen as a unifying

principle that explains the tractability of several seemingly unrelated classes of CSP instances.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computational problem that provides a common

framework for many theoretical and practical applications in AI and other areas of Computer Science [34]. An instance

of the CSP consists of a collection of variables that must be assigned values subject to constraints, where each constraint

is given in terms of a relation whose tuples specify the allowed combinations of values for specified variables.

CSP is NP-complete in general. A central line of research is concerned with the identification of classes of instances

for which the CSP can be solved in polynomial time. The two main approaches are to define classes either in terms

of the constraint relations that may occur in the instance (syntactic restrictions; see, e.g., [4]), or in terms of the

constraint hypergraph associated with the instance (structural restrictions; see, e.g., [20]). There are also several

prominent proposals for utilizing simultaneously syntactic and structural restrictions called hybrid restrictions (see, e.g.,

[30,7,8,6]).

Grohe and Marx [22] showed that CSP is polynomial-time tractable whenever the constraint hypergraph has bounded

fractional hypertree width, which strictly generalizes previous tractability results based on hypertree width [17] and

acyclic queries [36]. Bounded fractional hypertree width is the most general known structural restriction that gives rise

to polynomial-time tractability of CSP.

As bounded fractional hypertree width is a structural restriction that is completely oblivious to the relations present

in the instance, it is natural to expect that one can modify fractional hypertree width to take the shape of relations

into account. This is indeed possible, but does not lead to a compact notion that is well-suited for further theoretical

analysis.

Our contribution: Joinwidth. We propose a new hybrid restriction for the CSP, the width parameter joinwidth, which is

based on the arrangement of basic relational operations along a tree, and not on hypertree decompositions. Interestingly,

as we will show, our notion strictly generalizes (i) bounded fractional hypertree width, (ii) recently introduced extensions

of fractional hypertree width with degree constraints and functional dependencies [26], (iii) various prominent hybrid

restrictions [5], as well as (iv) tractable classes based on functionality and root sets [10,9,5]. Hence, joinwidth gives rise

to a common framework that captures several different tractable classes considered in the past. Moreover, none of the

other hybrid parameters that we are aware of [8], such as classes based on the Broken Triangle Property or topological
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minors [7,6] and directional rank [30], generalize fractional hypertree width and hence all of them are either less general

or orthogonal to joinwidth.

Joinwidth is based on the arrangement of the constraints on the leaves of a rooted binary tree which we call a join

decomposition. The join decomposition indicates the order in which relational joins are formed, where one proceeds in

a bottom-up fashion from the leaves to the root, labeling a node by the join of the relations at its children, and projecting

away variables that do not occur in relations to be processed later. Join decompositions are related to (structural) branch

decompositions of hypergraphs, where the hyperedges are arranged on the leaves of the tree [2,21,32]. Related notions

have been considered in the context of query optimization [1,24]. However, the basic form of join decompositions

using only relational joins and projections is still a weak notion that cannot be used to tackle instances of bounded

fractional hypertree width efficiently. We identify a further operation that—in conjunction with relational joins and

projections—gives rise to the powerful new concept of joinwidth that captures and extends the various known tractable

classes mentioned. This third operation prunes away all the tuples from an intermediate relation that are inconsistent

with a relation to be processed later.

A join decomposition of a CSP instance specifies the order in which the above three operations are applied, and its

width is the smallest real number w such that each relation appearing within the join decomposition has at most mw

many tuples (where m is the maximum number of tuples appearing in any constraint relation of the CSP instance under

consideration). The joinwidth of a CSP instance is the smallest width over all its join decompositions. Observe that

joinwidth is a hybrid parameter—it depends on both the graphical structure as well as the constraint relations appearing

in the instance.

Exploiting Joinwidth. Similarly to other width parameters, also the property that a class of CSP instances has bounded

joinwidth can only be exploited for CSP solving if a decomposition (in our case a join decomposition) witnessing the

bounded width is provided as part of the input. While such a join decomposition can be computed efficiently from a

fractional hypertree decomposition or when the CSP instance belongs to a tractable class based on functionality or root

sets mentioned earlier, we show that computing an optimal join decomposition is NP-hard in general, mirroring the

corresponding NP-hardness of computing optimal fractional hypertree decompositions [15].

However, this obstacle disappears if we move from the viewpoint of polynomial-time tractability to fixed-parameter

tractability (FPT). Under the FPT viewpoint, one considers classes of instances I that can be solved by a fixed-parameter

algorithm—an algorithm running in time f(k)|I|O(1), where k is the parameter (typically the number of variables

or constraints), |I| is the size of the instance, and f is a computable function [16,18,19]. We note that it is natural to

assume that k is much smaller than |I| in typical cases. The use of fixed-parameter tractability is well motivated in the

CSP setting; see, for instance, Marx’s discussion on this topic [29].

Here, we obtain two single-exponential fixed-parameter algorithms for instances of bounded joinwidth (i.e.,

algorithms with a running time of 2O(k) · |I|O(1)): one where k is the number of variables, and the other when k is the

number of constraints. In this setting, we do not require an associated join decomposition to be provided with the input.

Under the FPT viewpoint, Marx [29] previously introduced the structural parameter submodular width (bounded

submodular width is equivalent to bounded adaptive width [28]), which is strictly more general than fractional hypertree

width, but when bounded only gives rise to fixed-parameter tractability and not polynomial-time tractability of CSP.

In fact, Marx showed that assuming the Exponential Time Hypothesis [23], bounded submodular width is the most

general purely structural restriction that yields fixed-parameter tractability for CSP. However, as joinwidth is a hybrid

parameter, it can (and we show that it does) remain bounded even on instances of unbounded submodular width—and

the same holds also for the recently introduced extensions of submodular width based on functional dependencies and

degree bounds [26].

Roadmap. After presenting the required preliminaries on (hyper-)graphs, CSP, and fractional hypertree width in

Section 2, we introduce and motivate join decompositions and joinwidth in Section 3. We establish some fundamental

properties of join decompositions, provide our tractability result for CSP for the case when a join decomposition

is given as part of the input, and then obtain our NP-hardness result for computing join decompositions of constant

width. Section 4 provides an in-depth justification for the various design choices underlying join decompositions;

among others, we show that the pruning step is required if the aim is to generalize fractional hypertree width. Our

algorithmic applications for joinwidth are presented in Section 5: for instance, we show that joinwidth generalizes

fractional hypertree width, but also other known (and hybrid) parameters such as functionality, root sets, and Turan sets.

Section 6 contains our fixed-parameter tractability results for classes of CSP instances with bounded joinwidth. Finally,

in Section 7, we compare the algorithmic power of joinwidth to the power of algorithms which rely on the unrestricted

use of join and projection operations.
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2 Preliminaries

We will use standard graph terminology [12]. An undirected graph G is a pair (V,E), where V or V (G) is the vertex

set and E or E(G) is the edge set. All our graphs are simple and loopless. For a tree T we use L(T ) to denote the set of

its leaves. For i ∈ N, we let [i] = {1, . . . , i}.

2.1 Hypergraphs, Branchwidth and Treewidth

Similarly to graphs, a hypergraph H is a pair (V,E) where V or V (H) is its vertex set and E or E(H) ⊆ 2V is its set

of hyperedges. We denote by H[V ′] the hypergraph induced on the vertices in V ′ ⊆ V , i.e., the hypergraph with vertex

set V ′ and edge set { e ∩ V ′ : e ∈ E }. Every subset F of E(H) defines a cut of H , i.e., the pair (F,E(H) \ F ). We

denote by δH(F ) (or just δ(F ) if H is clear from the context) the set of cut vertices of F in H , i.e., δ(F ) contains all

vertices incident to both an edge in F and an edge in E(H) \ F . Note that δ(F ) = δ(E(H) \ F ).
Let H be a hypergraph. A branch-decomposition of H is a pair B = (B, β), where B is a rooted binary tree

and β : L(B) → E(H) is a bijection between the leaves L(B) of B and the edges of H . For simplicity, we write

β(B′) to denote the set {β(l) : l ∈ L(B′) } of edges for a subtree B′ of B. The branchwidth of an edge e of B,

denoted by bw(e), is equal to |δH(β(B′))|, where B′ is any of the two components of B − e. The branchwidth of B is

equal to maxe∈E(B) bw(e) and the branchwidth of H , denoted by bw(H), is the minimum branchwidth of any of its

branch-decompositions. We say that B is a linear branch decomposition if every inner node of B is adjacent to at least

one leaf node and define the linear branchwidth of H , denoted by lbw(H), as the minimum branchwidth over all linear

branch decompositions of H .

A tree-decomposition of H is a pair T = (T, (Bt)t∈V (T )), where T is a tree and Bt ⊆ V (H) for every t ∈ V (T )
such that: (1) for every e ∈ E(H) there is a t ∈ V (T ) such that e ⊆ Bt and (2) for every v ∈ V (H) the set

{ t ∈ V (T ) : v ∈ Bt } induces a non-empty subtree of T . The treewidth of T is equal to maxt∈V (T )(|Bt| − 1), and the

treewidth of H is the minimum treewidth of any tree-decomposition of H . We say that T is a path-decomposition if T
is a path and define the pathwidth of H as the minimum treewidth of any path-decomposition of H .

2.2 The Constraint Satisfaction Problem

Let D be a set and n and n′ be natural numbers. An n-ary relation on D is a subset of Dn. For a tuple t ∈ Dn, we

denote by t[i], the i-th entry of t, where 1 ≤ i ≤ n. For two tuples t ∈ Dn and t′ ∈ Dn′

, we denote by t ◦ t′, the

concatenation of t and t′.
An instance of a constraint satisfaction problem (CSP) I is a triple 〈V,D,C〉, where V is a finite set of variables

over a finite set (domain) D, and C is a set of constraints. A constraint c ∈ C consists of a scope, denoted by S(c),
which is a completely ordered subset of V , and a relation, denoted by R(c), which is a |S(c)|-ary relation on D. We let

|c| denote the number of tuples in R(c) and |I| = |V |+ |D|+
∑

c∈C |c|. Without loss of generality, we assume that

each variable occurs in the scope of at least one constraint.

A solution for I is an assignment θ : V → D of the variables in V to domain values (fromD) such that for every con-

straint c ∈ C with scope S(c) = (v1, . . . , v|S(c)|), the relation R contains the tuple θ(S(c)) = (θ(v1), . . . , θ(v|S(c)|)).
We denote by SOL(I) the constraint containing all solutions of I, i.e., the constraint with scope V = {v1, . . . , vn},

whose relation contains one tuple (θ(v1), . . . , θ(vn)) for every solution θ of I. The task in CSP is to decide whether

the instance I has at least one solution or in other words whether SOL(I) 6= ∅. Here and in the following we will for

convenience (and with a slight abuse of notation) sometimes treat constraints like sets of tuples.

For a variable v ∈ S(c) and a tuple t ∈ R(c), we denote by t[v], the i-th entry of t, where i is the position of v
in S(c). Let V ′ be a subset of V and let V ′′ be all the variables that appear in V ′ and S(c). With a slight abuse of

notation, we denote by S(c) ∩ V ′, the sequence S(c) restricted to the variables in V ′ and we denote by t[V ′] the tuple

(t[v1], . . . , t[v|V ′′|]), where S(c) ∩ V ′ = (v1, . . . , v|V ′′|).
Let c and c′ be two constraints of I. We denote by S(c) ∪ S(c′), the ordered set (i.e., tuple) S(c) ◦ (S(c′) \ S(c)).

The (natural) join between c and c′, denoted by c ⋊⋉ c′, is the constraint with scope S(c) ∪ S(c′) containing all tuples

t ◦ t′[S(c′) \ S(c)] such that t ∈ R(c), t′ ∈ R(c′), and t[S(c) ∩ S(c′)] = t′[S(c) ∩ S(c′)]. The projection of c to V ′,

denoted by πV ′(c), is the constraint with scope S(c) ∩ V ′, whose relation contains all tuples t[V ′] with t ∈ R(c). We

note that if c contains at least one tuple, then projecting it onto a set V ′ with V ′ ∩ S(c) = ∅ results in the constraint

with an empty scope and a relation containing the empty tuple (i.e., a tautological constraint). On the other hand, if
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R(c) is the relation containing the empty tuple, then every projection of c will also result in a relation containing the

empty tuple.

For a CSP instance I = 〈V,D,C〉 we sometimes denote by V (I), D(I), C(I), and ♯tup(I) its set of variables V ,

its domain D, its set of constraints C, and the maximum number of tuples in any constraint relation of I, respectively.

For a subset V ′ ⊆ V , we will also use I[V ′] to denote the sub-instance of I induced by the variables in V ′ ⊆ V , i.e.,

I[V ′] = 〈V ′, D, {πV ′(c) : c ∈ C }〉. The hypergraph H(I) of a CSP instance I = 〈V,D,C〉 is the hypergraph with

vertex set V and edge set {S(c) : c ∈ C }.

It is well known that for every instance I and every instance I
′ obtained by either (1) replacing two constraints

in C(I) by their natural join or (2) adding a projection of a constraint in C(I), it holds that SOL(I) = SOL(I′). As a

consequence, SOL(I) can be computed by performing, e.g., a sequence of joins over all the constraints in C.

2.3 Fractional Hypertree Width

Let H be a hypergraph. A fractional edge cover for H is a mapping γ : E(H) → R such that
∑

e∈E(H)∧v∈e γ(e) ≥ 1

for every v ∈ V (H). The weight of γ, denoted by w(γ), is the number
∑

e∈E(H) γ(e). The fractional edge cover

number of H , denoted by fec(H), is the smallest weight of any fractional edge cover of H .

A fractional hypertree decomposition T of H is a triple T = (T, (Bt)t∈V (T ), (γt)t∈V (T )), where (T, (Bt)t∈V (T ))
is a tree decomposition [33,13] of H and (γt)t∈V (T ) is a family of mappings from E(H) to R such that for every

t ∈ V (T ), it holds that γt is a fractional edge cover for H[Bt]. We call the sets Bt the bags and the mappings γt the

fractional guards of the decomposition. The width of T is the maximum w(γt) over all t ∈ V (T ). The fractional

hypertree width of H , denoted by fhtw(H), is the minimum width of any fractional hypertree decomposition of H .

Finally, the fractional hypertree width of a CSP instance I, denoted by fhtw(I), is equal to fhtw(H(I)).

Proposition 1 Let I be a CSP instance with hypergraph H and let T = (T, (Bt)t∈V (T ), (γt)t∈V (T )) be a fractional

hypertree decomposition of H of width at most ω. For every node t ∈ V (T ) and every subset B ⊆ Bt, it holds that

|SOL(I[B])| ≤ (♯tup(I))
ω .

Proof. It follows from the definition of fractional hypertree width that γt is a fractional edge cover for H[Bt] of width

at most ω for every t ∈ V (T ). Since fractional edge covers are heriditary, γt is also a fractional edge cover for H[B]
of width at most ω for every B ⊆ Bt. Moreover, it is shown in [22, Lemma 3], that any CSP instance I

′ has at most

(♯tup(I
′))fec(H(I′)) solutions; note that [22, Lemma 3] actually only states that I′ has at most (|I′|)fec(H(I′)) solutions,

however, the slightly stronger bound of (♯tup(I
′))fec(H(I′)) follows immediately from the proof of [22, Lemma 3]. Hence,

because fec(I[B]) ≤ ω, we obtain that I[B] has at most (♯tup(I))
ω solutions. ⊓⊔

3 Join Decompositions and Joinwidth

This section introduces two notions that are central to our contribution: join decompositions and joinwidth. In the

following, let us consider an arbitrary CSP instance I = 〈V,D,C〉.

Definition 2 A join decomposition for I is a pair (J, ̺), where J is a rooted binary tree and ̺ is a bijection between

the leaves L(J) of J and C.

Let j be a node of J . We denote by Jj the subtree of J rooted at j and we denote by X(j), V (j), V (j), and S(j) the

(unordered) sets { ̺(ℓ) : ℓ ∈ L(Jj) },
⋃

c∈X(j) S(c),
⋃

c 6∈X(j) S(c), and V (j) ∩ V (j), respectively; infuitively, X(j)

is the set of constraints that occur in the subtree rooted at j, V (j) is the set of variables that occur in the scope of

constraints in X(j), V (j) is the set of variables that occur in the scope of constraints not in X(j), and S(j) is the set of

variables that occur in V (j) and V (j). In some cases, we will also consider linear join decompositions, which are join

decompositions where every inner node is adjacent to at least one leaf.

Semantics of Join Decompositions. Intuitively, every internal node of a join decomposition represents a join operation

that is carried out over the constraints obtained for the two children; in this way, a join decomposition can be seen as

a procedure for performing joins, with the aim of determining whether SOL(I) is non-empty (i.e., solving the CSP

instance I). Crucially, the running time of such a procedure depends on the size of the constraints obtained and stored by

the algorithm which performs such joins. The aim of this subsection is to formally define and substantiate an algorithmic

procedure which uses join decompositions to solve CSP.
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The Naive Approach. A naive way of implementing the above idea would be to simply compute and store the natural

join at each node of the join decomposition and proceed up to the root; see for instance the work of [3]. Formally, we

can recursively define a constraint Cnaive(j) for every node j ∈ V (J) as follows. If j is a leaf, then Cnaive(j) = ̺(j).
Otherwise Cnaive(j) is equal to Cnaive(j1) ⋊⋉ Cnaive(j2), where j1 and j2 are the two children of j in J . It is easy to see

that this approach can create large constraints even for very simple instances of CSP: for example, at the root r of T it

holds that SOL(I) = Cnaive(r), and hence Cnaive(r) would have superpolynomial size for every instance of CSP with a

superpolynomial number of solutions. In particular, an algorithm which computes and stores Cnaive(j) would never run

in polynomial time for CSP instances with a superpolynomial number of solutions.

A Better Approach A more effective way of joining constraints along a join decomposition is to only store projections

of constraints onto those variables that are still relevant for constraints which have yet to appear; this idea has been

used, e.g., in algorithms which exploit hypertree width [17]. To formalize this, let Cproj(j) be recursively defined

for every node j ∈ V (T ) as follows. If j is a leaf, then Cproj(j) = πV (j)(̺(j)). Otherwise Cproj(j) is equal to
(

πV (j)(Cproj(j1) ⋊⋉ Cproj(j2)
)

), where j1 and j2 are the two children of j in J . In this case, I is a YES-instance if

and only if Cproj(r) does not contain the empty relation. Clearly, for every node j of J it holds that Cproj(j) has at

most as many tuples as Cnaive(j), but can have arbitrarily fewer tuples; in particular, an algorithm which uses join

decompositions to compute Cproj in a bottom-up fashion can solve CSP instances in polynomial time even if they have a

superpolynomial number of solutions (see also Observation 8).

However, the above approach still does not capture the algorithmic power offered by dynamically computing joins

along a join decomposition. In particular, similarly as has been done in the evaluation algorithm for fractional edge

cover [22, Theorem 3.5], we can further reduce the size of each constraint Cproj(j) computed in the above procedure by

pruning all tuples that would immediately violate a constraint c in I (and, in particular, in C \ C(j)). To formalize this

operation, we let prune(c) denote the pruned constraint w.r.t. I, i.e., prune(c) is obtained from c by removing all tuples

t ∈ R(c) such that there is a constraint c′ ∈ C with t[S(c′)] /∈ πS(c)(c
′). This leads us to our final notion of dynamically

computed constraints: for a node j, we let C(j) = prune(Cproj(j)). We note that this, perhaps inconspicuous, notion

of pruning is in fact critical—without it, one cannot use join decompositions to efficiently solve instances of small

fractional hypertree width or even small fractional edge cover. A more in-depth discussion on this topic is provided in

Section 4.

We can now proceed to formally define the considered width measures.

Definition 3 Let J = (J, ̺) be a join decomposition for I and let j ∈ V (J). The joinwidth of j, denoted jw(j), is the

smallest real number ω such that |C(j)| ≤ (♯tup(I))
ω , i.e., ω = log♯tup(I) |C(j)|. The joinwidth of J (denoted jw(J )) is

then the maximum jw(j) over all j ∈ V (J). Finally, the joinwidth of I (denoted jw(I)) is the minimum jw(J ) over all

join decompositions J for I.

In general terms, an instance I has joinwidth ω if it admits a join decomposition where the number of tuples of the

produced constraints never increases beyond the ω-th power of the size of the largest relation in I. Analogously as

above, we denote by ljw(I) the minimum joinwidth of any linear join decomposition of a CSP instance I.

Example 4 Let N ∈ N and consider the CSP instance I having three variables a, b, and c and three constraints x, y,

and z with scopes (a, b), (b, c), and (a, c), respectively. Assume furthermore that the relations of all three constraints

are identical and contain all tuples (1, i) and (i, 1) for every i ∈ [N ]. Refer also to Figure 1 for an illustration of the

example. Then |x| = |y| = |z| = ♯tup(I) = 2N − 1 and due to the symmetry of I any join-tree J of I has the same

joinwidth, which (as we will show) is equal to 1. To see this consider for instance the join-tree J that has one inner

node j joining x and y and a root node r joining C(j) and z. Then jw(ℓ) = 1 for any leaf node ℓ of J . Moreover

|C(j)| = |prune(Cproj(j))| = |z| = ♯tup(I) since the pruning step removes all tuples from Cproj(j) that are not in z
and consequently C(r) = z and jw(J ) = 1. Note that in this example jw(I) = 1 < fhtw(I) = 3/2.

Finally, we remark that one could in principle also define joinwidth in terms of a (rather tedious and technically

involved) variant of hypertree decompositions. However, the inherent algorithmic nature of join-trees makes them much

better suited for the definition of joinwidth.

Properties of Join Decompositions. Our first task is to formalize the intuition behind the constraints C(j) computed

when proceeding through the join tree.
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x y

j z

r

a b

1 1
1 2
1 3
2 1
3 1

C(x)

b c

1 1
1 2
1 3
2 1
3 1

C(y)

a b c

1 1 1
1 1 2
1 1 3
2 1 1
2 1 2
2 1 3
3 1 1
3 1 2
3 1 3
1 2 1
1 3 1

Cnaive(j)

a c

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

Cproj(j)

a c

1 1
1 2
1 3
2 1
3 1

C(j) = prune(Cproj(j))
= C(z) = C(r)

Fig. 1: The join decomposition given in Example 4 for N = 3 together with the intermediate constraints obtained for the node j.

Lemma 5 Let (J, ̺) be a join decomposition for I = 〈V,D,C〉 and let j ∈ V (J). Then C(j) = πV (j)(SOL(I′)),

where I
′ = I[V (j)].

Proof. We prove the lemma by leaf-to-root induction along J . If j is a leaf such that ̺(j) = c, then C(j) is the

constraint obtained from c by projecting onto V (j) and then applying pruning with respect to I. Crucially, pruning c
w.r.t. I′ produces the same result as pruning c w.r.t. I. Since pruning cannot remove tuples which occur in SOL(I′),
each tuple in SOL(I′) must also occur in C(j) (as a projection onto V (j)). On the other hand, consider a tuple α
in C(j) and assume for a contradiction that α is not present in πV (j)(SOL(I′)). Since variables outside of V (j) do

not occur in the scopes of constraints other than c, this means that there would exist a constraint c′ in I
′ which is not

satisfied by an assignment corresponding to α—but in that case α would be removed from C(j) via pruning. Hence

C(j) = πV (j)(SOL(I′)) holds for every leaf in T .

For the induction step, consider a node j with children j1 and j2 (with their corresponding instances being I
′
1 and

I
′
2, respectively), and recall that C(j) is obtained from C(j1) ⋊⋉ C(j2) by projecting onto V (j) and then pruning (w.r.t.

I or, equivalently, w.r.t. I′). We will also implicitly use the fact that V (j) ⊆ V (j1)∪ V (j2) and V (j) = V (j1)∪ V (j2).
First, consider for a contradiction that there exists a tuple β in SOL(I′[V (j)]) which does not occur in C(j). Clearly,

β could not have been removed by pruning, and hence this would mean that there exists no tuple in C(j1) ⋊⋉ C(j2)
which results in β after projection onto V (j); in particular, w.l.o.g. we may assume that every tuple in C(j1) differs

from β in (the assignment of) at least one variable. However, since β occurs in SOL(I′[V (j)]), there must exist at

least one tuple, say β′, which occurs in SOL(I′), and consequently there exists a tuple in SOL(I′1) which matches β
in (the assignment of) all variables. At this point, we have reached a contradiction with the inductive assumption that

SOL(I′1[V (j1)]) = C(j1).
For the final case, consider a tuple γ in C(j) and assume for a contradiction that γ is not present in πV (j)(SOL(I′)).

This means that there exists at least one constraint, say c′, in πV (j)(SOL(I′)) which would be invalidated by (an

assignment corresponding to) γ. Let us assume that c′ occurs in the subtree rooted in j2, and let γ1 be an arbitrary

“projection” of γ onto V (j1). Since V (j1) ⊇ S(c′), this means that γ1 would have been removed from C(j1) by

pruning; in particular, we see that there exists no tuple γ1 in C(j1) which could produce γ in a join, contradicting our

assumptions about γ. By putting everything together, we conclude that indeed C(j) = πV (j)(SOL(I′)). ⊓⊔

Next, we show how join decompositions can be used to solve CSP.

Theorem 6 CSP can be solved in time O(|I|2ω+4) provided that a join decomposition of width at most ω is given in

the input.

Proof. Let J = (J, ̺) be the provided join decomposition of width ω for I. As noted before, the algorithm for solving

I computes C(j) for every j ∈ V (J) in a bottom-up manner. Since J has exactly 2|C| − 1 nodes, it remains to analyse
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the maximum time required to compute C(j) for any node of J . If j is a leaf, then C(j) = prune(πS(j)(̺(j))) and

since the time required to compute the projection P = πS(j)(̺(j)) from ̺(j) is at most O(♯tup(I)|S(j)|) and the time

required to compute the pruned constraint prune(P ) from P is at most O(|C|(♯tup(I))
2|S(j)|), we obtain that C(j) can

be computed in time O(|C|(♯tup(I))
2|S(j)|) ∈ O(|I|4). Moreover, if j is an inner node with children j1 and j2, then

C(j) = prune(πS(j)(C(j1) ⋊⋉ C(j2))) and since we require at most O((♯tup(I))
2ω|S(j1) ∪ S(j2)|) time to compute

the join Q = C(j1) ⋊⋉ C(j2) from C(j1) and C(j2), at most O((♯tup(I))
2ω|S(j)|) time to compute the projection

P = πS(j)(Q) from Q, and at most O(|C|(♯tup(I))
2ω+1 · |S(j)|) time to compute the pruned constraint prune(P )

from P , we obtain O(|C|(♯tup(I))
2ω+1 · |S(j1) ∪ S(j2)|) = O(|I|2ω+3) as the total time required to compute C(j).

Multiplying the time required to compute C(j) for an inner node j ∈ V (J) with the number of nodes of T yields the

running time stated in the lemma. ⊓⊔

Computing Join Decompositions. Next, let us address the problem of computing join decompositions of bounded

joinwidth, formalized as follows.

ω-JOIN DECOMPOSITION

Input: A CSP instance I.

Question: Compute a join decomposition for I of width at most ω, or correctly determine that jw(I) > ω.

We show that ω-JOIN DECOMPOSITION is NP-hard even for width ω = 1. This is similar to fractional hypertree

width, where it was only very recently shown that deciding whether fhtw(I) ≤ 2 is NP-hard [15], settling a question

which had been open for about a decade. Our proof is, however, entirely different from the corresponding hardness

proof for fractional hypertree width and uses a reduction from the NP-complete BRANCHWIDTH problem [35].

Theorem 7 1-JOIN DECOMPOSITION is NP-hard, even on Boolean CSP instances.

Proof. We will reduce from the well-established NP-complete BRANCHWIDTH problem, which given a graph G and

an integer ω asks, whether G has branchwidth at most ω. Let (G,ω) be an instance of the BRANCHWIDTH problem.

We will first show how to construct a ternary CSP instance I = (V,D,C) such that bw(G) ≤ ω if and only if

jw(I) ≤ log|V (G)|+2 |V (G)|+ ω ≤ 2; we will then later explain how to adapt the construction of I to make its domain

boolean and to reduce the required joinwidth to 1. Let V (G) = {v1, . . . , vn}. We set:

– V = V (G) ∪ {a},

– D = {1, · · · , n},

– for every e = {vi, vj} ∈ E(G), I has a constraint ce with scope (a, vi, vj) whose relation R(ce) contains every

tuple t such that:

• t[a] ∈ {1, · · · , n},

• for l ∈ {i, j}, it holds that t[vl] ∈ {1, 2} if t[a] = l and t[vl] = 1 otherwise.

Note that ♯tup(I) = n+2. Since I can clearly be constructed in polynomial time it only remains to show that bw(G) ≤ ω
if and only if jw(I) ≤ logn+2(n+ ω) ≤ 2.

Towards showing the forward direction, let B = (B, β) be a branch decomposition for G of width at most ω.

We claim that J = (B, ̺), where ̺(l) = cβ(l) for every l ∈ L(B), is a join decomposition for I of width at most

logn+2(n+ ω). Consider any node j ∈ V (B), then S(j) = δ(Bj)∪ {a}, moreover, the constraint C(j) contains every

tuple t such that:

– t[a] ∈ {1, · · · , n},

– for every vi ∈ S(j) \ {a}, it holds that t[vi] ∈ {1, 2} if t[a] = i and t[vi] = 1 otherwise.

Hence jw(j) = log♯tup(I) |C(j)| = logn+2(n + |δ(j)|) ≤ logn+2(n + ω). Since this holds for every j ∈ V (J), we

obtain that jw(J ) = logn+2(n+ ω), as required.

Towards showing the reverse direction, let J = (J, ̺) be a join decomposition for I of width at most logn+2(n+ω).
We claim that B = (J, β), where β(l) = e if ̺(l) = ce for every l ∈ L(B), is a branch decomposition for G of width at

most ω. Consider any node j ∈ V (J), then δ(Bj) = S(j) \ {a}, moreover, the constraint C(j) contains every tuple t
such that:

– t[a] ∈ {1, · · · , n},

– for every vi ∈ S(j) \ {a}, it holds that t[vi] ∈ {1, 2} if t[a] = i and t[vi] = 1 otherwise.
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Hence |C(j)| = n+ |δ(j)|, which because |C(j)| ≤ (♯tup(I))
log♯tup(I)

(n+ω) = n+ ω implies that |δ(j)| ≤ ω. Since

this holds for every node j ∈ V (J), we obtain that bw(G) ≤ ω, as required. The completes the first part of the proof.

We will now show how to adapt the construction of I in such a way that bw(G) ≤ ω if and only jw(I) ≤ 1. The idea

is to artificially increase ♯tup(I) from n+ 2 to n+ ω without changing the properties of I too much. To achieve this

we simply introduce a new variable b with domain {1, . . . , n+ ω} and add the complete constraint c with scope (b).
It is easy to see that the reduction still works for this slightly modified CSP instance and moreover we obtain that

bw(G) ≤ ω if and only if jw(J ) = logn+ω n+ ω = 1.

Finally, it is easy to convert I into a boolean CSP instance by replacing the variables a and b with log n respectively

log n+ ω boolean variables. ⊓⊔

Partial Join Decompositions. Our final task in this section is to introduce the concept of partial join decompositions,

which will serve as a useful tool in later sections. Let I = (V,D,C) be a CSP instance and let J = (J, ̺) be a join

decomposition for I. We say that J ′ = (Jj , ̺j) is a partial join decomposition of J if j ∈ V (J) and ̺j is the restriction

of ̺ to L(Jj). Note that the semantics of J ′, i.e., the notions C(j) as well as jw(j) (for every node j ∈ V (Jj), are

independent of the concrete join decomposition J , but only depend on J ′ and I. We therefore say that J ′ is a partial

join decomposition for I covering the constraints in C ′ ⊆ C if ̺(L(Jj)) = C ′; assuming that the semantics for every

node j ∈ V (Jj) are defined as if J ′ would be part of an arbitrary join decomposition for I.

4 Justifying Joinwidth

Below, we substantiate the use of both pruning and projections in our definition of join decomposition. In particular, we

show that using pruning and projections allows the joinwidth to be significantly lower than if we were to consider joins

carried out via Cnaive or Cproj. More importantly, we show that join decompositions without pruning do not cover CSP

instances with bounded fractional edge cover (and by extension bounded fractional hypertree width). To formalize this,

let jwnaive(I) and jwproj(I) be defined analogously as jw(I), with the distinction being that these measure the width in

terms of Cnaive and Cproj instead of C.

We also justify the use of trees for join decompositions by showing that there is an arbitrary difference between

linear join decompositions (which precisely correspond to simple sequences of joins) and join decompositions.

Observation 8 For every integer ω there exists a CSP instance Iω such that jwproj(Iω) ≤ 1, but jwnaive(Iω) ≥ ω.

Proof. Consider the CSP instance Iω with variables x, v1, . . . , vω and for each i ∈ [ω] a constraint ci with scope {x, vi}
containing the tuples 〈0, 1〉 and 〈0, 0〉. Since SOL(Iω) contains 2ω tuples, it follows that every join decomposition with

root r must have |C(r)naive| = (♯tup(I))
ω = 2ω tuples, hence jwnaive(Iω) ≥ ω.

On the other hand, consider a linear join decomposition which introduces the constraints in an arbitrary order. Then

for each inner node j, it holds that S(j) = {x} and in particular Cproj(j) contains a single tuple (0) over scope {x}. We

conclude that jwproj(Iω) ≤ 1. ⊓⊔

Towards showing that linear joinwidth differs from joinwidth in an arbitrary manner, we will use the following

lemma, which establishes a tight relationship between the (linear) joinwidth of a CSP instance and the branchwidth of

its hypergraph when all constraints of the CSP instance are complete, i.e., their relations contain all possible tuples.

Lemma 9 Let I = 〈V,D,C〉 be CSP instance that has only complete constraints. Then jw(I) = bw(H(I))/2 and

ljw(I) = lbw(H(I)).

Proof. Let I = 〈V,D,C〉 be the given CSP instance with hypergraphH = H(I). First note that any join decomposition

J = (J, ̺) for I is also a branch decomposition for H , whose width is equal to maxj∈V (J) |S(j)|. Conversely, any

branch decomposition of H is also a join decomposition for I. Moreover, because all constraints of I are complete,

we have that C(j) is equal to the complete constraint on |S(j)| variables for every node j in a join decomposition

J = (J, ̺) for I. Hence,

jw(I) = max
j∈V (J)

log♯tup(I |C(j)|

= max
j∈V (J)

logd2(d|S(j)|)

= max
j∈V (J)

|S(j)|/2 = bw(H)/2

The proof for the linear versions of join decompositions and branch decompositions is analogous. ⊓⊔
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Using the above Lemma we are now ready to establish an arbitrary difference between join decompositions and

linear join decompositions.

Proposition 10 For every integer ω there exists a CSP instance Iω such that jw(Iω) ≤ 1 but ljw(Iω) ≥ ω.

Proof. It is well known that trees have branchwidth one but can have arbitrarily high pathwidth [11]. Since pathwidth

is known to be within a constant factor of linear branchwidth [31], we obtain that for every ω, there is a tree Tω with

bw(Tω) ≤ 1 but lbw(Tω) ≥ ω. Now let Iω be the (boolean) CSP instance containing only full binary constraints

such that H(Iω) = T2ω. Then because of Lemma 9 we have that jw(Iω) = bw(T2ω)/2 = 0.5 ≤ 1 and ljw(Iω) =
lbw(T2ω)/2 = ω, as required. ⊓⊔

The next proposition is by far the most technically challenging of the three, and requires notions which will only be

introduced later on. For this reason, we postpone its proof to the end of Subsection 5.1. The proposition shows not only

that pruning can significantly reduce the size of stored constraints, but also that without pruning (i.e., with projections

alone) one cannot hope to generalize structural parameters such as fractional hypertree width.

Proposition 11 For every integer ω there exists a CSP instance Iω with hypergraph Hω such that jw(Iω) ≤ 2 and

fec(Hω) ≤ 2 (and hence also fhtw(Hω) ≤ 2), but jwproj(Iω) ≥ ω.

We believe that the above results are of general interest, as they provide useful insights into how to best utilize the

joining of constraints.

5 Tractable Classes

Here, we show that join decompositions of small width not only allow us to solve a wide range of CSP instances, but

also provide a unifying reason for the tractability of previously established structural parameters and tractable classes.

5.1 Fractional Hypertree Width

We begin by showing that joinwidth is a strictly more general parameter than fractional hypertree width. We start with a

simple example showing that the joinwidth of a CSP instance can be arbitrarily smaller than its fractional hypertree

width. Indeed, this holds for any structural parameter ψ measured purely on the hypergraph representation, i.e., we say

that ψ is a structural parameter if ψ(I) = ψ(H(I)) for any CSP instance I. Examples for structural parameters include

fractional and generalized hypertree width, but also submodular width [29].

Observation 12 Let ψ be any structural parameter such that for every ω there is a CSP instance with ψ(I) =
ψ(H(I)) ≥ ω. Then for every ω there is a CSP instance Iω with jw(Iω) ≤ 1 but ψ(Iω) ≥ ω.

Proof. Let Hω be any hypergraph with ψ(Hω) ≥ ω. Then the CSP instance Iω obtained from Hω by replacing every

hyperedge with an empty constraint satisfies ψ(Iω) ≥ ω and jw(Iω) ≤ 1. ⊓⊔

Note that it is straightforward to construct more interesting examples that also show an arbitrary difference between

joinwidth and the recently introduced extensions of fractional hypertree width (or even submodular width) with degree

constraints and functional dependencies [26]. For instance, when comparing joinwidth with fractional hypertree width,

there are many possibilities to fill the constrains in such a way that the join-width remains low and every such possibility

leads to a new example showing the difference between these two width measures. To ensure this it would, e.g., be

sufficient to ensure that every set of constrains that appear together in a bag of a fractional hypertree decomposition

have small join-width; one such example is given in Proposition 11. The following theorem shows that, for the case of

fractional hypertree width, the opposite of the above observation is not true.

Theorem 13 For every CSP instance I, it holds that jw(I) ≤ fhtw(I).

Proof. Let H be the hypergraph of the given CSP instance I = (V,D,C) and let T = (T, (Bt)t∈V (T ), (γt)t∈V (T ))
be an optimal fractional hypertree decomposition of H . We prove the theorem by constructing a join decomposition

J = (J, ̺) for I, whose width is at most fhtw(H). Let α : E(H) → V (T ) be some function from the edges ofH to the
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nodes of T such that e ⊆ Bα(e) for every e ∈ E(H). Note that such a function always exists, because (T, (Bt)t∈V (T ))
is a tree decomposition of H . We denote by α−1(t) the set { e ∈ E(H) : α(e) = t }.

The construction of J now proceeds in two steps. First we construct a partial join decomposition J t = (J t, ̺t) for

I that covers only the constraints in α−1(t), for every t ∈ V (T ). Second, we show how to combine all the partial join

decompositions into the join decomposition J for I of width at most fhtw(H).
Let t ∈ V (T ) and let J t = (J t, ̺t) be an arbitrary partial join decomposition for I that covers the constraints

in α−1(t). Let us consider an arbitrary node j ∈ V (J t). By Lemma 5, we know that C(j) = πS(j)(SOL(I[V (j)])).
Moreover, the fact that

⋃

e∈α−1(t) e ⊆ Bt implies V (j) ⊆ Bt. Since |πS(j)(SOL(I[V (j)]))| ≤ |SOL(I[V (j)])|, by

invoking Proposition 1 we obtain that |C(j)| ≤ |SOL(I[V (j)])| ≤ ♯tup(I)
fhtw(I). Hence we conclude that jw(j) ≤

fhtw(H).
Next, we show how to combine the partial join decompositions J t into the join decomposition J for I. We will

do this via a bottom-up algorithm that computes a (combined) partial join decomposition F t = (F t, ρt) (for every

node t ∈ V (T )) that covers all constraints in α−1(Tt) =
⋃

t∈V (T ) α
−1(t). Initially, we set F l = J l for every leaf

l ∈ L(T ). For a non-leaf t ∈ V (T ) with children t1, . . . , tℓ in T , we obtain F t from the already computed partial join

decompositions F t1 , . . . ,F tℓ as follows. Let P be a path on the new vertices p1, . . . , pℓ and let rt and rt1 , . . . , rtℓ be

the root nodes of J t and F t1 , . . . , F tℓ , respectively. Then we obtain F t from the disjoint union of P , J t, F t1 , . . . , F tℓ

after adding an edge between rt and p1 and an edge between rti and pi for every i with 1 ≤ i ≤ ℓ and setting pℓ to be

the root of F t. Moreover, ρt is obtained as the combination (i.e., union) of the functions ̺t, ρt1 , . . . , ρtℓ . Observe that

because α assigns every hyperedge to precisely one bag of T , it holds that every constraint assigned to Tt is mapped to

precisely one leaf of F t. At this point, all that remains is to show that F t has joinwidth at most fhtw(H).
Since we have already argued that |SOL(I[V (j)])| ≤ ♯tup(I)

fhtw(H) for every node j of J t and moreover we can

assume that the same holds for every node j of F t1 , . . . ,F tℓ by the induction hypothesis, it only remains to show

that the same holds for the nodes p1, . . . , pℓ. First, observe that since (T, (Bt)t∈V (T )) is a tree decomposition of H ,

it holds that S(rt), S(rt1), . . . , S(rtℓ) ⊆ Bt. Indeed, consider for a contradiction that, w.l.o.g., there exists a variable

x ∈ S(rt1) \ Bt. Then there must exist a hyperedge e1 ∋ x mapped to t1 or one of its descendants, and another

hyperedge ei ∋ x mapped to some node t′ that is neither t1 nor one of its descendants. But then both Bt′ and Bt1 must

contain x, and so Bt must contain x as well. Moreover, since S(pi) ⊆ (S(rt)∪ S(rt1)∪ · · · ∪ S(rtℓ)) for every i ∈ [ℓ],
it follows that S(pi) ⊆ Bt as well.

Finally, recall that C(pi) = πS(pi)(SOL(I[V (pi)])) by Lemma 5, and observe that |πS(pi)(SOL(I[V (pi)]))| ≤
|SOL(I[S(pi)])|. Then by Proposition 1 combined with the fact that S(pi) ⊆ Bt, we obtain |C(pi)| ≤ |SOL(I[S(pi)])| ≤
♯tup(I)

fhtw(H), which implies that the width of pi is indeed at most fhtw(H). ⊓⊔

Since we have now established the relationship between joinwidth and fractional hypertree width, we can conclude

this subsection with a proof of Proposition 11 (cf. Section 4).

Proof (Proof of Proposition 11). The proof uses an adaptation of a construction given by Atserias, Grohe and Marx [3,

Theorem 7]. Let m = 4ω + 1 and n =
(

2m
m

)

. The CSP instance Iω has:

– one variable vS for every S ⊆ [2m] with |S| = m,

– one constraint ci for every i with 1 ≤ i ≤ 2m with scope { vS : i ∈ S }. The relation of ci contains the following

tuples t for every v ∈ S(ci): every tuple t such that t[v] ∈ [n] and t[u] = 1 for every u 6= v,

– domain [n].

Let H be the hypergraph of Iω. Note first that H has n vertices, 2m edges, every edge of H has size
(

2m−1
m−1

)

= n/2,

every vertex of H occurs in exactly m edges, and every set of at most m edges of H misses at least one vertex, i.e., the

union of at most m edges of H misses at least one vertex from V (H). Note furthermore that ♯tup(Iω) =
n2

2 .

It is shown in [3, Theorem 4] that H has a fractional edge cover of size at most 2. This is witnessed by the

mapping γ : E(H) → R defined by setting γ(e) = 1/m for every e ∈ E(H). Because every variable vS of Iω is

in the scope of exactly m constraints (i.e. the constraints in { ci : i ∈ S }), γ is indeed a fractional edge cover and

because
∑

e∈E(H) γ(e) = 2m(1/m) = 2 it has size exactly 2. Note that because fec(H) ≥ fhtw(H), we obtain from

Theorem 13 that jw(Iω) ≤ 2.

It remains to show that jwproj(Iω) ≥ ω. Consider an arbitrary join decomposition J = (J, ̺) of Iω. Let j be a

node of J such that ⌈m/2⌉ ≤ |L(Jj)| < m. Note that such a node j always exists due to the following well-known

combinatorial argument.
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First we show that there is a node j′ of J such that |L(Jj′)| ≥ m but |L(Jj′′)| < m for every child j′′ of j′

in J . Namely, j′ can be found by going down the tree J starting from the root and choosing a child j′′ of j′ with

|L(Jj′′)| ≥ m, as long as such a child j′′ exists. Then letting j be the child of j′ maximizing |L(Jj)| implies that

⌈m/2⌉ ≤ |L(Jj)| < m, as required.

We claim that jwproj(j) ≥ ω. First note that S(j) = V (j). This is because |C(Iω)\X(j)| ≥ 2m−(m−1) = m+1

and hence V (j) =
⋃

c∈(C(Iω)\X(j)) S(c) = V (Iω); this is because S∩{ i : ci ∈ C(Iω)\X(j) } 6= ∅ for every variable

vS of Iω. Consequently, Cproj(j) is equal to the join of all constraints in X(j). We show next that there are at least

⌈m/2⌉ variables that appear in the scope of exactly one constraint in X(j), which implies that Cproj(j) contains every

of the n⌈m/2⌉ tuples on these variables. To see this let O be the set of all elements o ∈ [2m] for which co ∈ X(j) and

let O be the set of all the remaining elements in [2m]. Then |O| ≥ ⌈m/2⌉ and |O| ≥ 2m − (m − 1) = m + 1. Let

S′ be any set of exactly m− 1 elements from O and for every o ∈ O, let So be equal to {o} ∪ S′. Then vSo
is in the

scope of exactly one constraint in C(j) (i.e., the constraint co and hence there are at least ⌈m/2⌉ variables that occur in

the scope of exactly one constraint in X(j), i.e., the variables {So : o ∈ O }. Hence Cproj(j) contains at least n⌈m/2⌉

tuples, which because ♯tup(Iω) = n2/2 implies that jwproj(j) is at least ⌈m/2⌉/2 ≥ m/4 ≥ ω, as required. ⊓⊔

5.2 Functionality and Root Sets

Consider a CSP instance I = 〈V,D,C〉 with n = |V |. We say that a constraint c ∈ C is functional on variable v ∈ V
if c does not contain two tuples that differ only at variable v; more formally, for every t and t′ ∈ R(c) it holds that if

t[v] 6= t′[v], then there exists a variable z ∈ S(c) distinct from v such that t[z] 6= t′[z]. The instance I is then called

functional if there exists a variable ordering v1 < · · · < vn such that, for each i ∈ [n], there exists a constraint c ∈ C
such that π{v1,...,vi}(c) is functional on vi. Observe that every CSP instance that is functional can admit at most 1
solution [5]; this restriction can be relaxed through the notion of root sets, which can be seen as variable sets that form

“exceptions” to functionality. Formally, a variable set Q is a root set if there exists a variable ordering v1 < · · · < vn
such that, for each i ∈ [n] where vi 6∈ Q, there exists a constraint c ∈ C such that π{v1,...,vi}(c) is functional on vi; we

say that Q is witnessed by the variable order v1 < · · · < vn.

Functionality and root sets were studied for Boolean CSP [10,9]. Cohen et al. [5] later extended these notions to the

CSP with larger domains. Our aim in this section is twofold:

– generalize root sets through the introduction of constraint root sets;

– show that bounded-size constraint root sets (and also root sets) form a special case of bounded joinwidth.

Before we proceed, it will be useful to show that one can always assume the root set to occur at the beginning of the

variable ordering.

Observation 14 Let Q be a root set in I witnessed by a variable order α, assume a fixed arbitrary ordering on Q, and

let the set V ′ = V (I) \ Q be ordered based on the placement of its variables in α. Then Q is also witnessed by the

variable order α′ = Q ◦ V ′.

Proof. We need to show that Q is a root set witnessed by α′ = v1 < · · · < v|V |, i.e., that for each i in k < i ≤ |V |
there exists a constraint c ∈ C such that π{v1,...,vi}(c) is functional on vi. Consider an arbitrary such variable vi, and

recall that since Q is witnessed by α, there must exist a constraint c such that c′ = πQi∪Vi
(c) is functional on vi, where

V ′
i and Qi are, respectively, the elements of Q and V ′ which occur before vi in α. Now, observe that the constraint

c∗ = πQ∪Vi
(c) = π{v1,...,vi}(c) must also be functional on vi—indeed, for each pair of tuples t, t′ in R(c∗), either

t[vi] = t′[vi], or t[vi] 6= t′[vi] and there exists a variable z ∈ Qi ∪ Vi (and hence also in the scope of c∗) such that

t[z] 6= t′[z]. ⊓⊔

For ease of presentation, we will say that I is k-rooted if k is the minimum integer such that I has a root set of

size k. It is easy to see, and also follows from the work of David [9] and Cohen et al. [5], that for every fixed k the

class of k-rooted CSP instances is polynomial-time solvable: generally speaking, one can first loop through and test

all variable-subsets of size at most k to find a root Q, and then loop through all assignments Q → D to get a set of

functional CSP instances, each of which can be solved separately in linear time.

While even 1-rooted CSP instance can have unbounded fractional hypertree width (see also the discussion of Cohen

et al. [5]), the class of k-rooted CSP instances for a fixed value k is, in some sense, not very robust. Indeed, consider

the CSP instance W = 〈{v1, . . . , vn}, {0, 1}, {c}〉 where c ensures that precisely a single variable is set to 1 (i.e., its
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relation can be seen as an n× n identity matrix). In spite of its triviality, it is easy to verify that W is not k-rooted for

any k < n− 2.

Let us now consider the following alternative to measuring the size of root sets in a CSP instance I. A constraint set

P is a constraint-root set if
⋃

c∈P S(c) is a root set, and I is then called k-constraint-rooted if k is the minimum integer

such that I has a constraint-root set of size k. Since we can assume that each variable occurs in at least one constraint,

every k-rooted CSP also has a constraint-root set of size at most k; on the other hand, the aforementioned example of

W shows that an instance can be 1-constraint-rooted while not being k-rooted for any small k. The following result,

which we prove by using join decompositions and joinwidth, thus gives rise to strictly larger tractable classes than those

obtained via root sets:

Proposition 15 For every fixed k ∈ N, every k-constraint-rooted CSP instance has joinwidth at most k and can be

solved in time |I|O(k).

Proof. Consider a CSP instance I with a constraint-root set P of size k. We argue that I has a linear join decomposition

of width at most k where the elements of P occur as the leaves farthest from the root. Indeed, consider the linear join

decomposition (J, ̺) constructed in a bottom-up manner, as follows. First, we start by gradually adding the constraints

in P as the initial leaves. At each step after that, consider a node j which is the top-most constructed node in the join

decomposition. By definition, there must exist a variable v and a constraint c such that π⋃
c∈P S(c)(c) is functional on

v. Moreover, this implies that |π⋃
c∈P S(c)(c) ⋊⋉ C(j)| ≤ |C(j)|, and thus |c ⋊⋉ C(j)| ≤ |C(j)|. Hence this procedure

does not increase the size of constraints at nodes after the initial k constraints, immediately resulting in the desired

bound of k on the width of (J, ̺).
To complete the proof, observe that a join decomposition with the properties outlined above can be found in time at

most |I|O(k): indeed, it suffices to branch over all k-element subsets of C(I) and test whether the union of their scopes

is functional using, e.g., the result of Cohen et al. [5, Corollary 1]. Once we have such a join decomposition, we can

solve the instance by invoking Theorem 6. ⊓⊔

As a final remark, we note that the class of k-constraint rooted CSP instances naturally includes all instances which

contain k constraints that are in conflict (i.e., which cannot all be satisfied at the same time).

5.3 Other Tractable Classes

Here, we identify some other classes of tractable CSP instances with bounded joinwidth. First of all, we consider CSP

instances such that introducing their variables in an arbitrary order always results in a subinstance with polynomially

many solutions. In particular, we call a CSP instance I hereditarily k-bounded if for every subset V ′ of its variables it

holds that |SOL(I[V ′])| ≤ ♯tup(I)
k. Examples of hereditarily k-bounded CSP instances include k-Turan CSPs [5, page

12] and CSP instances with fractional edge covers of weight k [22].

Proposition 16 The class of hereditarily k-bounded CSP instances has joinwidth at most k and can be solved in time

at most O(|I|k).

Proof. Consider an arbitrary linear join decomposition (J, ̺). By definition, for each j ∈ V (J) it holds that

|SOL(I[V (j)])| ≤ ♯tup(I)
k. Then |πV (j)(SOL(I[V (j)]))| ≤ ♯tup(I)

k, and by Lemma 5 we obtain |C(j)| ≤ ♯tup(I)
k, as

required. ⊓⊔

Another example of a tractable class of CSP instances that we can solve using joinwidth are instances where

all constraints interact in a way which forces a unique assignment of the variables. In particular, we say that a CSP

I = 〈V,D,C〉 is unique at depth k if for each constraint c ∈ C there exists a fixing set C ′ ⊆ C such that c ∈ C ′,

|C ′| ≤ k, and |(⋊⋉c′∈C′ c′)| ≤ 1.

Proposition 17 The class of CSP instances which are unique at depth k has joinwidth at most k and can be solved in

time at most |I|O(k).

Proof. First of all, we observe that it is possible to determine whether a CSP instance I is unique at depth k in time at

most |I|O(k). Indeed, it suffices to check whether each constraint c is contained in at least one fixing set—and to do that,

we can simply loop over all constraint sets of arity at most k and join them together (in an arbitrary order). If I contains
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a constraint that does not appear in any fixing set of size at most k, then it is not unique at depth k; otherwise, for each

constraint c we choose an arbitrary fixing set (containing c) and denote it as Fix(c).
Consider a linear join decomposition J constructed as follows. First, we choose an arbitrary ordering of the

constraints and denote these c1 < · · · < cm. We begin our construction by having J introduce the constraints which

occur in Fix(c1) (in an arbitrary order). Then, for each 2 ≤ i ≤ m, we introduce those constraints in Fix(ci) which are

not yet introduced in J (also in an arbitrary order).

It remains to argue that J has joinwidth at most k. Consider the node j1 whose child is the last constraint occurring

in Fix(c1) (i.e., all constraints in Fix(c1) occur as leaves which are descendants of j1, and all constraints not in Fix(c1)
occur as leaves which are not descendants of j1). By definition, | ⋊⋉c′∈Fix(c1) c

′| ≤ 1 and hence by Lemma 5 we

obtain |C(j1)| ≤ 1. Moreover, since there are at most k leaves below j1, for each descendant j′1 of j1 we obtain that

|C(j′1)| < (♯tup(I))
k, as required. Now, consider an arbitrary 2 ≤ i ≤ m, and as before let ji be the node whose child

is the last constraint occurring in Fix(ci). Once again, |C(ji)| ≤ 1 by definition. Moreover, since there are at most

k leaves which occur “between” ji and ji−1, J contains at most k − 1 non-leaf nodes between ji and ji−1. Since

|C(ji−1)| ≤ 1, it follows that every node j′i between ji and ji−1 also has |C(j′1)| < (♯tup(I))
k. Hence J indeed has

joinwidth at most k, and the proposition follows by Theorem 6. ⊓⊔

6 Solving Bounded-Width Instances

This section investigates the tractability of CSP instances whose joinwidth is bounded by a fixed constant ω. In particular,

one can investigate two notions of tractability. The first one is the classical notion of polynomial-time tractability,

which asks for an algorithm of the form |I|O(1). In this setting, the complexity of CSP instances of bounded joinwidth

remains an important open problem. Note that the NP-hardness of the ω-JOIN DECOMPOSITION problem established

in Theorem 7 does not exclude polynomial-time tractability for CSP instances of bounded joinwidth. For instance,

tractability could still be obtained with a suitable approximation algorithm for computing join decompositions (as it

is the case for fractional hypertreewidth [27]) or by using an algorithm that does not require a join decomposition of

bounded width as input.

The second notion of tractability we consider is called fixed-parameter tractability and asks for an algorithm of

the form f(k) · |I|O(1), where k is a numerical parameter capturing a certain natural measure of I. Prominently, Marx

investigated the fixed-parameter tractability of CSP and showed that CSP instances whose hypergraphs have bounded

submodular width [29] are fixed-parameter tractable when k is the number of variables. Moreover, Marx showed that

submodular width is the most general structural property among those measured purely on hypergraphs with this

property.

Here, we obtain two single-exponential fixed-parameter algorithms for CSP instances of bounded joinwidth (i.e.,

algorithms with a running time of 2O(k) · |I|O(1)): one where k is the number of variables, and the other where k is the

number of constraints. Since there exist classes of instances of bounded joinwidth and unbounded submodular width

(see Observation 12), this expands the frontiers of (fixed-parameter) tractability for CSP.

Parameterization by Number of Constraints. To solve the case where k is the number of constraints, our primary aim

is to obtain a join decomposition of width at most ω, i.e., solve the ω-JOIN DECOMPOSITION problem defined in

Section 3. Indeed, once that is done we can solve the instance by Theorem 6.

Theorem 18 ω-JOIN DECOMPOSITION can be solved in time O(4|C| + 2|C||I|2ω+1) and is hence fixed-parameter

tractable parameterized by |C|, for a CSP instance I = 〈V,D,C〉.

Proof. Let I = 〈V,D,C〉 be the given CSP instance. For a subset C ′ ⊆ C, we denote by S(C ′) the set of all variables

that are both in the scope of a constraint in C ′ and in the scope of a constraint in C \ C ′. The algorithm uses dynamic

programming to compute the mapping α that for every non-empty subset C ′ of C either:

– is equal to πS(C′)(SOL(I[V (C ′)])), if there is a partial join decomposition for I that covers the constraints in C ′ of

width at most ω, and

– otherwise is equal to ∞.

Note that I has a join decomposition of width at most ω if and only if α(C) 6= ∞.

To compute α we use the observation that a partial join decomposition covering a set C ′ of constraints is either a leaf

(if |C ′| = 1) or is obtained as the “join” of a partial join decomposition covering C0 and a partial join decomposition
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covering C ′ \ C0 for some non-empty C0 ⊂ C ′. This immediately implies that α satisfies the following recurrence

relation for every non-empty subset C ′ of C:

(R1) if C ′ = {c} for some c ∈ C, then α(C ′) = prune(πS(C′)(c)),
(R2) if |C ′| > 1 and there is a non-empty subset C0 ⊂ C ′ such that:

(C1) α(C0) 6= ∞ and α(C ′ \ C0) 6= ∞, and

(C2) |prune((πS(C′)(α(C0) ⋊⋉ α(C ′ \ C0))))| ≤ ♯tup(I)
ω ,

then α(C ′) = prune(πS(C′)((α(C0) ⋊⋉ α(C \ C0)))),
(R3) otherwise, i.e., if |C ′| > 1 and (R2) does not apply, then α(C ′) = ∞.

Since I has a join decomposition of width at most ω if and only if α(C) 6= ∞ and in this case a join decomposition for

I can be easily constructed by following the recurrence relation starting from α(C), it only remains to show how to

compute α in the required running time, which we do as follows.

Initially, we set α({c}) = prune(πS(C′)(c)) for every c ∈ C and α(C ′) = ∞ for every C ′ with ∅ 6= C ′ ⊆ C and

|C ′| > 1. We then enumerate all subsets C ′ with C ′ ⊆ C and |C ′| > 1 in order of increasing size and check whether

there is a subset C0 of C ′ satisfying the conditions stated in (R2). If so we set α(C ′) = prune((πS(C′)(α(C0) ⋊⋉

α(C \ C0)))) and otherwise we set α(C ′) = ∞. Clearly, the time required to initialize α is at most O(2|C| +
|I|). Furthermore, the time required to check, whether a subset C ′ satisfies the conditions stated in (R2) is at most

O(2|C
′| + |I|2ω+1) = O(2|C| + |I|2ω+1), which can be obtained as follows. First note that because of Lemma 5,

it holds that prune(πS(C′)((α(C0) ⋊⋉ α(C ′ \ C0)))) is equal to prune((πS(C′)(α(C
′
0) ⋊⋉ α(C ′ \ C ′

0)))) for any

two subsets C0 and C ′
0 satisfying (C1) and hence once we found a subset C0 satisfying (C1) and have computed

prune((πS(C′)(α(C0) ⋊⋉ α(C ′ \ C0)))), we can determine whether (R2) or (R3) applies for C ′. This implies that we

have to compute prune((πS(C′)(α(C0) ⋊⋉ α(C ′ \ C0)))) for at most one subset C0, which explains why |I|2ω+1 only

appears additively in the running time. Moreover, the term 2|C| is required for the enumeration of all subsets C0 of C ′.

Since we have to enumerate all subsets C ′ of C, we hence obtain O(2|C|(2|C| + |I|2ω+1)) = O(4|C| + 2|C||I|2ω+1) as

the total running time for computing α. ⊓⊔

From Theorem 18 and Theorem 6 we immediately obtain:

Corollary 19 A CSP instance I with k constraints and joinwidth at most ω can be solved in time 2O(k) · |I|O(ω).

Parameterization by Number of Variables. Note that Corollary 19 immediately establishes fixed-parameter tractability

for the problem when k is the number of variables (instead of the number of constraints), because one can assume that

|C| ≤ 2|V | for every CSP instance I = (V,D,C). However, the resulting algorithm would be double-exponential in

|V |. The following theorem shows that this can be avoided by designing a dedicated algorithm for CSP parameterized

by the number of variables. The main idea behind both algorithms is dynamic programming, however, in contrast to

the algorithm for |C|, the table entries for the fpt-algorithm for |V | correspond to subsets of V instead of subsets of C.

Interestingly, the fpt-algorithm for |V | does not explicitly construct a join decomposition, but only implicitly relies on

the existence of one.

Theorem 20 A CSP instance I with k variables and joinwidth at most ω can be solved in time 2O(k) · |I|O(ω).

Proof. Let I = 〈V,D,C〉 be the given CSP instance with jw(I) ≤ ω. For a subset V ′ ⊆ V , we denote by S(V ′) the set

of variables in V ′ ∩ { v : c ∈ C ∧ S(c) \ V ′ 6= ∅ ∧ v ∈ S(c) } (i.e., S(V ′) contains variables in V ′ which occur in the

scope of a constraint that also has variables outside of V ′). The algorithm uses dynamic programming to compute a

mapping α which maps non-empty subsets V ′ of V to either the constraint πS(V ′)(SOL(I[V ′])), or to ∞. α is defined

using the following recurrence:

(R1) if V ′ = S(c) for some c ∈ C, then α(V ′) = prune(πS(V ′)(c)),
(R2) if (R1) does not apply and there are subsets V0 and V1 with ∅ 6= V0, V1 ⊂ V ′ and V0 ∪ V1 = V ′ such that:

(C1) α(V0) 6= ∞ and α(V1) 6= ∞, and

(C2) |prune(πS(V ′)(α(V0) ⋊⋉ α(V1)))| ≤ ♯tup(I)
ω ,

then α(V ′) = prune(πS(V ′)(α(V0) ⋊⋉ α(V1))),
(R3) otherwise, i.e., if neither (R1) nor (R2) applies, then α(V ′) = ∞.
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Using arguments very similar to the ones used in the proof of Lemma 5 it is now easy to show that if α(V ′) 6= ∞, then

α(V ′) = πS(V ′)(SOL(I[V ′])) for every subset V ′ ⊆ V .

It follows that if α(V ) 6= ∞, then I has a solution if and only if α(V ) is not equal to the empty constraint. Hence

an algorithm that computes α can be used to solve every CSP instance for which α(V ) 6= ∞. In order to show that we

can solve a CSP instance I of joinwidth at most ω, it is hence sufficient to show that α(V ) 6= ∞.

To this end, consider a join decomposition J = (J, ̺) for I of width at most ω. Using a bottom-up induction on

J , we will show that α(V (j)) 6= ∞ and moreover C(j) = α(V (j)) for every j ∈ V (j). Since α(V ) = C(r) 6= ∞
for the root r of J , this then implies the desired property. C(j) = α(V (j)) clearly holds for every leaf l of J , because

V (l) satisfies (R1) and by Lemma 5 we have C(l) = πS(l)(SOL(I[V (l)])) = πS(V (l))(SOL(I[V (l)])). Now, consider

an inner node j of J with children j1 and j2. Then setting V ′ to V (j), V0 to V (j1), and V1 to V (j2) satisfies (C1) (of

(R2)) because of the induction hypothesis. Moreover, (C2) is also satisfied because prune(πS(V ′)(α(V0) ⋊⋉ α(V1))) =
πS(V ′)(SOL(I[V ′])) = πS(j)(SOL(I[V (j)])) = C(j) and |C(j)| ≤ ♯tup(I)

ω . Hence an algorithm that computes α can

be used to solve every CSP instance of bounded joinwidth, and it only remains to show how to compute α.

Initially, we set α(V ′) = prune(c) for every V ′ ⊆ V such that there is constraint c ∈ C with V ′ = S(c) and

α(V ′) = ∞ for every V ′ ⊆ V for which this is not the case. We then enumerate all subsets V ′ with ∅ 6= V ′ ⊆ V in order

of increasing sizes and if α(V ′) = ∞, we check whether there are subsets V0 and V1 of V ′ satisfying the conditions

stated in (R2). If so we set α(V ′) = prune(πS(V ′)(α(V0) ⋊⋉ α(V1))) and otherwise we set α(V ′) = ∞. Clearly, the

time required to initialize α is at most O(2|V | + |C|). Furthermore, the time required to check whether a subset V ′

satisfies the conditions stated in (R2) is at most O(2|V |2|V | + |I|2ω+1) = O(4|V | + |I|2ω+1)—indeed, this can be

carried out as follows. To begin, we observe that prune(πS(V ′)(α(V0) ⋊⋉ α(V1))) is equal to prune(πS(V ′)(α(V
′
0) ⋊⋉

α(V ′
1))) for any two pairs (V0, V1) and (V ′

0 , V
′
1) of subsets satisfying (C1), and hence after we find a pair (V0, V1)

of subsets satisfying (C1) and compute prune(πS(V ′)(α(V0) ⋊⋉ α(V1))), we can determine whether (R2) or (R3)

applies for V ′. This implies that we have to compute prune(πS(V ′)(α(V0) ⋊⋉ α(V1))) for at most one pair (V0, V1)

of subsets, which explains why |I|2ω+1 only appears additively in the running time. Moreover, the term 4|V | is

required for the enumeration of all pairs (V0, V1) for V ′. Since we have to enumerate all subsets V ′ of V , we obtain

O(2|V |(4|V | + |I|2ω+1)) = O(6|V | + 2|V ||I|2ω+1), as the total running time for computing α. ⊓⊔

7 Beyond Join Decompositions

Due to their natural and “mathematically clean” definition, one might be tempted to think that join decompositions

capture all the algorithmic power offered by join and projection operations. It turns out that this is not the case, i.e.,

we show that if one is allowed to use join and projections in an arbitrary manner (instead of the more natural but

also more restrictive way in which they are used within join decompositions) one can solve CSP instances that are

out-of-reach even for join decompositions. This is interesting as it points towards the possibility of potentially more

powerful parameters based on join and projections than joinwidth.

Theorem 21 For every ω, there exists a CSP instance Iω that can be solved in time O(|I|4) using only join and

projection operations but jw(Iω) ≥ ω.

Proof. Let n = ω ∗ 16 and let Iω = 〈V,D,C〉 be the CSP instance with variables x1, . . . , xn, domain {1, . . . , n}, and

the following constraints:

– A set C< = { c1, . . . , cn−1 } of binary constraints ci with scope (xi, xi+1) containing all tuples t ∈ n× n such

that t[xi] < t[xi+1],
– A set CC = { cl,m : l < m− 1 ∧ 1 ≤ l,m ≤ n } of binary and complete constraints cl,m with scope (xl, xm).

We start by showing that jw(Iω) ≥ ω. Let (J, ̺) be any join decomposition for Iω. Let j be a node of J such that

⌈1/4n⌉ ≤ |V (j)| ≤ ⌊1/2n⌋, which exists due to the following well-known argument.

First we show that there is a node j′ of J such that |V (j′)| ≥ ⌊1/2n⌋ but |V (j′′)| ≤ ⌊1/2n⌋ for every child j′′ of

j′ in J . Namely, j′ can be found by going down the tree J starting from the root and choosing a child j′′ of j′ with

|V (j′′)| ≥ ⌊1/2n⌋; as long as such a child j′′ exists. Then letting j be the child of j′ maximizing |V (j)| implies that

⌈1/4n⌉ ≤ |V (j)| ≤ ⌊1/2n⌋, as required.

Note that because Iω has a constraint with scope (xl, xm) for every l < m, it holds that V (j) = V for the node

j ∈ V (J); this is because there is at least one variable in V \ V (j) and this variable occurs in a binary constraint with

every other variable. Hence by Lemma 5, it holds that C(j) = SOL(Iω[V (j)]).
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We claim that C(j) contains at least (n/2)n/4 tuples. Towards showing the claim, let Iω(i) be any sub-instance of

Iω induced by any subset of V of size i. It is easy to see that the domain of any variable in Iω(i) has size at least n− i
and hence SOL(Iω) has at least (n− i)i tuples. Hence, because ⌈1/4n⌉|V (j)| ≤ ⌊1/2n⌋, we obtain that C(j) has at

least min{(3/4n)1/4n, (1/2n)1/2n} ≥ (n/2)n/4 tuples, as required.

Finally, since ♯tup(Iω) = n2, we obtain the following for the joinwidth of Iω .

jw(Iω) = logn2((n/2)n/4)

= n/2 logn2 n/4

= n/2(logn2 n− logn2 4)

= n/2(1/2−
log4 4

log4 n
2
)

= n/2(1/2−
1

log4 n
2
)

≥ n/2(1/2−
1

4
)

= n/8

= 2ω

The inequality in the above sequence follows since n2 ≥ 162 = 44.

It remains to show that we can solve Iω in time O(|Iω|
4) using only join and projection operations.

Towards showing this we now define various auxiliary constraints that can be obtained efficiently using only join

and projection operations from the constraints in C.

Namely, for every i with 1 < i ≤ n let b↑i be the constraint defined iteratively as follows. Set b↑2 to be the constraint

π{x2}(c1) and for every i > 2, set b↑i to be the constraint π{xi}(b
↑
i−1 ⋊⋉ ci−1). Note that S(b↑i ) = {xi} and R(b↑i )

contains all tuples t with t[xi] ∈ {i, . . . , n}. Moreover, it follows immediately from their defintion that the constraints

b↑2, . . . , b
↑
n can be computed in time at most O(n4) = O(|Iω|

4) using only join and projection operations.

Similarily, let b↓i for every i with 1 ≤ i < n be the constraint defined recursively as follows. Let b↓n−1 be

the constraint π{xn−1}(cn−1) and for every i < n − 1, we set b↓i to be the constraint π{xi}(b
↓
i+1 ⋊⋉ ci). Note that

S(b↓i ) = {xi} and R(b↓i ) contains all tuples t with t[xi] ∈ {1, . . . , i}. Moreover, it follows immediately from their

definition that the constraints b↓1, . . . , b
↓
n−1 can be computed in time at most O(n4) = O(|Iω|

4) using only join and

projection operations.

Note that b↑i ⋊⋉ b↓i for every i with 1 < i < n has scope {xi} and contains only one tuple, i.e., the tuples t with

t[xi] = i. Moreover, b↓1 and b↑n also contain only one tuple, i.e., the tuples t with t[x1] = 1 and t[xn] = n, respectively.

To use this observation let b1 be the constraint b↓1, bn be the constraint b↑n and for every i with 1 < i < n let bi be the

constraint b↑i ⋊⋉ b↓i . Then bi has scope {xi} and R(bi) contains only one tuple, i.e., the tuple t with t[xi] = i. Moreover,

it follows immediately from the definition of the constraints b1, . . . , bn that they can be computed from the constraints

b↑i , b
↓
i in time at most O(n2) = O(|Iω|

2) using only join operations.

Note that at this stage, we have already identified the unique solution of Iω; the one that sets every variable xi to

the value i. However, since we have not yet even considered all constraints of Iω , we cannot yet bet sure that what we

computed is actually a solution of I. To circumvent this caveat, we now compute the constraint b = b1 ⋊⋉ · · · ⋊⋉ bn
in time O(n); note that b has scope V and R(b) only contains the tuple t with t[xi] = i for every i with 1 ≤ i ≤ n.

Finally, we join every constraint c ∈ C with b one-by-one as follows. Assume that C = {c1, . . . , c|C|}. Then for every

i with 1 ≤ i ≤ |C|, we now compute the constraint ai iteratively by setting: a1 to be the constraint b ⋊⋉ c1 and for every

i > 1, ai is the contraint ai−1 ⋊⋉ ci. Now we can be sure that the constraint a|C| contains all solutions (and only the

solutions) of I. Since ai is equal to b for every i it also follows that we can compute the constraints a1, . . . , a|C| in time

O(|C|) = O(|Iω|) using only join operations. ⊓⊔

8 Conclusions and Outlook

The main contribution of our paper is the introduction of the notion of a join decomposition and the associated parameter

joinwidth (Definitions 2 and 3). These notions are natural as they are entirely based on fundamental operations of
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relational algebra: joins, projections, and pruning (which can equivalently be stated in terms of semijoins). It is also

worth noting that our algorithms seamlessly extend to settings where each variable has its own domain (this can be

modeled, e.g., by unary constraints).

We establish several structural and complexity results that put our new notions into context. In particular, we show

that:

1. bounded joinwidth captures and properly contains several known restrictions that render CSP tractable (Theorem 13,

Propositions 15, 16 and 17).

2. CSP instances of bounded joinwidth can be solved in polynomial time assuming the corresponding join decomposi-

tion is provided with the input (Theorem 6);

3. finding a join decomposition of optimal width is NP-hard, already for a constant upper bound on the width

(Theorem 7), mirroring the situation surrounding fractional hypertree width [15];

4. CSP instances of bounded joinwidth can be solved by a single-exponential fixed-parameter algorithm parameterized

either by the number of constraints (Corollary 19) or the number of variables (Theorem 20);

5. there are instances of bounded joinwidth but unbounded submodular (or adaptive) width (Observation 12); bounded

submodular width is the most general hypergraph restriction that allows for fixed-parameter tractability of CSP

under the Exponential Time Hypothesis [29];

6. using joins and projections, one can even solve instances of unbounded joinwidth (Theorem 21).

Our results give rise to several interesting directions for future work. We believe that result (2) can be generalized to

other problems, such as #CSP or the FAQ-Problem [25]. Result (3) gives rise to the question of whether there exists

a polynomial-time approximation algorithm for computing join decompositions of suboptimal joinwidth, similar to

Marx’s algorithm for fractional hypertree-width [27]. One can also try to develop an efficient heuristic approach for

computing the exact joinwidth, possibly similar to the SMT-encoding for fractional hypertree width as recently proposed

by Fichte et al. [14].

Result (5) shows that submodular width is not more general than joinwidth. We conjecture that also the converse

direction holds, i.e., that the two parameters are actually incomparable. Motivated by result (6), one could try to define a

natural parameter that captures the full generality of join and projection operations, or to at least define a parameter that

is more general than join decompositions without sacrificing the simplicity of the definition.
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