
Behavioral Ecology and Sociobiology (2019) 73: 151

/Published online: 21 November 2019

METHODS PAPERS

Using time-series similarity measures to compare animal movement
trajectories in ecology

Ian R. Cleasby1,7 & Ewan D. Wakefield2
& Barbara J. Morrissey3 & Thomas W. Bodey4,5 & Steven C. Votier6 &

Stuart Bearhop4
& Keith C. Hamer7

Received: 22 May 2019 /Revised: 11 October 2019 /Accepted: 17 October 2019
# The Author(s) 2019

Abstract
Identifying and understanding patterns in movement data are amongst the principal aims of movement ecology. By quantifying
the similarity of movement trajectories, inferences can bemade about diverse processes, ranging from individual specialisation to
the ontogeny of foraging strategies. Movement analysis is not unique to ecology however, and methods for estimating the
similarity of movement trajectories have been developed in other fields but are currently under-utilised by ecologists. Here,
we introduce five commonly used measures of trajectory similarity: dynamic time warping (DTW), longest common subse-
quence (LCSS), edit distance for real sequences (EDR), Fréchet distance and nearest neighbour distance (NND), of which only
NND is routinely used by ecologists. We investigate the performance of each of these measures by simulating movement
trajectories using an Ornstein-Uhlenbeck (OU) model in which we varied the following parameters: (1) the point of attraction,
(2) the strength of attraction to this point and (3) the noise or volatility added to the movement process in order to determine which
measures were most responsive to such changes. In addition, we demonstrate how these measures can be applied using move-
ment trajectories of breeding northern gannets (Morus bassanus) by performing trajectory clustering on a large ecological dataset.
Simulations showed that DTWand Fréchet distance were most responsive to changes in movement parameters and were able to
distinguish between all the different parameter combinations we trialled. In contrast, NND was the least sensitive measure
trialled. When applied to our gannet dataset, the five similarity measures were highly correlated despite differences in their
underlying calculation. Clustering of trajectories within and across individuals allowed us to easily visualise and compare
patterns of space use over time across a large dataset. Trajectory clusters reflected the bearing on which birds departed the colony
and highlighted the use of well-known bathymetric features. As both the volume of movement data and the need to quantify
similarity amongst animal trajectories grow, the measures described here and the bridge they provide to other fields of research
will become increasingly useful in ecology.

Significance statement
As the use of tracking technology increases, there is a need to develop analytical techniques to process such large volumes of data.
One area in which this would be useful is the comparison of individual movement trajectories. In response, a variety of measures
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of trajectory similarity have been developed within the information sciences. However, such measures are rarely used by
ecologists who may be unaware of them. To remedy this, we apply five common measures of trajectory similarity to both
simulated data and real ecological dataset comprising of movement trajectories of breeding northern gannets. Dynamic time
warping and Fréchet distance performed best on simulated data. Using trajectory similarity measures on our gannet dataset, we
identified distinct foraging clusters centred on different bathymetric features, demonstrating one application of such similarity
measures. As new technology and analysis techniques proliferate across ecology and the information sciences, closer ties
between these fields promise further innovative analysis of movement data.

Keywords Information science .Movement ecology . Route fidelity . Site fidelity . Tracking data . Trajectory clustering

Introduction

In recent years the widespread adoption of radio- and satellite-
based telemetry has led to a marked increase in the volume of
animal movement data (Kays et al. 2015). While such rapid
technological development has advanced the study of animal
ecology, the amount of data obtained presents a challenge to
researchers analogous to big data problems seen in other dis-
ciplines (Thums et al. 2018). In response, techniques have
been developed concerning habitat selection (Aarts et al.
2009), navigation (Freeman et al. 2010) and behavioural clas-
sification (Langrock et al. 2012). Nevertheless, an open prob-
lem for ecologists remains how best to quantify similarity in
animals space use, both within and amongst individuals and
groups, using movement data. This is a necessary step both in
addressing fundamental research questions and for many
wildlife management and conservation tasks (Fieberg and
Kochanny 2005; Demšar et al. 2015; Lascelles et al. 2016).
For example, at the group level, assessing the similarity of
space use underpins studies on territoriality (Bateman et al.
2015), spatial segregation (Wakefield et al. 2013; Cleasby
et al. 2015) and temporal changes in distribution (Clapp and
Beck 2015). At the individual level, the concept of space use
similarity has been used to investigate site and route fidelity
(Freeman et al. 2010; Wakefield et al. 2015), habitat special-
isation (McIntyre et al. 2017) and the ontogeny of foraging
behaviour (Votier et al. 2017).

Typically, animal movement data consist of a discrete time-
series of observed locations that collectively form a trajectory.
The challenges of analysing complex trajectory data are not
unique to animal tracking studies and are encountered by all
studies that track moving objects (Demšar et al. 2015).
Consequently, analytical approaches developed in other disci-
plines may be applicable in ecology, including a range of
measures developed to calculate the similarity of movement
trajectories (Ranacher and Tzavella 2014). However, because
most trajectory similarity indices have been developed outside
of ecology, they may not be well known amongst ecologists.
For example, most trajectory similarity studies in ecology use
nearest neighbour distance (NND) (e.g. Freeman et al. 2010;
Demšar et al. 2015; Fayet et al. 2017; Votier et al. 2017), but
use of other trajectory similarity measures is rare. Moreover,

in a recent review of metrics for ecological movement data
(Seidel et al. 2018) none of the similarity measures described
here was mentioned yet they are routinely used in other fields.
Here, we illustrate how a range of similarity measures can be
applied to animal movement data to quantify the similarity of
two or more movement trajectories. To do so, we first define
similarity conceptually.We then introduce similarity measures
commonly used in other fields and assess their performance as
we alter different parameters of an Ornstein-Uhlenbeck (OU)
movement model. Using an OU model, we alter (1) the point
of attraction, (2) the strength of attraction to this point and (3)
the noise added to the movement process. Similarity between
two trajectories is expected to decline as the strength of attrac-
tion to the point of attraction declines or as the noise in the
movement process increases. In addition, as the point of at-
traction differs between trajectories, similarity should decline
and when points of attraction are in the opposite direction,
similarity should be at its lowest. Ideally, any similarity
measure should be able to distinguish between different
scenarios in which these parameters are altered, and this
should be reflected in the similarity values calculated. As
well as simulated data, Keogh and Kassety (2003) highlight
the importance of applying time-series similarity measures to
real datasets, which typically have much higher variance than
simulated datasets. Therefore, we also demonstrate the appli-
cation of similarity measures to an example ecological dataset
comprising trajectories of breeding northern gannets (Morus
bassanus). We go on to demonstrate how similarity measures
can be used to create distance matrices, enabling similar tra-
jectories to be grouped using clustering methods in order to
compare trajectory similarity within and between individuals.

Concerning similarity

The concept of similarity is founded upon three intuitions (Lin
1998): (1) the more features two objects share, the more sim-
ilar they are; (2) the more differences there are between two
objects, the less similar they are; and (3) maximum similarity
occurs when two objects are identical. Similarity (or dissimi-
larity) is generally quantified as the either the cost of
transforming one object into another or as the inverse of the
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distance between objects (Faloutsos et al. 1997). The general
notion of similarity can be conceptualised by mathematical
functions called similarity measures that are used to compare
objects. The inputs of a similarity measure are two objects and
the output is a number. Similarity is related to distance which
is generally the inverse of similarity (i.e. as distance between
objects increases similarity decreases, see also Supplementary
Material, Section S1 Similarity and Distance Metrics) and in
practice distance measures are also often used to assess simi-
larity directly.

From an ecological perspective, we are often interested in
identifying and explaining patterns underlying movement da-
ta. Estimating the similarity of two or more instances of move-
ment, particularly in geographic space and time, provides one
means of achieving this (Demšar et al. 2015). When consid-
ering movement, one can assess similarity across a hierarchy
of movement patterns (see Dodge et al. 2008). For example,
movement can be split into separate temporal, spatial and
spatio-temporal components and a distinction is often made
between primary (e.g. spatial coordinates) and derived (e.g.
speed) movement parameters (see Ranacher and Tzavella
2014). One can also distinguish instances in which the focus
of analysis rests upon assessing the similarity of movement
within an object over time versus instances in which the sim-
ilarity of movement between different objects is key (Dodge
et al. 2008). The focus of the current paper is to look at the
similarity of movement in geographic space. However, it
should be noted that similarity can also be assessed in other
dimensions, such as derived spatial indices (e.g. speed) or
environmental dimensions (e.g. wind speed).

Inmovement ecology, space use is often summarised using a
utilisation distribution (UD) (Fieberg and Kochanny 2005). At
their simplest, UDs are 2-dimensional probability distributions
that represent the probability of encountering an animal at a
given location (though UD methods can incorporate a
temporal component, Kranstauber et al. 2012). Comparing
UDs across individuals or groups have been used to address
ecological questions pertaining to site fidelity, territoriality and
temporal change in space use amongst others (Wakefield et al.
2015; Abrahms et al. 2018). To this end, UDs are often com-
pared quantitatively using the degree to which they overlap in
space, with high spatial overlap indicating UDs are more alike
(Fieberg and Kochanny 2005). Recently, methods to assess the
similarity of utilisation distributions have been developed and
have been used to visualise and compare patterns of similarity
in space use over time using clustering techniques (Kranstauber
et al. 2017), demonstrating the broader utility of similarity-
based approaches within movement ecology. However, as
UDs are primarily designed to characterize space use, the mea-
sures described here may be better suited to questions relating
to trajectory similarity and route fidelity.

Alongside comparison of UDs, an alternative approach to
assessing movement similarity is to investigate the similarity

of movement trajectories directly using location data.
Assessing the similarity of trajectories provides a formal
means of quantifying the relationship between two or more
moving objects. Ecological studies that focus upon either
route similarity or route fidelity (similar trajectories within a
defined group e.g. within the same individual) are typically
based on this approach (Freeman et al. 2010; Fayet et al. 2016;
Votier et al. 2017). Similarity measures provide a relative
measure to compare the similarity of one trajectory to another.
Moreover, by comparing the similarity of all trajectory pairs
one can create a distance matrix that provides a basis for clus-
tering trajectories into groups with similar properties (Demšar
et al. 2015). The most common clustering approaches for
time-series data are hierarchical or partitional clustering
(Sarda-Espinosa 2017). Clustering can be a useful means of
visually summarising large datasets, making it easier to dis-
cern movement patterns (Andrienko and Andrienko 2013).
Clustering has also been used to identify representative or
prototypical paths within groups of trajectories (Lee et al.
2007; Freeman et al. 2010); index and classify trajectories
(Vlachos et al. 2002); investigate temporal change in space
use (Shoji et al. 2016); and define the location of key activity
centres using the centroids of the different trajectory clusters
identified (McClintock and Michelot 2017).

Measures of trajectory similarity

Generally, trajectory similarity is quantified using the distance
between trajectories. Within the plethora of trajectory similar-
ity measures available, there are several that are used frequent-
ly, usually in the analysis of time-series (Ding et al. 2008) or
for geometric shape matching (Alt 2009). Popular measures of
trajectory similarity include Euclidean distance, Dynamic
Time Warping (DTW, Senin 2008), Longest Common
Subsequence distance (LCSS, Vlachos et al. 2002) and Edit
Distance for Real sequence (EDR, Chen et al. 2005), while
popular shape-based measures that try to catch geometric fea-
tures of the trajectories include the Fréchet distance (Fréchet
1906). Due to their widespread use, functions for calculating
these measures have already been implemented in commonly
used statistical software, such asR and Python, making them
easily accessible to ecologists (Salvador and Chan 2007;
Toohey 2015; Sarda-Espinosa 2017; Supplementary
Material - Table S1). Within ecology the use of such measures
is not commonplace and instead variations of the nearest
neighbour distance (NND) tend to be used to calculate trajec-
tory similarity (e.g. Fayet et al. 2016; Votier et al. 2017). The
Euclidean distance, sometimes called the L2-Norm, is the
most commonly encountered similarity measure. However, it
is a lock-step measure that requires one-to-one point matching
of trajectories of equal length (Ranacher and Tzavella 2014),
which may limit its use when analysing animal movement
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trajectories as these have typically irregular lengths.
Therefore, we focus here on DTW, LCSS, EDR, Fréchet dis-
tance and NND. Below we briefly describe each of these mea-
sures (see also Table 1). To aid interpretation we also provide
example R code for calculating DTW, LCSS, EDR and
Fréchet distance (Supplementary Material, S2: R Code For
Similarity Measures, see also S3: Visual Examples of
Similarity Measures).

In the following section we assume a trajectory TA that
contains (m) a series of m timestamped n dimensional points
ai = (ai,1, …, ai, n):

TA ¼ t1; a1ð Þ;…; tm; amð Þð Þ ð1Þ

where ti are ordered, discrete timestamps. The length of a
trajectory is given by the number of discrete timestamps it
contains. Trajectory points are usually recorded in two dimen-
sions (longitude and latitude represented by x and y), but
higher dimension trajectories are possible. In the pairwise ex-
amples that follow, TA is compared with another trajectory TB

of length k:

TB ¼ t1; b1ð Þ;…; tk ; bkð Þð Þ ð2Þ

Dynamic time warping

DTW algorithms search recursively through all point
combinations between two trajectories to identify the
path between those trajectories with the smallest

Table 1 Summary of different similarity measures. Computation time refers to standard calculations, different statistical packages may provide faster
computation if using optimized algorithms. Note all measures are non-metric with the exception of Fréchet distance

Similarity
Measure

Method Range Parameters Elastic Sensitivity to outliers Sensitivity
to time
shifting

Computation
time

Dynamic
time
warping

Point-based 0–∞
Larger

values
=
lower
simi-
larity

Point index spacing—integer of the
maximum index difference be-
tween trajectory 1 and trajectory
2 allowed in calculation. Can be
set as unlimited. Tuning may im-
prove clustering performance.

Yes High. All points must be matched. Low Quadratic,
O (n2)

Longest
common
subse-
quence

Point-based 0–1
Larger

values
=
greater
simi-
larity

δ—maximum index (time) differ-
ence when comparing points
from two trajectories. Can be set
as unlimited. Tuning may im-
prove clustering performance.

ε—maximum distance in each
dimension allowed for two points
to be considered equivalent

Yes Low. Only common sub-sequences
are matched. Outliers will not be
matched. Gaps between matching
subsequences not considered
which can lead to inaccuracy.

Low Quadratic

Edit
distance
with real
penalty

Point-based 0–1
Larger

values
=
lower
simi-
larity

ε—maximum distance in each
dimension allowed for two points
to be considered equivalent

Yes Medium. Similar to LCSS points are
classified as matching or not
matching. Unlike LCSS gap
elements receive a penalty.

Low Quadratic

Fréchet
distance

Shape
matchin-
g

0–∞
Larger

values
=
lower
simi-
larity

None Yes High. Comparison based on shape
of trajectories which will be
influenced by noise/outliers.

High Polynomial,
Ο (nm log

(nm))

Nearest
neighbour
distance

Point-based 0–∞
Larger

values
=
lower
simi-
larity

None Yes High. All points must be matched. Low Ο (nd + kn)
d = no.

dimen-
sions being
compared

k = no. of
neighbours
to identify
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distance using dynamic programming. Consequently,
DTW is an elastic measure because it can be used with
trajectories of different lengths, but is sensitive to noise,
because all spatial points are matched, including any
outliers. Given two trajectories TA and TB of length m
and k respectively, DTW aligns these trajectories by
creating an m-by-k distance matrix in which the (ith,
jth) element is (ai − bj)

2. Here, the distance between
points ai and bj represents the cost of aligning them.
To find the best alignment between TA and TB, a path
is drawn through the distance matrix that minimizes the
total cumulative distance between them, called the
warping path. The warping path begins in the bottom-
left corner of the matrix and ends at the top-right corner
(the first element of both trajectories must be matched
and the last element of both trajectories must be
matched) and must be contiguous (warping path can
only go forward one step at a time) and monotonic
(warping path cannot go backwards in time). Typically,
the lowest cost warping paths will be close to the diag-
onal of the created distance matrix. DTW is defined as

DTW TA; TBð Þ

¼

0 if m ¼ k ¼ 0
∞ if m ¼ 0 or k ¼ 0

d a1; b1ð Þ þ min
DTW Rest TAð Þ;Rest TBð Þð Þ;

DTW Rest TAð Þ;TBð Þ;
DTW TA;Rest TBð Þð Þ

8<
:

9=
; otherwise

8>>>><
>>>>:

ð3Þ

Here, Rest(TA) and Rest(TB) refer to the trajectories TA and
TBwith the first element (location) removed and d(a1, b1) = |a1
− b1|. DTW measures are non-negative and unbounded, with
larger DTW values denoting greater distance (dissimilarity)
between time-series. DTW was recently used in an ecological
context by McClintock and Michelot (2017) to cluster the
trajectories of foraging grey seals (Halichoerus grypus) and
identify centres of activity.

Longest common subsequence

The LCSS finds the longest subsequence that two trajectories,
A and B, have in common (Vlachos et al. 2002). A subse-
quence is defined as an alignment of elements that occurs in
both trajectories given that the order of the remaining elements
is preserved. Elements within a subsequence need not occur at
the same time within both trajectories, but they must occur in
the same order. Traditional LCSS was designed to capture
similarities between discrete points where exact matches were
possible. For use on movement trajectories Vlachos et al.
(2002) extended LCSS to cover elements with real values
such as spatial coordinates via a distance-based matching
threshold, ε. Points that are ≤ ε units apart are considered
matching and the LCSS is the total count of the number of
points that are matched. LCSS can be calculated following
Vlachos et al. (2002) as:

LCSS TA;TBð Þ ¼
0 if m ¼ 0 or k ¼ 0

LCSS Rest TAð Þ;Rest TBð Þð Þ þ 1 if m−kj j≤δ and am;x−bk;x
�� ��≤ε and ak;y−bk;y

�� ��≤ε
max

LCSS Rest TAð Þ; TBð Þ
LCSS TA;Rest TBð Þð Þ

� �
otherwise

8>><
>>:

ð4Þ

Here, δ represents the index difference used when com-
paring points between trajectories and controls how far to
search in time to match a point in one trajectory with a
point in another. LCSS is unbounded and depends upon
the length of the sequences compared; therefore, the
length of the shortest trajectory is typically used to nor-
malize this method as an LCSS ratio (LCSS ratio =
LCSS/min (|TA|, |TB|)) that ranges from 0 (lowest similar-
ity) to 1 (highest similarity). Like DTW, LCSS is an elas-
tic measure, but unlike DTW it does not require that all
points in a trajectory are matched, making it less sensitive
to outliers and noise (Toohey and Duckham 2015); how-
ever, the user must subjectively define ε and δ (Long and
Nelson 2013). Within an ecological context, Vlachos et al.
(2002) used LCSS to cluster the movement patterns of a
variety of marine mammals.

Edit distance for real sequence

Edit distance measures of similarity are based on counting
how many operations are required to turn one string, A, into
another string, B. Operations include inserting, deleting or
substituting elements in A. The more similar strings A and B
are, the fewer operations are required to make them equiva-
lent, resulting in a lower edit distance score. For assessing the
similarity of movement trajectories two common edit distance
approaches are edit distance with real penalty (ERP, Chen and
Ng 2004) and edit distance for real sequence (EDR, Chen
et al. 2005). In these approaches, deletion is treated as adding
in a gap to the other string, with the added element referred to
as a gap element. When matching strings, the elements in A
and B are symbols or characters. However, when dealing with
time-series and trajectories, elements in TA and TB are real
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numbers. Therefore, instead of enforcing strict equality
between elements in TA and TB a distance threshold ε
(as with LCSS) is used to determine approximate equal-
ity. In fact, edit distance is closely related to LCSS, but
whereas LCSS counts matching locations, edit distance
counts the number of operations required to turn TA into
TB. One key reason for the development of EDR and
ERP was that LCSS does not account for the length of
gaps between matching elements when identifying com-
mon subsequences. In contrast, both EDR and ERP

assign penalties to such gap elements. While EDR and
ERP are related, EDR may be more robust to noise and
a more accurate measure of trajectory similarity as dem-
onstrated by Chen et al. (2005); hence, we focus upon
EDR here. EDR can be normalized by the length of the
longest trajectory being compared (EDR ratio = EDR/
max (|TA|, |TB|)) to generate a score between 0 (highest
similarity) and 1 (lowest similarity). EDR is defined as

EDR TA; TBð Þ ¼

m if k ¼ 0
k if m ¼ 0

min
EDR

�
Rest TAð Þ;Rest TBð Þ þ subcost;

EDR Rest TAð Þ; TBð Þ þ 1;
EDR TA;Rest TBð Þð Þ þ 1

8><
>:

9>=
>;

otherwise

8>>>>><
>>>>>:

ð5Þ

A pair of trajectory elements (ai,x , ai, y) and (bi,x ,
bi, y) are considered matching if and only if |ai, x − bi,
x| ≤ ε and |ai, y − ai, y| ≤ ε. Cost of insertion, deletion
or substitution operations is assumed to be 1. Subcost =
0 if (ai, bi) matches and 0 otherwise. EDR is not metric
as it does not satisfy triangle inequality (Chen and Ng
2004). At present, we are not aware of any ecological
study that has compared trajectories using EDR.

Fréchet distance

The Fréchet distance is a distance measure for continu-
ous shapes or curves that considers the location and
sequence of points within the compared trajectories
(Besse et al. 2015). The Fréchet distance can be de-
scribed by the analogy to a person walking a dog on
an extendable leash (Aronov et al. 2006). The person
and dog move along their respective trajectories. Both
can control their own speed but are not allowed to
backtrack. The Fréchet distance is the minimum length
of the leash that ensures that the dog is always connect-
ed to its owner.

When calculating Fréchet distance, trajectories are ap-
proximated as polygonal curves. For example, trajectory
TA could be approximated as the polygonal curve
PA[0,m] with m segments. PA can be parameterized
using the parameter a ∈ ℝ so that PA(a) refers to a
given position on the curve, with PA(0) and PA(m) re-
ferring to the first and last vertices of the curve respec-
tively. Similarly, TB could be approximated as the curve
QB[0, k] with QB(b) referring to a position on the curve.
The Fréchet distance is

FD PA;QBð Þ

¼
min maxd P a tð Þð Þ;Q b

�
t

� �� �n o

a 0; 1½ �→ 0;m½ � t∈ 0; 1½ �
b 0; 1½ �→ 0; k½ �

ð6Þ

where a(t) and b(t) range over continuous and increasing
functions, with a(0) = 0, a(1) = a(m), b(0) = 0 and b(1) = b(k)
and d is a distance operator. Fréchet distance is shape-
dependent and does not use point matching as the other tech-
niques described here do. Consequently, it does not consider
temporal aspects of movement such as speed (e.g. Buchin
et al. 2011a) but it can be used on trajectories of different
length. It is also sensitive to noise because every point of the
two trajectories being compared is used in its calculation.
Nevertheless, it can still be useful for trajectory comparison
and clustering (Buchin et al. 2010, 2011b). A discretized ver-
sion of the Fréchet distance is described by Eiter and Mannila
(1994) and can be applied to movement data collected by
discrete fixes.

Nearest neighbour distance

Unlike the distance measures listed above, the nearest neigh-
bour distance is relatively well known amongst ecologists and
perhaps due to its simplicity has been used widely to assess
trajectory similarity in order to determine route fidelity
(Freeman et al. 2010; Meier et al. 2015; Fayet et al. 2016).
NND identifies for each point in trajectory TA the closest point
in trajectory TB. NND is then the average of these distances.
Calculated in this way, the distance between trajectories is not
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symmetric, because d(TA, TB) ≠ d(TB, TA). However, the mea-
sure can be made symmetric as NND(TA, TB) = (d(TA, TB),
d(TB, TA))/2. It should be noted that this formulation of NND
lacks certain features of the other measures described.
Specifically, it is not monotonic or subject to temporal conti-
nuity constraints.

Simulation study of different similarity
measures

We used a series of data simulations to assess the performance
of the different similarity measures introduced. Our goal was
to simulate different movement trajectories in which the sim-
ilarity between trajectories was controlled by changing differ-
ent movement parameters. The similarity measures that are
most responsive to changes in these parameters were then
judged to be the best performing. To do so we simulated
movement trajectories using a multi-variate Ornstein-
Uhlenbeck (OU) movement process a commonly used move-
ment model (Blackwell 1997). The OU process is given as:

dz tð Þ ¼ α β−z tð Þð Þdt þ σdW2 tð Þ ð7Þ

where the vector β contains the coordinates of the attrac-
tion point and the matrix α contains coefficients that describe
the strength of attraction to β. σ controls the noise added to
the movement and is sometime referred to as volatility;
dW2(t) denotes a Wiener process. We used the OU process
to simulate different movement trajectories for comparison by
varying the parameters, α, β and σ respectively using the R
package adehabitatLT (Calenge 2006) in order to create dif-
ferent scenarios in which the similarity between trajectories
will vary in a predictable manner. Ideally, similarity measures
should respond to changes in these parameters. We chose to
vary a range of parameters as a given similarity measure may
be sensitive to changes in one parameter but be less responsive
to changes in another. We address the following scenarios:

1. Assessing the similarity of movement trajectories that
started at point [0,0] and were attracted to point [50,000,
50,000] with attraction strength 0.001, but varying σ be-
tween low (250), medium (500) and high (1500) values.
When σ is lower we expected similarity of trajectories to
be higher as they are both directed towards the same point
with less noise.

2. Assessing the similarity of movement trajectories that
started at point [0, 0] and were attracted to point
[50,000, 50,000] with σ of 500, but varying the strength
of the attraction, α, between low (0.0001), medium
(0.001) and high (0.01) values. When α is lower we ex-
pected the similarity of trajectories to be lower due to
weaker attraction to the coordinates of the attraction point.

3. Assessing the similarity movement of trajectories in
which σ was 500, α was 0.001 and trajectories began at
point [0, 0] but differed in their point of attraction.
Specifically, we compared trajectories in which:

(a) Both trajectories are attracted to point [50,000,
50,000].

(b) TA was attracted to point [50,000, 50,000] and TB

was attracted to point [− 50,000, 50,000].
(c) TA was attracted to point [50,000, 50,000] and TB

was attracted to point [− 50,000, − 50,000].

We expected similarity of trajectories to be greatest when
both trajectories were directed to the same point of interest as
in (a) and lowest when trajectories where directed to points of
interest in the opposite direction as in (c).

For each set of comparisons 500 trajectories were simulat-
ed in total (250 simulations of TA and 250 simulations of TB)
meaning that our similarity measures were calculated across
250 trajectory pairs. All simulated trajectories had a length of
1000 points. A list of the different movement trajectories sim-
ulated and compared is described in Table S2 (see also Fig. S6
and Supplementary Material, S5: R script used to simulate
different OU trajectories). We calculated DTW, LCSS, EDR
and Fréchet distance in R (R Core Team 2018) using the
SimilarityMeasures package (Toohey 2015). We calculated
NND using the RANN package (Arya et al. 2018). We stan-
dardized coordinates prior to calculating similarity for all mea-
sures except NND. Standardizing involved centring coordi-
nates using the position of the common departure point and
then dividing by the standard deviation of that coordinate.
This ensures all trajectories start at the same point [0, 0] and
standardized trajectories will be invariant to scaling and
shifting (see Giao and Ahn 2016). We did not standardize
coordinates when calculating NND in order to mirror the ap-
proach used in the previous ecological studies that used this
measure (Fayet et al. 2016, 2017; Shoji et al. 2016; Votier et al.
2017). When calculating LCSS and DTW we set δ to
unlimited. Because trajectory data were standardized prior to
analysis we set ε at 1.0 for LCSS and EDR which roughly
corresponded to points within a standard deviation distance in
both x and y coordinates being considered matches. Note that
similarity values for LCSS and EDR are influenced by the
values of ε and δ. Although simulated trajectories were the
same length it is generally advisable to convert DTW, LCSS
and EDR to ratios to ensure that variation in trajectory length
does not overly influence the results. Because all simulated
trajectories originate from the same location the start point of
each trajectory was identical. Therefore, following Toohey
and Duckham (2015), we calculated DTW and EDR ratios
by dividing the estimated similarity measure by the length of
the larger trajectory minus 1 (minus the common starting
point) (max (|TA|, |TB|) – 1). For LCSS the ratio was calculated
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using the minimum trajectory length (min (|TA|, |TB|) – 1)).
Ratios are calculated in this way because each simulated tra-
jectory starts at the same location. Therefore, the first point in
TA and TB is a perfect match so LCSS is guaranteed to have at
least one match and EDR one element with no gap. DTWwill
also be scored as 0 for the first points across TA and TB. This
can alter ratio values in a non-linear way (Toohey and
Duckham 2015). Hence, we subtract minus one to account
for this.

Fréchet distance is less sensitive to variance in trajectory
length because it is shape-based rather than a time-series mea-
sure, so we did not convert this to a ratio (see also Toohey and
Duckham 2015). Similarly, in line with previous ecological
studies (Fayet et al. 2016, 2017; Shoji et al. 2016; Votier et al.
2017), we did not convert NND to a ratio.

Simulation results

Scenario 1—varying σ

As the volatility in the OU movement process increased
the similarity of movement trajectories decreased. This

decrease in similarity occurred even though trajectories
were directed towards the same point of interest with
the same strength of attraction. Across all similarity
measures there was a clear separation between compar-
isons based on low, medium or high values of σ based
on inter-quartile ranges of presented box plots (Fig. 1)
suggesting all measures were responsive to changes in
movement volatility.

Scenario 2—varying α

As the strength of attraction, α, increased, the similarity
of compared movement trajectories increased as expect-
ed. When α was set at high values the spread of sim-
ilarity values was also narrower across all similarity
measures tested. In general, the similarity measures test-
ed were able to distinguish between simulations when α
values were low, medium or high (Fig. 2). The excep-
tion was NND in which calculated values showed a
high degree of overlap when α was low or medium
suggesting NND was less sensitive to changes in α.

Fig. 1 Similarity measures for
trajectories simulated using an
OU process (Eq. 7) in which
noise, σ, varied, while point of
attraction, β, and strength of at-
traction, α, were held constant. In
each group the number of simu-
lated trajectories compared was
250. DTW, LCSS and EDR
expressed as ratios (see methods).
Boxplots show the median, inter-
quartile range, whiskers and out-
liers. The upper whisker extends
from the hinge to the largest value
no further than 1.5 * IQR from the
hinge (where IQR is the inter-
quartile range, or distance be-
tween the first and third quartiles).
The lower whisker extends from
the hinge to the smallest value at
most 1.5 * IQR of the hinge
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Scenario 3—varying point of attraction

When both trajectories were directed towards the same
point of attraction the similarity of trajectories was
highest across similarity measures (Fig. 3). In addition,
both DTW and Fréchet measures distinguished between
simulations in which trajectory TB was directed towards
point [− 50,000, 50,000] and those in which trajectory
TB was directed towards [− 50,000, − 50,000]. In con-
trast, LCSS, EDR and NND did not distinguish between
these two scenarios. In the case of EDR and LCSS
because values are bounded between 0 and 1 may make
discerning similar trajectories more difficult, although
adopting a different value for ε may improve perfor-
mance. The reasons for the poor performance of NDD
are less clear but may be related to the lack of mono-
tonicity and continuity constraints when using this met-
ric which allows matches between points that would not
be allowed when using the other methods where the
ordering of points in time is taken into consideration.
For example, if we assume that points a10 and b5 of
trajectories TA and TB are matched then monotonicity

and continuity constraints would mean that subsequently
point a11 could only be matched with points b≥5.
However, if using NND, matches between a11 and b<5
remain possible.

Case study: estimating the similarity
between northern gannet trajectories

In the following case study, we provide an example of how
different trajectory similarity measures can be applied to an
ecological dataset. First, we calculate each of the five different
similarity measures listed above and examine the correlation
between them. Because the similarity measures introduced are
related, results should be correlated. Previous empirical stud-
ies support this assertion (e.g. Toohey and Duckham 2015) but
were based upon traffic data where vehicles move along a
road network. This limits the potential routes an object can
travel and contrasts with animal movement data which is typ-
ically not as constrained. Secondly, we use DTW to cluster
trajectories within an individual to demonstrate how such
measures could be used to examine trajectory similarity over

Fig. 2 Similarity measures for
trajectories simulated using an
OU process (Eq. 7) in which α
varied, while β and σ were held
constant. Boxplots show the me-
dian, inter-quartile range, whis-
kers and outliers
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time. Thirdly, we use DTW to cluster trajectories across all
individuals tracked during one year of study to identify dis-
tinct movement clusters and highlight important destinations.
While such measures have been used to cluster movement
trajectories in the past (e.g. McClintock and Michelot 2017)
the example provided here is one of the first large-scale (> 150
trajectories) examples of trajectory clustering in ecology.

Study species

Northern gannets (hereafter gannets) are medium-ranging pe-
lagic seabirds. Whilst breeding, they act as central-place for-
agers, and are capable of travelling > 1500 km on a single
round-trip to obtain food for themselves and their offspring
(Hamer et al. 2009). Here, we analyse GPS tracking data col-
lected from gannets breeding at Bass Rock, UK (56.0773° N,
2.6408°W, Fig. S7) from 2010 to 2012. Full details of field
procedures are provided by Wakefield et al. (2015). In brief,
adults attending young chicks were caught at the nest, equipped
with a tail-mounted Igotu GT-200 or GT-600 GPS logger
(Mobile Action Technology Inc., Taipei, Taiwan, 37 g/≤ 2%
body mass), programmed to record locations every 2 min.

Birds were recaptured after 1–3 weeks, the loggers were re-
moved, and the data downloaded. It was not possible to record
data blind because our study involved focal animals in the field.
Here, we treat a foraging trip as a complete trajectory, starting
and ending at the colony. Individuals were tracked for multiple
trips within years and a subset of birds were tracked across
multiple years (Wakefield et al. 2015). Previous work has
shown that individual gannets exhibit a relatively high degree
of foraging site and route fidelity and often follow highly di-
rected paths from their colonies when departing on foraging
trips (Wakefield et al. 2015; Votier et al. 2017).

Calculation of trajectory similarity measures

In order to examine the correlation between the different trajec-
tory similarity measures, we randomly selected a subset of 50
pairs of trajectories from gannets tracked in 2012 (see also
Toohey and Duckham 2015) and for each pair of trajectories
we calculated DTW, LCSS, EDR, Frechét distance and NND
between them. A sample size of 50 was chosen as this gave us
80% power of detecting a correlation of 0.4 with a two-tailed
type I error significance level of 0.05 (our a priori expectation

Fig. 3 Similarity measures for
trajectories simulated using an
OU process (Eq. 7) in which β
varied, while α and σ were held
constant. TR:TR indicates both
trajectories were attracted towards
point [50,000, 50,000] in the top
right. TR:TL indicates trajectory
Awas attracted to point [50,000,
50,000] and trajectory B was
attracted to point [− 50,000,
50,000] in the top left. TR:BL in-
dicates trajectory Awas attracted
to point [50,000, 50,000] and tra-
jectory B was attracted to point [−
50,000, − 50,000] in the bottom
left. Boxplots show the median,
inter-quartile range, whiskers and
outliers
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was that measures should be strongly correlated based on
Toohey and Duckham (2015)). As we were satisfied with the
statistical power, we did not increase sample size further in
order to avoid additional increases in computation time associ-
atedwith the calculation of Fréchet distance (Table 1, Table S3).

Prior to analysis, we projected trajectories in Lambert
Azimuthal equal area (LAEA) coordinates. Latency in the
GPS loggers’ acquisition of GPS signals resulted in a small
amount of variability in the interval between GPS fixes. We
therefore re-sampled trajectories using the adehabitatLT R
package (Calenge 2006 to ensure regular time steps every
120 s using linear interpolation. Regular time steps are not
required for the similarity measures discussed but made it
easier for us to sample different time-intervals when calculat-
ing Fréchet distance for which computation time can be con-
siderable. Ultimately, when calculating Fréchet distance, we
re-sampled trajectories every 20 min to reduce computation
time. We standardized coordinates prior to calculating similar-
ity for all measures except NND to account for differences in
the spatial scale of different trajectories (Toohey and
Duckham 2015). Coordinates were standardized by
subtracting colony coordinates and dividing by their standard
deviation ensuring that all trajectories start at the same loca-
tion. Trajectory length varied considerably (trip duration: x̅ =
22.58 h, σ = 13.68, range = 2.18–95.11 h; total distance trav-
elled per trip: x̅ = 508.0 km, σ = 283.7, range = 51.3–1336.4
km) so when calculating LCSS and DTW we set δ to unlim-
ited as in Toohey and Duckham (2015). For LCSS and edit
distance, we set ε at 5 km. This value was set to reflect the
fine-scale foraging behaviour of gannets identified using first
passage time analysis during a previous study that found for-
aging bouts occurring at a scale of 1.5 km nested within 9 km
search areas (Hamer et al. 2009). To ensure that variation in
trajectory length did not dominate the results, we converted
DTW, LCSS and EDR similarity values to ratios. We calcu-
lated DTWand EDR ratios by dividing the estimated similar-
ity measure by the length of the larger trajectory minus 2 (max
(|TA|, |TB|) – 2). For LCSS the ratio was calculated using the
minimum trajectory length (min (|TA|, |TB|) – 2)). Ratios are
calculated using a value of minus two here because gannets
are central place foragers and therefore the first and last points
of any trajectories being compared will be identical.

Using DTW to cluster trajectories

Our simulation studies highlighted that DTW performed
well when trying to distinguish different models of move-
ment. In addition, while the other similarity measures we
describe can also be used to create distance matrices, they
currently lack dedicated R packages that combine calcu-
lation of similarity measures and downstream clustering
for multi-variate time-series such as movement trajecto-
ries (Table 1). Therefore, we created a distance matrix

based upon DTW values to cluster trajectories using the
R package dtwclust (Sarda-Espinosa 2017). Here, we
present the results of two different clustering analyses
using DTW: (1) Clustering all trips made by one bird
tracked in each study year (Individual: 1459907, 3 forag-
ing trips in 2010, 5 trips in 2011, 5 trips in 2012); and (2)
clustering all foraging trips recorded within 2012 (166
foraging trips from 33 different individuals). We used hi-
erarchical clustering, with the average linkage method,
implemented by the hclust() function (R Core Team
2018, see also Tables S3, S4). Hierarchical clustering re-
quires that the number of clusters be selected based upon
the clustering output. When clustering data from all trips
recorded in 2012, we varied the number of clusters from 2
up to 20 and used silhouette analysis to determine the
optimal number of clusters (see Supplementary Material,
S7 Silhouette Coefficients and Clustering). Silhouette
analysis suggested that the optimal number of clusters
was either 4 or 11. For simplicity, we report results based
on 4 clusters. When analysing trips from bird 1459907
across multiple years, silhouette analysis suggested the
optimal number of clusters was 2.

Results

Comparison of trajectory similarity measures

There were significant correlations between all the trajec-
tory similarity measures trialled (Fig. 4). DTW, Fréchet
distance and NND showed strong correlations even
though DTW and NND are based on point matching,
whereas Fréchet distance is shape-based. LCSS was neg-
atively correlated with the other distance measures as
higher LCSS values denote greater similarity, whereas
for the other measures higher values denote lower simi-
larity. Relationships between distance measures were not
always linear. In part, this may arise because DTW,
Fréchet distance and NND are unbounded, whereas
LCSS and EDR are bounded between 0 and 1. Selected
trajectories that show high, moderate and low similarity
are displayed for visualisation in the supplementary mate-
rial (Fig. S8)

Using similarity measures to cluster trajectories

1. Clustering all trips within an individual bird

Our analysis of foraging trips made by bird 1459907
in the 2010, 2011 and 2012 breeding seasons suggest
that foraging trips grouped into two clusters. All three
trajectories recorded in 2010 were placed within cluster
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1 (Fig. 5). In contrast, most trajectories recorded in
2011 and 2012 were placed in cluster 2, with just one
trajectory from each of these years being placed in clus-
ter 1. The clusters appeared to split trajectories based
upon the direction from the colony in which the bird
foraged: Cluster 1 comprised trips to the south-east and
cluster 2 trips to the east (Fig. 6).

2. Clustering foraging trips recorded within 2012

Hierarchical clustering split the foraging trips made by in-
dividuals in 2012 into four clusters (Fig. S9), roughly corre-
sponding to differences in the directions these birds travelled
to forage from the colony. For ease of visualisation, we

Fig. 4 Correlations amongst
measures of trajectory similarity/
distance across 50 randomly se-
lected pairs of gannet foraging
trips. Note DTW, EDR and LCSS
refer to the ratios here rather than
absolute values. Scatterplots
shown in bottom left triangle.
Spearman’s rank correlations in
upper right triangle, ***p < 0.001

Fig. 5 Hierarchical clustering of
GPS trajectories of gannet
1459907 during the 2010, 2011
and 2012 breeding seasons.
Coloured rectangles denote
cluster identity. Dendrogram
labels report bird identity, trip
number within a given year and
the year in which the trajectory
was recorded
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summarise the distribution of space use in each cluster with
utilisation distributions (UDs) using biased random bridges
(Supplementary material, S10 Calculating Utilisation
Distributions). Cluster 1 was the smallest, containing 15 tra-
jectories. These characteristically travelled to the east of the
colony and UDs suggested a key destination for such trajec-
tories was the Devil’s Hole, a group of submarine trenches
(Fig. 7a). Cluster 2 contained 28 trajectories, which typically
went far to the northeast of the colony, with usage concentrat-
ed around the Witch Ground basin (Fig 7b; see also Grecian
et al. 2018). Cluster 2 birds also used areas around the
Montrose and Scalp banks—shallow areas which give rise
to tidal mixing fronts. Cluster 3 was the largest cluster, con-
taining 103 trips. Unlike the other clusters, no one pattern
clearly stereotyped this cluster. However, trajectories in this
cluster tended to be shorter and usage was concentrated, in
part, on the Firth of Forth sand banks complex, relatively close
to Bass Rock, largely inshore of theMontrose and Scalp banks
(Fig. 7c). Increasing the number of clusters to 11 (as identified
by silhouette values) largely resulted in a greater partitioning
of trajectories within this cluster. Finally, cluster 4 contained
20 trajectories. Trajectories in cluster 4 typically followed
routes to the southeast of Bass Rock, with usage concentrated
over the Farn Deeps (Fig. 7d). Across individuals with more
than one recorded foraging trip, 4/31 (13%) birds performed
trips that were classified entirely within only one cluster (all
cluster 3), 20/31 birds (65%) performed trips that spanned
across two different clusters, 5/31 (16%) birds performed trips

that spanned across three different clusters and 2/31 (6%)
birds performed trips that spanned each of the four clusters
identified.

Discussion

As the volume of movement data that ecological studies collect
increases, there is a growing need to develop techniques to
process and analyses such data efficiently (Demšar et al.
2015). For instance, an increasing number of studies seek to
assess route fidelity and route similarity, within and between
individuals as well as across different species (Hansen et al.
2013; Fayet et al. 2016; Votier et al. 2017). Therefore, effective
measures of the similarity between different movement trajec-
tories are crucial. Here, we provide a summary and a compar-
ison of some of the more commonly encountered similarity
measures. Such similarity measures have a relatively long his-
tory outside of ecology (Ranacher and Tzavella 2014) but have
only recently begun to be applied in animal movement studies
(Demšar et al. 2015; McClintock and Michelot 2017). We an-
ticipate that they will be used much more widely in this context
in the future. Moreover, clustering trajectories using similarity-
based distance matrices makes it possible to detect patterns of
similarity amongst animal trajectories.

Overall, DTW and Fréchet distance performed best across
our simulations in terms of being able to distinguish between
the different parameter combinations we trialled. EDR and
LCSS were also able to distinguish between all situations
when we varied σ or α, but not the point of attraction. It
should be borne in mind that the exact behaviour of LCSS
and EDR could be altered if we set the maximum distance
threshold for points to be considered equivalent at a different
value. This highlights the importance of setting appropriate
values for the distance threshold when using LCSS or EDR,
but also the difficulty of choosing such a value without
trialling different values (Supplementary Material, S11.
Trialling different values of ε for LCSS and EDR). NND is
probably the most common measure of trajectory similarity
used in ecology, but it did not distinguish situations where the
strength of attraction varied from low to medium or when the
point of attraction was shifted. Thus, it appeared to be the least
sensitive measure of the five trialled to changes in the under-
lying movement process we simulated.

One challenging aspect of simulating movement trajecto-
ries in the manner done here lies in specifying a movement
model and understanding how its results can be generalized
across studies. The OU process is a relatively standard model
of movement, but there are a variety of other movement
models which may better describe the movement behaviour
of a given species (e.g. Fleming et al. 2017; Gurarie et al.
2017). Therefore, after first identifying an appropriate move-
ment model, researchers could then simulate trajectories to

Fig. 6 Foraging trajectories recorded for bird 1459907 coloured by
cluster. Trajectories in cluster one were typically to the South-East of
Bass Rock, whereas trajectories in cluster two were generally to the
East. Location of Bass Rock shown as a black square
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investigate the performance of the different similarity mea-
sures using movement models based upon their own data.
Such simulations may also allow one to test different thresh-
old distance values if using LCSS or EDR. The simulations
we present here are also loosely based upon the behaviour of a
central place forager (reflecting our case study) in as much as
all trajectories start at the same location. However, not all
movement studies are focussed upon central place foraging
and this may be another aspect that affects the relative perfor-
mance of the different similarity measures.

When applied to a real dataset, the five similarity measures
we examined were strongly correlated, in line with results
from other studies (Toohey and Duckham 2015). However,
there were also specific instances in which such measures
differed. For example, the unbounded nature of DTW and
Fréchet distance allowed them to emphasize differences be-
tween trajectories that were less apparent from relative LCSS
and EDR scores, which are bounded between 0 and 1. In our
case study the correlation between DTW and NND was par-
ticularly strong. A similar pattern was observed in our simu-
lation study, but it is worth noting that the strength of this

correlation varied across scenarios. For example, when both
simulated trajectories were directed towards a common desti-
nation NND and DTW were strongly correlated (r = 0.83,
95% CI (0.77–0.87)). However, this correlation was slightly
weaker when simulated trajectories were directed towards dif-
ferent destinations (r = 0.60, 95% CI (0.46–0.71)). Thus, one
should not assume that these two measures will always be
highly correlated.

Providing guidance about which is the ‘best’ similarity
measure is difficult as each have their own strengths and
weaknesses (Table 1). That said, all measures covered here
appear to perform better on high sample rate trajectories and
may therefore be less suitable for lower resolution tracking
data. For example, Wang et al. (2013) compared the same
trajectory sampled at both the original and lower resolution
rates and showed that as sample rate was reduced the similar-
ity between the original and the resampled trajectory declined.
Defining what is a high or low sampling rate is difficult and
likely to depend on the scale at which an animal moves. As a
rule-of-thumb, Zheng et al. (2012) suggest that sampling rates
greater than > 2 min represent a low sampling rate though this

Fig. 7 Utilisation distributions for
trajectories within each cluster
identified. The names of marine
features and fishing grounds
within the study area are also
displayed along with depth
contours. a cluster 1, Devil’s Hole
cluster; b cluster 2, Witch Ground
cluster; c cluster 3, Firth of Forth
sand banks cluster; d cluster 4,
Farn Deeps cluster
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was based upon traffic data in which data points had to be
matched to a road network. More broadly, to examine the
influence of sampling rate one could sample high resolution
data at lower resolutions as in Wang et al. (2013). If such data
is lacking, then movement simulation studies in which sample
rate varies could be used to gauge the effect of sampling rate
when assessing similarity. In addition, irregular sampling rates
between trajectories can also be problematic, making it diffi-
cult to compare between densely and sparsely sampled trajec-
tories (Li et al. 2018). Such an issue can also occur within the
same device if sampling rate is scheduled such that it changes
during deployment and this should be borne in mind when
comparing trajectories.

The close association between NND and the other similar-
ity measures examined in our case study suggest they show
close agreement when assessing the similarity of gannet tra-
jectories. However, unlike the other measures, NND is not
constrained to be monotonic or contiguous which are desir-
able features when comparing time-series. Therefore, we
would recommend using other or additional similarity mea-
sures when comparing trajectories. Of the other similarity
measures, DTW has generally been proven to work well for
time-series classification purposes (Wang et al. 2017) and has
the advantage that it is incorporated within multiple R pack-
ages that provide researchers with a wide range of analytical
resources for downstream clustering. DTW was also quicker
to calculate than LCSS, EDR or Fréchet distance. Thus, com-
paring trajectories using DTW may often be a useful and
relatively easy first step. However, LCSS and EDR are partic-
ularly useful when it is suspected that trajectory data are noisy,
as these methods are more robust to noise. Here, we used
biological insights from a previous study to set ε at a spatial
scale reflecting that at which GPS-tracked gannets typically
forage, but one could set ε to reflect known location error from
ones tracking device for example. For DTW, LCSS and EDR
one must also set a δ value and while many studies adopt an
unconstrained approach as we do here adjusting this parame-
ter can sometimes improve clustering performance (Dau et al.
2018). We also note that the similarity measures covered here
represent only a subset of available trajectory similarity mea-
sures (Ranacher and Tzavella 2014) and that rather than hav-
ing to choose between similarity measures it may be possible
to use them as an ensemble for machine learning methods of
time-series classification purposes (Lines and Bagnall 2015).
In addition, it would also be possible to cluster trajectories by
combining variables such as trajectory duration, distance trav-
elled, longitude and latitude of furthest point from the colony
etc. although some information of the entire trajectory would
be lost as any analysis would be based on a summarised ver-
sion of a movement trajectory rather than the trajectory itself.
For example, individuals may visit the same end location but
travel there via different routes. Consequently, research focus
would shift from comparing the similarity of detailed

movement paths to broader movement syndromes such as
territorial versus nomadic (Abrahms et al. 2017).

Similarity measures provide a means of quantitatively
assessing the distance between two trajectories. Such assess-
ment might be all that is required if the aim is to compare
specific individuals (e.g. members of a breeding pair).
However, we imagine researchers will often wish to compare
multiple trajectories to investigate trajectory similarity both
within- and between-individuals. If so, the similarity measures
introduced here could be used as response variables in statis-
tical models. For example, Votier et al. (2017) previously used
NND between trajectories as a response variable in linear
models to investigate route fidelity across different groups of
individuals, but the other measures introduced here could be
used for this purpose. Likewise, measures of trajectory simi-
larity can be used as inputs to randomization tests to examine
whether similarity differs between groups or individuals just
as measures of overlap are currently used in such randomiza-
tion tests when comparing utilisation distributions across dif-
ferent groups (e.g. Wakefield et al. 2015). In addition, we
investigated space use of an individual over time by calculat-
ing DTW similarity measures for all binary comparisons of
foraging trips recorded for a focal individual over three con-
secutive breeding seasons. The creation of a dendrogram from
the resulting distance matrix, and plotting of the resulting
clusters, allowed us to easily visualise and compare patterns
of space use over time (Kranstauber et al. 2017). In our exam-
ple, clustering split foraging trips for individual 1459907 into
two main groups based primarily on the direction the individ-
ual departed the colony.

We also demonstrate how clustering can be used to assess
the similarity of movement between individuals across all for-
aging trips recorded during a breeding season. As before,
clustering tended to split foraging trips partly on the direction
birds travelled from the colony and the resulting clusters ap-
peared to be focussed towards well-known bathymetric fea-
tures. Overall, clustering provided a useful tool to visualise
patterns in our movement data (Andrienko and Andrienko
2013) and identify potential foraging strategies related to geo-
graphic locations. Such tools are particularly important when
working on large tracking datasets as discerning patterns from
raw data becomes more difficult. For example, clusters 2 and 3
identify patterns in the data that the human eye alone may find
difficult to differentiate. In addition, the potential importance
of the offshore areas identified in clusters 1, 2 and 4 would be
less apparent if we estimated a single population-level UD
across all tracked birds. However, these clusters align with
features that are visited by gannets in other years (Grecian
et al. 2018) and overlap with designated Marine Protected
Areas (MPAs) such as the Central Fladen MPA or the Farnes
East MPA. The results from trajectory clustering can also be
used as the foundation for more in-depth analysis of foraging
behaviour as they permit identification of destinations of
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interest (McClintock and Michelot 2017). From a conserva-
tion perspective the environmental conditions and anthropo-
genic impacts individuals will experience are likely to vary
across clusters. For example, individuals that forage predom-
inately in a certain cluster may be more affected by localized
risk factors, such as wind farms or oil spills, than other indi-
viduals from the same colony who utilise a different foraging
area (Bodey et al. 2018), with potential downstream effects on
population dynamics (Tuck et al. 2015).

In addition, rather than focussing upon whole trajectories it
is also possible to compute the similarity and cluster move-
ment sub-trajectories. In human geography, such approaches
are often used to discover areas of high traffic density (Liu
et al. 2014; Gui et al. 2016). One advantage to such an ap-
proach is that we can identify important, highly travelled
routes used by an animal population (Whittington et al.
2005; Meier et al. 2015). Such movement corridors or bottle-
necks may be particularly sensitive to human activity, such as
windfarms or other human infrastructure (Barrios and
Rodriguez 2004). Recently, Scharf et al. (2018) reported that
habitat suitability models may perform poorly when trying to
identify animal movement corridors and suggested instead
that movement data be used directly to identify corridors and
sub-trajectory clustering is one means of achieving this.
Although outside the scope of this work, there are a variety
of algorithms available for sub-trajectory clustering (e.g. Lee
et al. 2007; Eerland et al. 2017)

Throughout, we have focussed upon clustering move-
ment data based purely upon the geographic locations,
which is typical of most trajectory similarity studies.
However, trajectories can be compared using a variety
of movement parameters other than, or in conjunction
with, geographic location. For example, we could esti-
mate the similarity between trajectories using geographic
position and the time-stamp at which positions were re-
corded (absolute time). Similar trajectories would then
have to occupy similar positions at similar times, which
is sometimes termed movement coincidence (Dodge et al.
2008). Movement in environmental space can also be con-
sidered. For example, Buchin et al. (2014) computed the
similarity between trajectories of foraging Galapagos al-
batrosses (Phoebastria irrorata) using wind speed, as well
as positional location. Dodge et al. (2012) demonstrate
how trajectories can be clustered using movement param-
eters such as speed, turning angle and azimuth to identify
concurrence in movement parameters over time, without
including positional information. In this case trajectories
will be similar if objects move in a similar way over time
even if they are not found at the same location. This could
be an effective way of identifying the same stereotyped
behaviours, such as search patterns and prey capture tech-
niques, or territorial/reproductive displays, which can be
expressed in different locations. In addition, the similarity

measures described here could be applied to other time-
series (e.g. Marques et al . 2018). For example,
temperature-depth recorders (TDR) are often used to re-
cord the behaviour of diving animals (seabirds, pinnipeds,
etc.). The techniques we describe could be applied to
depth time-series data from these devices to quantify in-
dividual consistency in dive behaviour or objectively
identify typical dive profiles.

Conclusions

Many useful tools to visualise and analyse movement data
efficiently have been developed across the information sci-
ences. Thus, as the number of ecological studies concerned
with estimating route similarity increases, it is natural to con-
sider the broader range of trajectory similarity measures that
are available (Ranacher and Tzavella 2014). We provide an
overview of five commonly used trajectory similarity mea-
sures (DTW, LCSS, EDR, Fréchet distance and NND) and
apply them to both simulated data and an ecological dataset.
Simulations suggested that DTW and Fréchet distance per-
formed best on the examples we generated. In contrast,
NND was generally the worst performing measure and lacks
some of the stricter time-series constraints that characterize the
other measures. Therefore, although NND has been most
widely used in ecology we recommend considering additional
similarity measures including those discussed here. These
measures can be calculated via existing software and have
the advantage that their mathematical properties and perfor-
mance have been well studied (Ratanamahatana and Keogh
2004; Wang et al. 2013), though not on ecological data. We
also demonstrate how distance matrices can be created to
cluster GPS trajectories both within and amongst individuals.
Importantly, these measures are not limited solely to compar-
ing spatial positions but can also utilise parameters such as
speed and environmental conditions. Thus, these similarity
measures represent both a useful tool for ecologists in an area
of growing interest, and an introduction into the wider world
of movement analysis beyond ecology (Demšar et al. 2015;
Miller et al. 2019). As new technology and analysis tech-
niques proliferate across ecology and the information sci-
ences, closer ties between these fields promises further inno-
vative analysis of movement data.
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