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Abstract 

Current trends in regenerative medicine treatments for bone repair applications focus 

on cell-based therapies.  These aim to deliver the treatment via a minimally invasive 

injection to reduce patient trauma and to improve efficacy. This paper describes the 

injectability of porous calcium phosphate glass microspheres to be used for bone 

repair based on their formulation, rheology and flow behavior.  The use of excipients 

(xanthan gum, methyl cellulose and carboxyl methyl cellulose) were investigated to 

improve flow performance.  Based on our results, the flow characteristics of the glass 
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microsphere pastes vary according to particle size, surface area, and solid to liquid 

ratio, as well as the concentration of viscosity modifiers used. The optimal flow 

characteristics of calcium phosphate glass microsphere pastes was found to contain 

40 mg/mL of xanthan gum which increased viscosity whilst providing elastic 

properties (~ 29,000 Pa) at shear rates that mirror the injection process and the 

resting period post injection, preventing the glass microspheres from both damage 

and dispersion.  It was established that a base formulation must contain 1g of glass 

microspheres (60 - 125 µm in size) per 1 mL of cell culture media, or 0.48g of glass 

microspheres of sizes between 125 and 200 µm.  Furthermore, the glass 

microsphere formulations with xanthan gum were readily injectable via a syringe-

needle system (3-20 mL, 18G and 14G needles), and have the potential to be 

utilized as a cell (or other biologics) delivery vehicle for bone regeneration 

applications.  

Keywords: Osteoporosis, bone regeneration, minimal invasive technology, 

injectable paste, porous microspheres 

1. Introduction 

Osteoporosis is a disease that reduces bone density deteriorating its internal 

microstructure and increasing the risk of fracture.  People over 65 are at higher risk of 

developing osteoporosis with more than 22 million being affected in the EU (Svedbom 

et al., 2013). Women are significantly affected by osteoporosis as a consequence of 

the menopause. In the UK, statistics indicate that 1 in 2 women over 50 experience 

osteoporotic fractures in comparison to 1 in 5 men (Svedbom et al., 2013; Van Staa 

et al., 2001). The most common and more debilitating fractures occur in hips 

accounting for 70% in women and 20% in men, with high index of mortality within six 

months after fracture (Prodovic et al., 2016; Kilci et al., 2016; Johnell and Kanis, 2006).  



One of the most frequent drug treatments for osteoporosis patients includes the 

administration of bisphosphonates which have been reported to be highly effective in 

reducing the risk of hip fractures (~30-50%). However, patients receiving this drug 

treatment still suffer subsequent fractures within 3 years (Kilci et al., 2016; Shibamoto 

et al., 2018; Hawley et al., 2016; Järvinen et al., 2015; Lim and Marcy, 2015; Reginster, 

2011; Klop et al., 2015). Therefore, recent alternative approaches to promote bone 

healing explore the use of biomaterials and cell-based therapy to improve 

biocompatibility (Weglein et al., 2014; Sampson et al., 2013; Toolan, 2006). Stem cells 

have already shown their capability in regenerating new bone (Caplan, 1991; Kwon et 

al., 2018; Zhang et al., 2018); however, the fragility of stem cells requires a robust 

technology to protect them during transplantation and within the timeframe for 

regeneration of the damaged bone. 

Recently, Hossain et al. (2018) developed an innovative approach to manufacture 

porous glass microspheres produced from calcium phosphates, a key component in 

bones, which have shown efficacy to incorporate stem cells within their porous 

structure (Hossain et al., 2018).  One of the key suggested advantages of 

microspheres over irregular-shaped materials is their potential ability to enhance flow 

properties, which combined with their microscale size could enable their delivery via 

minimally invasive injection procedures  (Mitragotri et al., 2014).  In addition, calcium 

phosphate (CaP) glasses have been widely investigated for hard tissue engineering 

applications (Abou Neel et al., 2005; Bitar et al., 2008; Lakhkar et al., 2009; Valappil 

et al., 2008a, 2008b). The main benefit of CaP glasses is their degradability and 

controllable resorption profiles, which can be tailored from days to months by simply 

altering their composition (Ahmed et al., 2004). Moreover, the porous morphology 

showed to be hugely beneficial in accommodating cells, thus providing the potential to 



incorporate drugs, growth factors and other biological components with the aim to 

release on demand  (Li et al., 2010).   

Furthermore, recent studies have evaluated the biocompatibility and osteogenic 

potential of CaP microspheres mixed with autologous bone marrow concentrate 

(BMC) in a large animal model (sheep) (McLaren et al., 2019). Histological results 

showed the formation of a collagen-enriched matrix and mineralization of the tissue 

within the defect after 13 weeks post-implementation, suggesting commitment toward 

the bone lineage. However, incorporating BMC within the CaP glass microspheres did 

not show any significant diႇerences in the histology results in comparison to 

microspheres implanted alone. In this in-vivo study, the surgical procedure included 

anesthetization, creation of a cylindrical bone defect of 8 mm width x 15 mm depth into 

cancellous bone of medial femoral condyles, then filling with glass microspheres 

loaded with autologous stem cells followed by suturing the skin. In order to reduce the 

use of this type of complicated and traumatic surgical intervention, a minimally invasive 

procedure is always preferred, such as injection of the material using a syringe in the 

area of interest. 

In this study, the formulation, rheology, flow behavior and injectability of these porous 

CaP glass microspheres along with various viscosity modifiers (such as, xanthan gum, 

methyl cellulose and carboxyl methyl cellulose) via syringe needles (14G and 18G) 

has been explored. Moreover, non-porous CaP microspheres in combination with 

porous microspheres were also evaluated to increase the load of ions as well as to 

include additional mechanical load bearing support in the formulation paste.  Thus, 

this CaP formulation paste can be combined with cell-based therapies that would allow 

injecting them via a small hole into the bones of those at risk of fracture to provide a 

localized increase in bone density. 



2. Materials and methodology 

2.1. Microsphere manufacture 

The microspheres consisted of calcium phosphate-based glass formulation 40 P2O5 -

16 CaO -24 MgO- 20 Na2O (in mol%). They were prepared via melt quenching 

process using precursors NaH2PO4, CaHPO4, MgHPO4 and P2O5. The glass 

produced was further processed to achieve porosity (or non-porosity) and spherical 

morphology using a flame spheroidization process (Hossain et al., 2018). 

Morphology of the CaP glass microspheres was determined using scanning electron 

microscope (SEM). The CaP glass microspheres were imaged under low vacuum 

without a coating using a FEI Quanta 650 environmental scanning electron 

microscope (Oxford Instruments INCA 350 EDX system/80mm X-Max SDD detector, 

EBSD and KE Centaurus EBSD system).  Porosity () was calculated from the 

absolute density (ȡabs, helium gas pycnometer method) and apparent density (ȡapp, 

mass in 10 mL cylinder) using Eq (1) (Shah et al., 2008; Mugoni et al., 2015).  

= (ȡabs-ȡapp)/ ȡabs  Eq 1  

2.2.  Preparation of microsphere pastes (injectable technology) 

CaP glass microsphere pastes were prepared using two particle size ranges (60-125 

µm and 125-200 µm) of gamma sterilized porous and non-porous microspheres. In 

this work the main interest was to test the injectability of porous microspheres to 

allow the transport of stem cells inside the porous; however, some tests were also 

performed with the inclusion of non-porous microspheres to increase the 

concentration of ions.  We used cell culture media (DMEM Dulbecco's Modified 

Eagle, ThermoFisher Scientific) for the data presented in this paper; however, we 

also tested the optimal formulation with saline solution (0.9% NaCl) to evaluate if the 



flow behavior was maintained. To formulate an injectable CaP glass microsphere 

paste, it was necessary to use aqueous compatible excipients to mediate the 

delivery of this new glass material. We tested gamma sterilized xanthan gum (XG, 

Sigma-Aldrich), sodium carboxyl methyl cellulose (CMC, MW 250000 (DS=0.7), 

Acros Organics) and methyl cellulose (MC, Sigma-Aldrich).  They were selected from 

a list of ten candidates based on their viscosity and elasticity properties when 

dispersed in solution; however, their stability as a function pH and temperature were 

also considered (Garcıғa-Ochoa et al., 2000; Shiledar et al., 2014; Talukdar and 

Kinget, 1995; Park et al., 2017).    Sterilization was achieved using gamma irradiation 

(Cobalt 60, dose 25-35 kGy) as a standard procedure in orthopedics. Furthermore,   

we also tested hyaluronic acid (HA, MP Biomedicals) and polyethylene glycol 

(PEG8000, Alfa Aesar). However, as both HA and PEG failed to improve the flow 

properties of the paste, they were discarded during preliminary tests.  To date, any of 

these excipients have not been tested in humans; however, XG has been injected in 

rabbits and rats to treat osteoporosis conditions (Chen et al., 2015; Huarong et al., 

2013). 

The formulations were tested and optimized, the loading of solids in the carrier 

solution (solid to liquid ratio, S/L) were quantified as grams per milliliter (g/mL).  

2.3.  Rheology 

The rheological characteristics of the microsphere pastes were assessed through 

measurements of viscosity and viscoelasticity using a rheometer (Kinexus Pro, 

Malvern Instruments).  For the viscosity measurements, excipient solutions in DMEM 

were evaluated at concentrations between 20 and 80 mg/mL. Pastes composed of 

CaP glass microspheres (60-125 µm, 125-200 µm or a mixture of both size ranges), 



with DMEM, and excipient were also evaluated for viscosity. All viscosity 

measurements were performed at 20°C. 

The viscoelasticity was monitored through examining the elastic component (G’), 

viscous component (G”) and phase angle ().  G’ relates to the degree of elasticity of 

the material whereas G” measures the degree of viscosity. The crossover point 

provides a measure of the point where behavior switches from liquid-like to solid-like 

properties. The rheometer was used in oscillatory mode and a sinusoidal shear 

stress was applied to the microsphere pastes to measure deformation. Using this 

approach, a strain sweep was first performed to determine the linear region of 

viscoelasticity (LVER), then the limit of LVER was used to perform a frequency 

sweep test in which G’ and G” were quantified as a function of angular frequency 

(Ȧ). The systems evaluated for viscoelasticity consisted of CaP glass microspheres 

(125-200 µm), DMEM and excipient.   The measurements were performed at 20°C 

and 37°C to mimic conditions of injection and post-injection. 

2.4.  Injection of microsphere pastes 

Luer-lock syringes of 3, 5, 10 and 20 mL (BDTM PastipakTM of internal diameter 8.66 

mm, 12.06 mm, 14.5 mm, 19.13 mm, respectively) were connected to either a 14G 

needle (1.6 mm internal diameter by 15 mm length) or 18G needle (0.84 mm internal 

diameter by 15 mm length). The microsphere pastes were prepared according to the 

formulations previously defined and loaded into the syringes. Trapped air was 

effectively removed using a locking syringe plunger whilst flicking the syringe.  The 

syringes were mounted for extrusion in a compression tester (Instron 5566 Test 

Bench).  The force (N) required for the extrusion of the paste was determined over a 

plunger displacement of 20 mm at a rate of 20 mm/min.  The pressure (MPa) was 



calculated by dividing the force (N) by the cross section of the area (mm2) of the 

syringe. 

3. Results 

3.1. Microsphere characteristics 

SEM analyses showed the random and interconnected porosity of the CaP glass 

microspheres with a wide distribution of pore sizes (Fig. 1a–b). Non-porous glass 

microspheres are also shown in Fig. 1c. 

 

 Fig. 1. a) SEM image showing the as-synthesized porous CaP glass microspheres 

(125-200 µm); b) Detail of the interconnected porosity of the glass microspheres; c) 

Non-porous CaP glass microspheres (60-125 µm). 

Density measurements indicated that the absolute density of the porous CaP glass 

microspheres was 2.52 ± 0.02 g.cm-3 and the apparent density was 0.70 ± 0.05 g.cm-

3. The calculated porosity of the microspheres using Eq (1) was found to be 75 ± 3%, 

which was very similar to the porosity value obtained for these porous microspheres 

by mercury porosimetry (76±5%) previously reported by Hossain et al., 2018. 

3.2. Paste characteristics 

CaP glass microsphere pastes extruded through a needle formed with and without 

excipient are shown in Fig. 2.  Glass microsphere pastes without excipient were 

b)a)

  500 mm    100 mm  

c)

  100 mm  

Porous

125-200 mm

Non-porous

60-125 mm



extremely difficult to extrude, and during injection developed a filter cake condition in 

which the microspheres interlocked and the surrounding fluid emerged first (Fig. 2a). 

This condition allowed an extrusion of a small amount of paste by using significant 

force (300 N). Better paste consistency and flow enhancement was observed when 

using excipients (XG, MC, and CMC) in DMEM.  It allowed the extrusion of the glass 

microsphere paste through small syringes (1 and 3 mL) and small needles (14G, 

18G) with forces small enough to allow extrusion by hand  (Fig. 2b–d). Similar flow 

characteristics were obtained when using saline solution (0.9% NaCl) instead of 

DMEM. Mixtures containing hyalonuric acid and PEG8000 failed to form an injectable 

paste and were discarded for further study (Fig. 2e–f). 

  

Fig. 2. CaP glass microsphere pastes formed a) no excipient, filter cake is formed; b) 

DMEM and XG; c) DMEM and MC; d) DMEM and CMC; e) DMEM and hyaluronic 

acid and f) DMEM and PEG8000 respectively yielding a slurry instead of a paste. In all 

the tests, delivery was performed through a standard 3 mL syringe and a 14G needle 

(8.66 mm and 1.6 mm internal diameter respectively). 

c)

 a) No excipient  b) XG

 c) MC  d) CMC

 e) Hyaluronic acid f) PEG8000



Scanning electron microscope (SEM) images of the CaP glass microspheres were 

collected with and without XG to observe the effect of adding the excipient. The 

images were collected after injection using a 3 mL syringe and a 14G needle (8.66 

mm and 1.6 mm internal diameter respectively).  The injection without XG 

experienced a filter cake condition that contributed to the breakdown of the porous 

CaP glass microspheres (Fig. 3a). However, the use of 40 mg/mL of XG prevented 

the microspheres from damage increasing viscosity and improving the flow of the 

formed paste (Fig. 3b).  High resolution images of the wet paste, injected and 

carefully removed from the 3D lattice (0.95 mm x 0.95 mm x 1.0 mm), showed that 

the CaP glass microspheres remained agglomerated together as a single structure 

with a small amount of XG (Fig. 3c).  

 

Fig. 3. Extruded pastes through a 3 mL syringe and 14G needle a) without XG; b) 

with XG; c) and d) with XG after testing into a 3D osteoporotic lattice (0.95 mm x 

0.95 mm x 1.0 mm dimensions); e)  Porous CaP glass microsphere pastes prepared 

    500 mm    

a)a) Without XG

  100mm    100 mm  

    100 mm      100 mm   

b) XG

c) XG in 3D lattice d) XG in 3D lattice

    500 mm    

e) MC  f) CMC



with MC and d) with CMC.  The images were collected in wet pastes without further 

preparation using an environmental SEM. 

Early tests showed that MC and CMC imparted similar flow behavior to the glass 

microsphere pastes as with XG; however, those containing CMC lost structure and 

shape within four hours of the test, making CMC unfavorable candidate for injection 

and delivery.  Therefore, only MC was carried forward for evaluation alongside XG.  

The required concentration of excipient was estimated through viscosity 

measurements with solutions at different concentrations (Fig. 4a–b).  Among all the 

solutions, those containing XG showed the highest viscosity at rest; however, the 

viscosity rapidly decreased with the increase of shear rate presenting a shear 

thinning behavior (Fig. 4a).  At any given shear rate, the solutions with 40 and 60 mg 

XG per mL of DMEM had the highest viscosities; however, when 60 mg/mL was 

used, partial dissolution of XG in the liquid media was observed limiting its 

concentration to below this value. The viscosity also increased progressively with the 

concentration of MC solutions (40, 60 and 80 mg/mL) but to a lower extent than XG 

solutions.  



 

Fig. 4. Viscosity as a function of shear rate of (a)  XG solutions (concentrations 

between 20 and 60 mg/mL), and (b) MC solutions (concentrations between 40 and 

80 mg/mL) in DMEM; (c) Viscosity of pastes formed with CaP glass microspheres 

(0.48g/mL of DMEM) of 125-200 µm in DMEM with either XG or MC as an excipient;  

(d) Viscosity of microsphere pastes using different size range of CaP glass 

microspheres formed with 40 mg/mL of XG and DMEM solutions. All measurements 

were performed at 20°C. 

 

Similar tests were performed with CaP glass microspheres (0.48g/mL of DMEM, 

125-200 µm) and excipient solutions (either 20, 40, 60 mg/mL of XG, 60 mg/mL of 

MC). Consistently, the results indicated that microsphere pastes containing XG had 

higher viscosities, in particular at low shear rate forming a solid-like paste at rest 
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(Fig. 4c). The best performance was obtained when using 40mg/mL of XG which 

provided excellent injectability and ensured full hydration of the XG (Fig. 4d). 

Nevertheless, the viscoelasticity of glass microsphere pastes consisting of 40 mg/mL 

of XG and 60 mg/mL of MC were further evaluated at 1Hz at 20°C.  The 

viscoelasticity results indicated that the elastic component (G’) dominated between 

0.001 and 10% shear rate in CaP glass microsphere pastes containing 40 mg/mL of 

XG. They had high G’ values (~27,000-29,000 Pa, Fig. 5a-c) and low phase angle 

values (=10-30° at 20°C) suggesting that XG containing pastes had a strong 

structure (Fig. 5a–c). These results were also consistent at 37°C in which the elastic 

component (G’) dominated across low and high frequencies indicating that the glass 

microsphere pastes behaved as a viscoelastic solid-like material (see Fig. 5b–d).  

Furthermore, evaluation of the system using 40mg/mL of XG at 20°C and 1H z 

showed that the linear viscoelastic region extended to a strain of 0.02 %; after this 

value, the structure of the microsphere paste started to change. The solid–like 

behavior and higher elasticity make this system very effective as a filler and its 

characteristics were maintained when the system was exposed to 37ºC. 

In contrast, glass microsphere pastes prepared with 60 mg/mL of MC showed low 

stiffness (G’ ~1300-400 Pa, Fig. 6a–c) in comparison to XG containing pastes.  The 

phase angle ( values were found to be between 20 and 60° indicating a liquid-like 

(viscous) behavior (Fig. 6a–c).  This performance was even more evident at 37°C as 

the system showed a linear viscoelastic region up to 0.39% in strain in comparison to 

0.01 % at 20ºC.  This indicated that although the microsphere paste prepared with 

MC could behave as a solid-like material at 20ºC, it may flow at rest when exposed 

to 37ºC. 



In addition, stability of the pastes were evaluated by immersing them in DI water for 

24 hours.  The results indicated that XG pastes hydrated but conserved the shape 

after this time, and even the shape was still visible after 48 hours; however, pastes 

formed with MC flattened after 1 hour of immersion and fully dispersed after the 24 

hour period. 

 

Fig. 5. Elastic component G’, viscous component G’’, and phase angle  as a 

function of shear stress for the pastes containing 125-200 µm CaP glass 

microspheres in DMEM and XG evaluated at 1Hz frequency at (a) 20°C and (b) 

37°C. G’, G’’, and  as a function of oscillatory frequency for similar glass 

microsphere pastes at (c) 20°C and (d) 37°C. 
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Overall, since the role of the carrier medium was to maintain a suspension of the 

glass microspheres (i.e. high viscosity) and then upon delivery the role was to resist 

shear forces to minimize transport away from the delivery site, the viscoelastic 

properties observed with XG proved to be highly beneficial for the flow 

characteristics of the glass microsphere paste, thereby enabling minimally invasive 

treatment opportunities utilizing small needles.  As such, XG was the excipient 

chosen for further investigation.  

  

Fig. 6. Elastic component G’, viscous component G’’, and phase angle () as a 

function of shear stress for the systems composed of microsphere pastes (125-200 

µm) in DMEM and MC at (a) 20°C and (b) 37°C. G’, G’’, and   as a function of 

oscillatory frequency for similar glass microsphere pastes at (c) 20°C and (d) 37°C. 

3.3. CaP glass microsphere paste formulation 
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The properties of the microsphere paste were also evaluated by combining porous 

and non-porous CaP glass microspheres of similar size-range together, and by also 

mixing porous microspheres between the two size ranges. Given that the aim of this 

study was to develop a formulation of mainly porous microspheres to carry stem 

cells, the base formulation was first formed using the initial formulation for porous 

CaP glass microspheres (1g of 60-125 µm or 0.48g 125-200 µm) and mixed with 

0.04g of gamma sterilized XG and 1 mL of DMEM. The amount of porous CaP glass 

microspheres was systematically reduced and replaced by non-porous (solid) glass 

microspheres to form a paste of similar consistency.  A plot of the weight of porous 

and non-porous CaP glass microspheres to obtain a paste which can be extruded 

through a standard syringe following an inverse linear relationship in which 0.10 g of 

porous microspheres could be replaced by 0.60 g of non-porous microspheres (Fig. 

7a–b). In all cases, to the right of the hatched box shows failure due to a high solid 

loading and filter pressing, and to the left of the hatched box shows the region in 

which the pastes have poor structure; neither are injectable (Fig. 7a) The hatched 

region indicates a successful combination of porous and non-porous CaP glass 

microspheres (Fig. 7a–b). 



 

Fig.  7. (a) Established formulations for injectable microsphere pastes using a 

combination of porous and non-porous with particle sizes between 60-125 µm using 

1 mL DMEM and 0.04g gamma sterilized XG; (b) as before but using particle sizes 

between 125-200 µm; and (c) porous CaP glass microspheres using a mixture of 

sizes (60-125 µm and 125-200 µm).   

The successful combination achieved with porous two screened glass microsphere 

sizes (60-125 µm and 125-200 µm) CaP glass microspheres is shown in Fig. 7c. The 

established formulations were plotted as a function of solid to liquid ratios (S/L, Fig. 

8).  High S/L (> 1 g/mL) were achieved by using a higher proportion of non-porous 

glass microspheres regardless the size range used; however, the formulations with 
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only porous CaP glass microspheres for the inclusion of stem cells will yield lower 

S/L (Fig. 8a). It is worth to mention that non-porous microspheres were also 

injectable with the combination of XG and media in S/L ratios slightly higher than 3.0; 

however, these pastes dry fast with the risk of forming filter cake during the injection, 

and they do not protect the delicate stem cells in the formulation. 

 

 

Fig. 8 Injectable formulations containing porous and non-porous CaP glass 

microspheres as a function of the S/L ratio (g/mL of solution); a) low S/L ratios (0.4 to 

1.3 g/mL) obtained mainly through the combination of porous microspheres; b) high 

ratios (1.5 to 3.0 g/mL) obtained when non-porous spheres are introduced in the 

formulation. 

3.4. Injection pressure 

The pressures for extrusion of microsphere pastes containing XG, CaP (0.48 g, 125-

200 µm)  and DMEM (1 mL), were quantified between 0.3 and 0.5 MPa using syringes 

of 3, 10 and 20 mL (Fig. 9a). Similar pressures (< ~0.4 MPa) were required to extrude 

pastes of all formulations tested, and even when using different range size of 

microspheres (Fig. 9b–d).  These pressures are low enough to inject the pastes by 

hand without any need of a special device to aid with the pressure of system. The low 

pressures required to extrude the pastes were only possible with the addition of XG to 
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the mixture, without XG the pressures reached 300MPa to extrude 30% of the paste 

before the syringe failed. A more detailed discussion regarding pressures as a function 

of load are not applicable to the glass pastes studied in this work because the material 

is not homogeneous in size and the microspheres have different porosities; these 

factors make a different structure in every batch.  Nevertheless, the use of XG made 

possible to reduce the pressures to inject by hand without noticing a difference in 

behavior during injection acting as a modifier of the rheological properties of the CaP 

glass. 
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Fig.  9. (a) Total pressure required to extrude the microsphere paste using 0.48g/mL 

and 125-200 µm CaP glass microspheres through 3, 10 and 20 mL syringes and a 

14G needle; in all three cases the pressures were below 0.5 MPa; (b) total pressure 

to extrude porous and non-porous microsphere pastes  (60-125 µm) using 3 mL 



syringes; c) total pressure required to extrude porous microsphere pastes (60-125 

µm and 125-200 µm) using 3 mL syringes; d) total pressure required to extrude 

porous and non-porous microsphere pastes (125-200 µm) using 3 mL syringes. 

4. Discussion 

Recent developments in bone regeneration have shifted towards orthobiologics, 

where one of the approaches explores the use of cell therapy treatments which 

involves the utilization of novel emerging biomaterials with the capability to 

accommodate stem cells, whilst also contributing essential elements for bone 

formation and repair (Hu et al., 2018; Cho et al., 2012). Porous microspheres 

constitute an effective material to fulfil these needs and tunable porous CaP glass 

microspheres have recently been produced for the first time (Hossain et al., 2018).  

As-synthesized and mixed with simple DMEM, these porous microspheres are not 

injectable as they require high forces (>300N) for extrusion and the formation of a filter 

cake within the injection device does not allow delivery of the intended formulation.  

Addition of xanthan gum (XG) to the CaP glass microsphere paste dispersed in liquid 

media (either DMEM or saline solution), increased the viscosity and imparted elasticity 

to form a paste that ultimately improved its flow characteristics and facilitated injection 

and delivery.  This improvement was maintained at both room and body temperature.  

Similarly, methyl cellulose (MC) and carboxyl methyl cellulose (CMC) also improved 

the flow properties of the glass microsphere paste, however, the resulting paste was 

found to behave predominantly as a viscous-liquid, prone to dispersion from the place 

of injection, in particular at body temperature (Fig. 5c–d). Previous studies have 

demonstrated that viscosity is a key factor that determines flow of filling materials 

(Bou-Francis et al., 2015; Baroud, 2004; Baroud and Bohner, 2006; Bohner et al., 

2003), however this study showed that the increase of viscosity alone does not 



improve the flow behavior of porous CaP glass microspheres.  Other factors such as 

particle size distribution and the intrinsic surface area can also affect the viscosity and 

the flow characteristics.  

The glass microsphere paste formulations prepared with XG were able to be 

extruded from standard syringes in the range of 3 to 20 mL using relatively small 

diameter needles (14G and 18G). Furthermore, the addition of XG into the system 

prevented the CaP glass microspheres from damage during delivery (Fig. 3c and d) 

as the injection pressure was reduced to less than 0.5 MPa. The optimum behavior 

was achieved when using 40 mg/mL of XG; below this concentration the 

microsphere-media mixture showed poor structure and showed formation of a filter 

cake in common with the formulation not including XG.   

The formation of a paste prepared with porous CaP glass microspheres was greatly 

affected by the presence of non-porous microspheres. As such, the formulations to 

make an injectable paste were restricted to specific proportions between non-porous 

and porous CaP glass microspheres.  Injectable formulations which combined 

porous and non-porous CaP glass microspheres followed a linear relationship given 

by massnon-porous= 6*massporous (within 0.02 g in weight).  This relationship is mainly 

related to the density of the particles as the volume fraction was maintained constant 

(i.e., the density of the non-porous particles is ~ 4 times higher than the porous 

particles) but this relationship also depends on the packing of the microspheres. The 

porous CaP glass microspheres allowed greater fluid volume to be carried (i.e. within 

the internal structure of the particles) whilst maintaining an efficient formulation for 

delivery (i.e. both injectable and with structural properties in absence of flow). The 

presence of non-porous CaP glass microspheres in the formulation increased the 

solid to liquid ratio from 1.0 g/mL to 3.0 g/mL (i.e. 10% non-porous 1.5 g/mL; 20% 



non-porous 2.0 g/mL; 40% non-porous 3.0 g/mL).  This is important because non-

porous CaP glass contributes to a higher concentration of biotherapeutic ions (e.g., 

Ca2+, Mg2+) that could potentially play important roles during the bone repair and 

regeneration process (Fig. 3c and d).  This also allows tuning of the overall 

formulation to provide structural rigidity and a source of ions whilst carrying cells 

(and or other biological entities), depending on the particular end application.  In 

addition, having non-porous CaP glass microspheres as a result of a manufacturing 

process, no more than 8% from the total mass of the batch of microspheres should 

be solid to be injectable in a formulation targeted to include mainly porous 

microspheres to carry stem cells. 

The size range of the particles also affected the formulation of the microsphere 

pastes. For 1mL of either DMEM a successful composition consisting of 1g of 60-125 

µm or 0.48g of 125-200 µm of CaP glass microspheres was required to maintain the 

ideal consistency of the paste for delivery.  This indicated that the larger CaP glass 

microspheres required twice the volume of solution to form the paste than the 

smaller microspheres, suggesting that increasing the proportion of larger 

microspheres in the formulation, would decrease the S/L ratios.  Conversely, the use 

of only porous microspheres would yield lower solid to liquid ratios. 

During the injection process, the pressure rapidly increased at the beginning of the 

injection; however, it was maintained below 0.5 N/mm2 providing good flow, even 

when using large syringes (10-20 mL) and small needles (14G and 18G). The pressure 

profiles of injecting CaP glass microsphere pastes evaluated here, showed the same 

trend as those presented in previous works for irregular shaped calcium phosphate 

materials, in which the pressure rapidly increased reaching a steady state as the 

extrusion of the paste progressed (Bohner and Baroud, 2005). Our study 



demonstrated that the increase of viscosity does not necessarily improve the flow 

characteristics of the porous CaP glass microsphere, at least with their composition 

and morphology, but particle size, surface area and in particular, the elastic 

component imparted by XG played a significant role. This is contradictory to the 

reported injectability of  similar CaP glass materials in which an increase in viscosity 

increases injectability (Bohner and Baroud, 2005); however, in this work that behavior 

was not observed as demonstrated with our results using MC in which only the 

viscosity is increased.  Instead, the elasticity and viscosity of XG allowed the porous 

CaP microspheres to form an injectable paste.  These characteristics in-turn impart 

restrictions on the S/L ratio restricting the formulation.  Overall, the addition of XG in 

the optimal concentration produced a robust CaP microsphere paste, which could 

deliver microspheres without damage easily via simple injection through small < 2mm 

inner diameter needles.  

5. Conclusions 

Porous and non-porous CaP glass microspheres synthesized for cell-based bone 

regeneration treatment were found to be injectable when excipient was added. From 

the excipients evaluated, xanthan gum provided the best flow characteristics 

compared to methyl cellulose and carboxyl methylcellulose at room and body 

temperature. The extrusion of paste was achieved using 14G and 18G needles and 

syringe in sizes from 3 to 20 mL.  The use of xanthan gum protected the porous CaP 

glass microspheres from damage during injection due to its viscoelastic properties. 

Formulation of porous CaP glass microspheres for delivery in paste form must follow 

specific ratios and adjustments must be made when non-porous microspheres are 

present. Flow characteristics of the glass microsphere paste in media (i.e. DMEM or 

saline solution) depend on particle size, surface area, S/L ratio, and concentration of 



excipient that provides viscoelastic properties.  Overall, a formulation with xanthan 

gum as an excipient to porous CaP glass microspheres allowed for effortless delivery 

through narrow diameter needles.  
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