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Abstract—Freezing of gait (FOG) is an episodic gait disturbance 
affecting locomotion in Parkinson’s disease. As a biomarker to 
detect FOG, the Freeze index (FI), which is defined as the ratio of 
the areas under power spectra in ‘freeze’ band and in ‘locomotion’ 
band, can negatively be affected by poor time and frequency 
resolution of time-frequency spectrum estimate when short-time 
Fourier transform (STFT) or Wavelet transform (WT) is used. In 
this study, a novel high-resolution parametric time-frequency 
spectral estimation method is proposed to improve the accuracy of 
FI. A time-varying autoregressive moving average model (TV-
ARMA) is first identified where the time-varying parameters are 
estimated using an asymmetric basis function expansion method. 
The TV-ARMA model is then transformed into frequency domain 
to estimate the time-frequency spectrum and calculate the FI. 
Results evaluated on the Daphnet Freezing of Gait Dataset show 
that the new method improves the time and frequency resolutions 
of the time-frequency spectrum and the associate FI has better 
performance in the detection of FOG than its counterparts based 
on STFT and WT methods do. Moreover, FOGs can be predicted 
in advance of its occurrence in most cases using the new method.   
 

Index Terms—Freezing of Gait (FOG), Freeze index (FI), time-
frequency spectral estimation (TFSE), time-varying auto-
regressive moving average (TV-ARMA) model, asymmetric basis 
function, wearable inertial sensor. 
 

I. INTRODUCTION 
S the world second prevalent neurodegenerative disease, 
Parkinson's disease (PD) impacts more than sixteen million 

people worldwide and this number is expected to double by 
2050 [1]. Results of a survey of 6620 patients with PD showed 
that about half have the experience of regular gait freeze [2]. 
FOG is defined as an incapacity to coordinate the motion input 
and concurrent cognitive in the brain, resulting in that PD 
patients can’t move their feet in spite of the intention to move. 
This symptom commonly occurs in gait initiation, turning, 
passing through narrow space or approaching obstacles in 
patients’ daily life, which significantly increases the risk of 
falling during walking. The facts that FOG often happens 
suddenly, asymmetrically, and with a short duration [3-5] make 
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the clinical detection, tracking and evaluation of the onset of 
FOG a challenging task.  

Clinical assessment to FOG based on questionnaires 
(UPDRS, NFOG-Q) and manual video analysis of in-lab 
activities by clinicians [6] may be subjective because of the 
dependence on the experience of clinicians and the description 
ability of patients. Therefore, an accurate and automatic FOG 
detection approach is desired to objectively detect or even 
predict the onset of FOG in advance. Recently, the development 
on wearable technologies makes it possible for researchers to 
objectively assess Parkinson’s disease severity [7], obtain 
insightful information on gait characteristics of patients with 
neurological disorders [8], and even accurately detect FOG in 
daily life. In comparison to electrophysiological signal such as 
Electroencephalography (EEG) [9], wearable devices are more 
suitable for long-term monitoring PD in living conditions 
because of its light in weight, unobtrusive and comfortable.  

An increasing number of attempts based on wearable inertial 
sensors have been made to automatically detect FOG. In 2008, 
Moore et al. [10] proposed freeze index (FI) which was defined 
as the ratio of power spectral densities in freeze band (3-8 Hz) 
and locomotion band (0.5-3 Hz) to characterize FOG using 
frequency domain information. A simple threshold was 
determined to discriminate FOG from normal locomotion 
because more high frequency components were observed in 
FOG spectra. The FI is time-variant and instant FI can be 
calculated using a short time Fourier transform with a moving 
window of six seconds. The FI was extended by Bächlin et al 
[11], where an extra power index which represents the total 
energy in the range of 0.5-8 Hz was introduced to eliminate the 
effect of standing periods to the detection of FOG. Based on the 
FI, a wearable assistant system has been designed to 
automatically detect FOG and apply a rhythmic auditory 
intervention to help patients to resume walking while FOG is 
happening [12]. Many efforts have been made based on FI and 
wearable sensors to improve the classification accuracy [13-16]. 
The state-of-the-art machine learning methods have also been 
employed in the detection of FOG and a classification accuracy 
better than 80% has been achieved [17-20]. However, in many 
studies, a FOG event is marked as correctly detected only if the 
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FOG duration is touched with the labelled FOG duration. That 
is, the FOG episodes have actually not been accurately located. 
This limits the application of FOG detection in real time 
intervention.  

The time-varying FI is defined based on the time-frequency 
spectra of the vertical accelerations, so the quality of the time-
frequency spectral estimation (TFSE) determines the reliability 
of the FI and the associated discrimination of FOG. Short time 
Fourier transform (STFT) which was used as the standard 
method in the estimation of the FI has its drawbacks in the time-
frequency spectral estimation. The obtained TFSE highly 
depends on the size of the slide window in the STFT. A wide 
window produces a TFSE with good frequency resolution but 
this may blur the time resolution. However, decreasing the 
window size leads to a higher time resolution but spoils 
frequency resolution in the TFSE. Continuous wavelet 
transform (CWT) can be considered as a transform with multi-
scales and can be adopted to the time-varying signal avoiding 
the determination of window size. However, the selection of a 
proper basis function can be difficult and CWT is known to 
suffer from a spread spectrum [21].  

Time-varying auto-regressive moving average (TV-ARMA) 
model with basis function expansion has been developed for 
time-varying systems identification and the associated TFSE 
[22-26]. A time domain model is firstly identified and the time-
frequency spectral is indirectly estimated by transforming the 
time domain model to alleviate the time-frequency dilemma 
Basis function expansion time-varying (nonlinear) 
autoregressive with exogenous input (TV-(N)ARX) model 
combined with orthogonal forward regression algorithms have 
been proved to be powerful in describing complex non-
stationary processes [27-29]. Recently, Guo et al. showed that 
asymmetric basis function TV-NARX inspired by neuronal 
dynamics can significantly improve model’s ability in tracking 
both smooth trends and abrupt changes and improve the model 
sparsity [30].  

In this study, the asymmetric basis method is extended to the 
identification of TV-ARMA models by introducing an extra 
iterative process for the moving average noise model and used 
to improve the time and frequency resolution of TFSE and the 
accuracy of FI. A novel two-step calculation method for FI is 
proposed. Firstly, a time-varying autoregressive moving 
average model (TV-ARMA) and the associated identification 
methods are developed for characterizing the nonstationary 
FOG accelerations in the time domain using the asymmetric 
basis function expansion method. The time-frequency spectrum 
(TFS) is then obtained by transforming the time domain time-
varying model into frequency domain and an accurate FI can 
then be calculated. 

The contribution of the paper includes: asymmetric basis 
function TV-ARMA model and the associated identification 
method is proposed for modelling nonstationary signals; a new 
indirect parametric TFSE method is proposed by transfer the 
TV-ARMA model into frequency domain; A more accurate and 
reliable FI is calculated based on the higher resolution TFSE. 
Combined with the wearable sensor technologies, the new 
findings can be useful for monitoring PD patients in real life 
conditions and for unattended nursing of advanced PD patients. 

II. METHODS 

A. Dataset 
The Daphnet public FOG dataset, which comprises 8.5 hours’ 

inertial signals data from idiopathic PD patients was used in this 
study. Ten advanced PD patients (7 males) who had the 
capacity in walking unassisted in the “OFF” period were 
recruited. These patients (66.5±4.8 years old, Hoehn-Yahr 
score (H&Y) [31] in ON is 2.6±0.65) were diagnosed as PD at 
13.7±9.67 years ago, and only eight subjects manifested FOG 
episodes during the experimental tasks. Three tri-axial 
accelerometer sensors were placed at the ankle (shank), on the 
thigh just above the knee, and on the hip. Data were recorded in 
the lab at a sampling rate of 64 Hz.  

More than 12 hours after their last anti-parkinsonian 
medication intake, participants were informed to perform three 
kinds of tasks: walking back and forth along a straight line 
hallway and performing several turns of 180°; walking in the 
lab room while executing initiated stops and turns of 360°; and, 
finally a more realistic activity of daily living (ADL) task, 
where subjects went into different rooms while fetching coffee, 
opening doors, etc. The tasks were designed with an emphasis 
on generating many freeze events. The digital video camera was 
adopted to implement synchronous video recording throughout 
the whole process of experiment. The movement data of 
patients were acquired in parallel with the video recording and 
synchronized at every start. Annotating and analyzing the video 
recording, the physiotherapists recognized a total of 237 FOG. 
There were three types of labels in the data processed by 
physiotherapists: FOG, normal movement, not belong to the 
experiment. A pre-screen was performed and the not motion-
related data segments were removed. The duration of FOG 
ranged from 0.5 sec to 40.5 sec (7.3±6.7 seconds).  

B. Asymmetric Basis Function TV-ARMA Model and 
Identification 

In this study, a new indirect non-parametric time-frequency 
spectral estimation method is proposed. The new method 
essentially includes two steps: the system identification of TV-
ARMA model from non-stationary time series and the 
estimation of the time-frequency spectrum from the obtained 
time domain model. The first step is crucially important 
because the TV-ARMA is needed to be capable of not only 
fitting the measurements but also accurately characterizing the 
time-varying system dynamics so that the associated frequency 
domain representation, namely, the frequency response 
function, well agrees with the time-frequency spectrum of the 
nonstationary process.  

Consider the general TV-ARMA model [22]:  

      
1 1

( ) ( ) ( )
p q

i j
i j

y k a k y k i b k e k j e k
 

      (1)

where 1,2,k N  ( N is the length of samples) is the time 
index of observed data; ( )y k  and ( )e k denote observed system 
output (time series) and noise, respectively, with maximum 
delays p and q respectively, ( )e k is the model error that is a 
(i.i.d.) white noise sequence with zero mean and variance 2

e . 
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In the model, ( )ia k  and ( )jb k  stand for the corresponding 
time-varying coefficients which may change smoothly or 
abruptly in the process.  

The time-varying coefficients ( )ia k and ( )jb k  are 
approximated as superposition of a set of over completed basis 
functions. Results [32] showed that a sparser representation can 
be obtained when postsynaptic current like asymmetric basis 
functions was used.  
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where M and L are the size of the two sets. , ,,i m j l   denote the 
final time-independent parameters to be estimated after 
decomposition using asymmetric alpha basis function. 

( )

( ) ( )
( ) 1

( )
M L

M L m l
m l

k 
 

    
 

 is a set of alpha basis function shaped 

by: 

 1 1( )( , ) ( 0) (1 )
( ) ( )

a ba bk a b k k
a b

   
  
 

 (3)

where 1 a b  , ,a b  are the parameters control the shape 
of the wavelet function. ( )   is the generalized factorial 
function of Euler.  and  are the translation and scale 
parameters of alpha basis function. 

Substituting (2) into (1), the TV-ARMA model can thus be 
rewritten as: 

     , ,
1 1 1 1

( ) ( ) ( )
p qM L

i m m j l l
i m j l

y k k y k i k e k j e k   
   

       

(4) 
Model (4) can be rearranged as a simple form:  
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 (5)

  A matrix form for the formula (5) is given as: 
 T  y ș e  (6)

where the new variable  1[ ( -1), , ( - )]  N
k My k y k p    

1,[ ( -1), , ( - )]N
k Le k e k q   denotes the candidate dictionary, 

where   is the Kronecker product, and Tș indicates the 

transpose of time-invariant parameter matrix 1,1 1,2[ , ș   

1, , 1,1 1,2 1, ,, , , , , , ]M p M M q M         , y and e  are the 

model output data and noise error respectively. 
As discussed above, the initial TV-ARMA model (1) can be 

treated as the system identification of time-invariant linear-in-
the-parameter model (6) with model terms and the associated 
constant coefficients  . However, the over-complete basis 
functions may lead to the numerically ill-posed problem and the 
detection of the model structure is entwined with the estimation 
of the associated parameter. Tedious trial-and-error processes 

for a parsimonious model structure need to re-estimate the 
parameters for each trial. The combinations can be enormous 
and the process is computationally infeasible. The LROFR 
algorithm family which decouples the model structure detection 
and the parameter estimation by orthogonalizing the model 
terms and selecting model terms stepwise has successfully used 
for the identification of different kinds of model. The LROFR 
algorithm can further enhance the capacity for model selection 
to produce a sparser model with good generalization 
performance. For the details about LROFR, refer to paper [32]. 

In order to identify the moving average noise model, an 
iterative process is employed because the noised terms 

( -1), , ( - )e k e k q  are not known. In the process, a TV-AR 
model is firstly identified using LROFR algorithm and the 
residual series        1 11 , ,k k q    are used to replace the 

noise terms ( -1), , ( - )e k e k q , respectively. A TV-ARMA 
model can then be identified and a new residual series 

       2 21 , ,k k q   is then obtained. Repeat the process 
until the model is converged. A similar identification technique 
has been used in the identification of time invariant NARMAX 
model [33].  

C. Time-Frequency Spectral Estimation  
Once the TV-ARMA structure and the associated time-

varying coefficients are determined using the LROFR 
algorithm, the time-frequency  spectrum can then be estimated 
using the following rational spectral estimation formula [34]: 

 

22
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2

1

ˆ1 ( )
( , )

ˆ1 ( )

s

s

h jf
q f

jj
TDS e h if

p f
ii

b t e
P t f

a t e




















 (7)

where ( , )TDSP t f  is the TFSE value at time t  and frequency f , 

ˆ ( )ia t  and ˆ ( )jb t  is the estimation of TV-ARMA model 

parameters ( ),  ( )i ja k b k ,  2
e  is the variance of model residual, 

sf  is the sampling frequency and -1h   denotes the 
imaginary part of a complex number. 

Formula (7) represents the frequency response function (FRF) 
of a time-varying ARMA process, which is a frequency domain 
description of the original time series. This description is 
sufficiently accurate when the time-varying coefficients change 
at a relatively slow rate [35]. It can be observed that poles and 
zeros of the FRF (7) correspond to peaks and valleys in the TFS 
respectively. The frequency spectrum, therefore, changes with 
the changes of the poles and zeros which are determined by the 
time-varying coefficients. The non-stationary dynamic process 
is characterized by the time-varying ARMA model and then by 
the time-varying FRF. There are several significant advantages 
in the indirect parametric TFSE method than the direct 
transforming methods, such as short-time-Fourier-transform 
and wavelet transforms. Firstly, the obtained TFS is robust to 
the effects of noise because the noise pollution has 
automatically be eliminated in the modelling process and only 
the most important system models (frequency components) 
remains in the simple model structure. Secondly, the obtained 
TFS is less spread and the most important frequency 
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components play a prominent role. Finally, smooth coefficients, 
which can change abruptly but still continuously over time, can 
be obtained when proper regularization techniques are used in 
the modelling process. A smoothly changing spectrum can then 
be obtained. These features can be observed from the results in 
Section III.   

D. Calculation of Freeze Index  
The freeze index (FI) at time t  was defined as the ratio of the 

area under power spectra in the ‘freeze’ band (3-8 Hz) and the 
area under the spectra in the ‘locomotion’ band (0.5-3Hz)[10]. 
The instant power spectra are traditionally calculated using 
short time Fourier transform with a fixed window (centred at 
time t ) [10-12, 36, 37]. The calculated FI may be sensitive to 
the window size. For example, the power spectra cannot be 
accurately estimated based on a limited number of data in a 
narrow window whilst the power spectra can be blurred when a 
long window is used. This can be avoided using the method 
proposed in the previous subsections and accurate TFSE with 
simultaneously high time and frequency resolutions can be used 
to calculate the instant FI. 

Because STFT or WT was not able to well capture the time-
frequency transient features resulting in poor performance for 
FI in detecting of FOG episodes, the FI is calculated using the 
TFSE obtained above. To reduce the effect of the window size, 
the instant FI is calculated employing the ( , )TDSP t f  as 

 
8

3
3

0.5

( , )
( )

( , )

TDS

TDS

P t f df
FI t

P t f df
 


 (8)

where the time as well as frequency are continuous independent 
variables.  

The whole proposed processes for the calculation of FI and 
the automatic detection of FOG can be summarized as follows: 

Step 1: Data preprocess: preprocess the raw accelerometer 
data using low pass and zero lag filter with a 16 Hz cutoff 
frequency. 

Step 2: Model Construction and asymmetric basis function 
expansion: construct the dictionary of TV-ARMA (p, q) model 
terms 1[ ( -1), , ( - ), ( -1), , ( - )]N

ky k y k p e k e k q   and the over-
complete alpha basis function basis   ( )

( ) ( ) ( ) 1

M L

M L m l m l



  , then 

combine the two dictionaries by   to generate the candidate 
term dictionary , the order of model p and q is determined by 
AIC criterion. And the initial error can be obtained in Step 4.  

Step 3: Model terms selection and parameter estimation: use 
the LROFR algorithm to select the model terms and 
approximating the corresponding time-varying parameters. 

Step 4: System identification of the noise model: firstly, 
apply LROFR algorithm to identify a TV-AR model, namely, 
set 0q   in Step 2. Then replace the noise terms in TV-ARMA 
model with the residual series obtained in TV-AR model. 
Repeat the process until the model is converged. 

Step 5: Time-frequency spectral estimation: estimate the high 
resolution time-frequency spectral using (7). 

Step 6: Calculation of FI: calculate the high resolution TFSE 
and FI defined in (8). 

Step 7: Automatic detection of FOG: select an optimal global 
threshold, which can match the predictions with the ground 
truth best, to classify the FOG and free-FOG automatically. 

III. RESULTS 

A. Numeric Study 
In the part, we performed a numerical experiment to prove 

the new indirect and high time-resolution TFSE method based 
on TV-ARMA model has a better performance than traditional 
methods in calculating a more powerful FI for FOG detection 
automatically. The normal locomotion and FOG segments were 
generated by filtering Gaussian white noise series which 
follows an i.i.d. Gaussian distribution N(0, 0.025) with band-
pass filters with a pass bands 0.5-3Hz and 3-8Hz, respectively. 
The data was shown in Fig .1(a) and the TSFE and associated 
FI were displayed in Fig .1 (b), (c), (e), which are corresponding 
to the three methods STFT, CWT and the proposed TV-ARMA 
model with LROFR algorithm. The FIs for these methods were 
selected to best match the predictions with the ground truth in 
this case. In order to demonstrate the advantages of the 
proposed method in estimation of TFSE and the associated FI, 
twenty artificial data were analyzed using STFT, CWT and the 
proposed method, respectively. The typical TFSE and the FI are 
shown in Fig. 1. The average correctness of detection of FOG 
was evaluated by sensitivity (SEN), specificity (SPE), accuracy 
(ACC) and the average of sensitivity and specificity (ASS), 
which were listed in TABLE I. 

 
(a)  

 
(b)  (c)  (d)  (e)  

Fig. 1.  Performance of four FI calculation methods on artificial data. (a) A 20s 
artificial FOG data. (b) TFSE and FI based on STFT, (c) CWT, (d) TVARMA 
with RLS algorithm and (e) asymmetric basis function TV-ARMA. The bar on 
the bottom shows the ground truth, where red color denotes the artificial FOG 
episodes and green the artificial FOG-free periods, respectively. The white 
horizontal broken lines in TFSEs indicates the boundary frequency (3 Hz) 
between normal locomotion band and FOG bands. The black horizontal broken 
line is the threshold which discriminates the FOG events from normal 
locomotion, particularly, the magenta shadowed area demonstrated the FOG 
episodes identified by the calculated FIs. 

 

TABLE I 
COMPARISON OF METHOD PERFORMANCES ON ARTIFICIAL DATA 

Methods SEN(%) SPE(%) ACC(%) ASS(%) 

STFT 72.28 73.85 73.76 73.12 
CWT 96.31 93.31 94.96 94.81 

TV-ARMA 
with RLS 94.23 94.00 94.14 94.11 

TV-ARMA 
with LROFR 99.20 94.59 96.86 96.90 

where bold fonts indicate the best results. 
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B. Application to Typical FOG Segments  
The Daphnet public dataset comprised of accelerometer 

signals of 10 subjects were used. Removing the two subjects 
who manifested no FOG events and the data matching with the 
annotation unrelated to three experimental tasks, four typical 
FOG patterns were selected from three patients (subject 02, 05 
and 07) respectively with 20s data, namely, 1280 samples in 
each data fragment, to validate the algorithm. Results were 
compared with the literature [12] and [13]. For the reason of 
convenience in real applications, the vertical direction 
accelerations acquired at shank (above ankle) were adopted. 
These samples were filtered using low-pass Butterworth filter 
with a 16Hz cutoff frequency.  

We first evaluated the performance of new TFSE and FI on 
a 20s data extracted from subject 02. The TV-ARMA model 
was initialized with the system orders 4, 5p q  . An over-
complete basis which consisted of time-shifted alpha basis 
functions was built by setting all the alpha functions to have the 
same shape parameters 3, 7a b  in formula (7), the shift and 
scale parameters 512  , - 1 N    . For simplicity, a single 
scale basis function was used. The scale hyper-parameter was 
optimized in the identification by evaluating the model 
performances under different scales. These asymmetric basis 
functions were then combined with the process terms to form 
the time-varying dictionary for the forward term selection 
process. The LROFR algorithm was then employed to conduct 
the model selection and parameters estimation. Combined with 
the model error obtained by LROFR process, the APRESS 
criterion was applied to determine the appropriate model size 
(when to stop the model selection process). Two iterations were 
performed to ensure the condition given at Step 4 in Section ჟ 
(D). In the first iteration process, the model order was 
determined as 4,  0p q  , in another word, a TV-AR model 
was estimated. Thereafter the asymmetric basis function TV-
ARMA model with the order 4,  5p q  was built in the second 
iteration because all the noise terms with a delay greater than 2 
were not significant in the model structure detection. 

The model order was determined as p=4 and q=5 (as shown 
in Fig. 2) by criteria Akaike information criterion (AIC) [38] 
below: 

 2
,ˆ( , ) ln( ) ln( )p q

p qAIC p q N
N

 
   (9)

where 2
,ˆ p q  is the variance of the model residuals calculated 

from the associated p-th and q-th order model, N denotes the 
data size. Model performance is much less sensitive to q than to 
p because the MA(q) noise model describes the dynamics of the 
residuals which is obtained from the AR(p). Hence, the 
hyperparameters p and q is determined in a two-step procedure. 
In the first step, an AR(q) model is used to identify the non-
stationary process and the model order p* which produced 
minimum AIC value was selected as the AR model. In the 
second step, an ARMA(p*, q) model was used to further 
improve the identification performance. The change of AIC 
with q is calculated and the q* which produced the minimum 
AIC value is selected to construct the optimal ARMA(p*, q*). 

In the paper, the AIC criterion was performed based on three 
different sets of 1280 data fragments from the patient 02, 05 and 
07, respectively. The AIC curves were given in Fig. 2.  

The obtained TV-ARMA model was then transformed into 
the frequency domain according to formula (7) and the 
associated TFSE was calculated. The FI was calculated by 
numerical integration of the power spectra of the TFSE over the 
freeze band and normal locomotion band. In order to assess the 
performance of the proposed method, the TFSE and FI 
calculated with STFT and CWT were also calculated and 
compared with the same settings in the literature [12], and [13]. 
It should be noted that complex Morlet wavelet was used in the 
CWT because of its capability in effectively handling 
nonstationary signals [39-41]. The results are shown in Fig. 3 
(b, c, e). The thresholds for three FIs were 1.5, 0.8 and 1.7, 
respectively. The FI for STFT was set the same as in the 
literature. The FIs for CWT and the proposed method were 
selected to best match the predictions with the ground truth. 
These thresholds were fixed in the study of the other three data 
segments to evaluate the effect of inter and intra subject 
variability. In order to further compare the performance of three 
different TFSEs and FIs in terms of accuracy and specificity 
under the effects of inter and intra subject variability, other 
three 20s data fragments from subject 02, 05 and 07 were 
studied, respectively. All the three new fragments were 
analyzed with the same setting as in the first example and same 
thresholds for FIs were used in the FOG detection. The results 
are exhibited in Fig. 4 (b, c, e), Fig. 5 (b, c, e) and Fig. 6 (b, c, 
e), respectively.  

 

  

(a)  (b)  
Fig. 2.  The model order selection of asymmetric basis function TV-ARMA 
method. (a) The AIC curve in determination of p with q = 0, namely, the TV-
AR model order. (b) The AIC curve in selection of q with p = 4. 

C. Results for Full FOG Data  
To evaluate performance in detecting FOG using the new 

asymmetric basis function TV-ARMA method, some 
comparison with the direct TFSE methods, STFT and CWT 
were performed on the whole dataset. The results including the 
accuracy, sensitivity, specificity, average of sensitivity and 
specificity (ASS) were shown in TABLE II. 

 

 
TABLE II 

COMPARISON OF METHOD PERFORMANCES ON REAL DATASET 
Methods SEN (%) SPE (%) ACC (%) ASS (%) 

STFT 85.64 58.45 68.01 72.05 
CWT 81.63 59.43 65.80 70.53 

TV-ARMA 
with RLS 84.16 61.06 70.71 72.83 

TV-ARMA 
with LROFR 86.35 66.36 72.83 76.35 

where bold fonts indicate the best results. 
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(a)  

    
(b)  (c)  (d)  (e)  

Fig. 3.  Performance of four FI calculation methods on data segment extracted from subject 02. (a) 
The 20s vertical accelerometer and the expert annotation. (b), (c), (d) and (e) show the TFSE and FI 
obtained using STFT, CWT, TVARMA with RLS method and the proposed asymmetric basis 
function TVARMA method, respectively. The detection results of the FOG using these four FIs were 
denoted by the shadows where shadowed time intervals represented FOG episodes. Notations are 
defined as in Fig 1. 

 

IV. DISCUSSIONS 
The new method proposed in Section II was applied to both 

artificial and real data from subjects who manifest FOG 
episodes. The comparison results in Section III demonstrated 
the feasibility of discriminating FOG from locomotion using 
the proposed high time and frequency resolution TFSE and FI 
method. Results in TABLE I showed that the performance of 
CWT and TV-ARMA method was significantly higher than that 
of STFT and TV-ARMA produced a much sharp switch 
between the simulated normal and FOG data. Hence, the 
classification of FOG is hardly changed when the threshold is 
changed. However, it is not the case for the CWT results. This 
means that the FI obtained using TV-ARMA is much more 
reliable and robust to the selection of threshold. 

The parts (a) of Fig. 3, Fig. 4, Fig. 5 and Fig. 6 present the 
different types and durations of FOG events, which occur at 
diverse stages of movement such as gait initialization, turning, 
and encountering an obstacle. Furthermore, the time-frequency 
spectra and freeze index associated with the data segments are 
displayed in part (b), (c) and (e). The TFS and FI were estimated 
using three different methods STFT, CWT and the proposed 
indirect method and shown in the figures, respectively.  

As is shown in the upper part of Fig. 3 (b, c, e), it can be seen 
with great ease that the proposed method outperforms the exited 
ones in providing a very continuous and smooth time-frequency 
spectral image with high resolution. Specifically, the time-
frequency image in Fig. 3 (b) is discontinuous in frequency and 
losses a lot of local information due to it is extremely 
formidable for STFT method to obtain a better time resolution 
and frequency resolution simultaneously. This disadvantage is 
determined by the essence of FFT with a fixed window, namely 
FFT is applied for short overlapping sequences in terms of the 
assumption of local stationary. We can hardly get a clear 
spectrum using a limited number of data points.  As for CWT 

approach shown in Fig. 3(c), although it can address the time-
frequency resolution trade-off issue to some extent using 
adaptive scales, however, the obtained TFS has good frequency 
resolution but poor time resolution for low frequencies, whereas 
good temporal resolution but poor frequency resolution for high 
frequencies. This is because the short-scale wavelets required 
for higher frequency analysis have wider bandwidth, and hence 
lower spectral resolution, than the longer-scale wavelets for low 
frequencies, vice versa [42]. The time-frequency spectral 
distribution in Fig. 3 (e), which was produced by the proposed 
parametric method, however, can apparently imply the global 
frequency behavior of the nonstationary data and reveal the 
local variations of the dynamic signal along the time course. 

It is worthy to emphasize that both poor frequency and time 
resolutions may undermine the accuracy of FI in the detection 
of FOG. A poor frequency resolution may blur the frequency 
boundary between normal locomotion and FOG and lead to a 
poor FI criterion. This may result in abrupt changes in FI value 
and lead to false positive of FOG, which can be observed in the 
CWT based FIs. On the other hand, a poor temporal frequency 
may lead to an unclear border between normal locomotion and 
FOG episode, which is also manifested as a flat FI which is 
sensitive to the selection of the threshold. Both high resolutions 
in time and frequency can improve the quality of FI which is 
more powerful in discriminating the FOG from normal motion 
and not sensitive to the threshold. It can be observed that we 
can easily distinguish the freezing band from the normal 
locomotion band through the 3Hz segmentation line because a 
relatively clear ridge which changes over time can be observed 
in the time-frequency distribution by new TFSE method. This 
is not clear in the time-frequency spectra obtained using STFT 
and CWT in Fig. 3 (b, c). It may need to be noted that there is 
energy spreading over 8 Hz when FOG events occurred, which 
may indicate that a wider frequency range can be considered 
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when defining FI. Comparing the results in Fig. 3(b, c, e), the 
proposed asymmetric basis function TV-ARMA modelling 
scheme can provide a high time resolution time and frequency 
spectrum, which constructs a more convenient and accurate 

framework for capturing the time and frequency components of 
the acceleration signal and detecting FOG events without the 
need of patient intervention. The FI can detect FOG events even 

 
 

 
(a)  

    
(b)  (c)  (d)  (e)  

Fig. 4.  Performance of four FI calculation methods on another a 20s data segment extracted from 
subject 02. (a)Acceleration recording. (b), (c), (d) and (e) show the TFSE and FI obtained using STFT, 
CWT, TVARMA with RLS method and the proposed asymmetric basis function TVARMA method, 
respectively. The detection results of the FOG using these four FIs were denoted by the shadows 
where shadowed time intervals represented FOG episodes. Notations are defined as in Fig 1. 

 

 
(a)  

    
(b)  (c)  (d)  (e)  

Fig. 5.  Performance of four FI calculation methods on data segments from subject 05. (a) 20s vertical 
accelerometer series. (b), (c), (d) and (e) show the TFSE and FI obtained using STFT, CWT, 
TVARMA with RLS method and the proposed asymmetric basis function TVARMA method, 
respectively. The detection results of the FOG using these four FIs were denoted by the shadows 
where shadowed time intervals represented FOG episodes. Notations are defined as in Fig 1. 

 
if whose duration is very short. For example, the first FOG 
shown in Fig. 3(a) which lasted less than 1s was missed by the 
other two methods but successfully detected by the new FI.  

The good properties in the TFS make the FI more robust. 
This has been validated by applying the new FI to both FOG 
patterns including inter and intra subject variability and the 
whole dataset. To validate the robustness, global thresholds 
which determined in the first data fragment analysis was used 

to all the subjects. Example 2 was taken from the same subject 
02 but different time period, examples 3 and 4 were taken from 
subject 05 and 07, respectively. In all these examples, the new 
FI works excellently, all the FOG episodes were successfully 
detected and the duration of FOG was precisely located. 
However, in the other two methods, some of FOGs were missed 
whilst some false positive FOG were reported in the duration of 
single FOG episodes or normal locomotion durations. In 
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another word, the new framework constructed by indirect 
parametric TFSE method is more robust to both the selection of 
threshold and inter and intra subject variability. This is 
important in practical applications. Furthermore, in most FOGs 
of these 4 examples with different patterns, the new FI raised 
and crossed the threshold in advance the real occurrence of the 
episode in the case of ensuring detection accuracy of FOG.  

The results of all subjects data exhibited in TABLE II 
demonstrate better performance in discriminating the FOG 
events and free-FOG events in comparison to the traditional 
STFT and CWT method. It should be noted the FOG detection 
metrics looks not as good as the reported results in references 
using machine learning methods. This is due to the following 
reasons: first, the results in this study was reported based on a 
point-wise detection of FOG durations whilst the machine 
learning method reported FOG event detection; second, 
identical thresholds which have not been optimized for each 
subject in order to evaluate the inter-subject robustness were 
used for each method; third, no special processes have been 
done to exclude the still stance periods which may lead to a poor 
detection specificity of FOG.  

The average results of all subjects data exhibited in TABLE 
II demonstrate better performance of the proposed method in 
the discrimination of FOG durations from free-FOG durations 
than those of traditional STFT and CWT methods. Moreover, 
according to the results of the four typical FOG patterns (shown 
in Fig. 3- Fig. 6) and the numerical study, the novel parametric 
TFSE can capture the transience from normal locomotion to 
FOG by increasing the temporal resolution without losing 
frequency resolution. Consequently, the new FI made better 
FOG detection and even perdition in advance of their 
occurrences. However, the correct detection of FOG in advance 
was incorrectly reflected as mismatches in the point-wise 
criteria. Therefore, the new proposed method actually 
performed better in the detection of FOG than that shown in 

TABLE II. The prediction of FOG is critically important 
because of the close relationship between FOG and risks of fall. 
Prediction of FOG in advance its occurrence makes the 
punctual intervention possible.  

The better performance of the new FI lies in the new indirect 
parametric TFSE algorithms. High-resolution TFSE can be 
obtained to avoid the dilemma of time and frequency 
resolutions because a relatively small number of data set is 
needed to identify the instant ARMA model. For example, 
using 32 data points we can obtain an ARMA model with 6 
parameters with acceptable accuracy and the instant spectrum 
can be estimated. However, it is impossible to get a satisfied 
spectrum using the same number of data when the 
nonparametric methods are used. Correspondingly, we need to 
pay the cost of the extra modelling process. When the advanced 
asymmetric basis function TV-ARMA and LROFR algorithm 
based identification techniques are used, the data can only be 
processed in batch even the transition of the nonstationary 
process can be accurately characterized. This means that we can 
only accurately detect the FOG when a batch of data has been 
collected. This limits the applications of the method in the 
online detection and intervention of FOG. However, the 
problem can be solved by estimating the time-varying 
coefficients in the TV-ARMA model using recursive least 
squares (RLS) algorithm and then the TFS can be estimated and 
the FI can be calculated. All the experiments designed in 
Section III also were applied to evaluate the effectiveness of 
TV-ARMA model with RLS algorithm. In addition, the FOG 
detection from subject 02 data which exploited TV-ARMA 
model aided by RLS algorithm was evaluated. The proposed 
system identification method was used to provide a reasonable 
initial guess for the RLS algorithm and speed up the 
convergence of the time-varying parameters to real values. 
These experiments results were exhibited in part (d) of Fig. 1, 
Fig. 3- Fig. 7, TABLE I and TABLE II. From these results, it is  

 

 
(a)  

    
(b)  (c)  (d)  (e)  

Fig. 6.  Performance of four FI calculation methods on a 20s signal extracted from Patient 07 (a) An 
Acceleration recording at ankle. (b), (c), (d) and (e) show the TFSE and FI obtained using STFT, 
CWT, TVARMA with RLS method and the proposed asymmetric basis function TVARMA method, 
respectively. The detection results of the FOG using these three FIs were denoted by the shadows 
where shadowed time intervals represented FOG episodes. Notations are defined as in Fig 1. 
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;ĂͿ  (b)  (c)  (d)  

Fig. 7.  The TFS, FI and FOG detection results of a 5 minutes signal from Patient 02 based on (a)  STFT, (b) 
CWT, (c) TV-ARMA model with RLS algorithm, and (d) asymmetric basis function TV-ARMA model with 
LROFR algorithm. Notations are defined as in Fig 1. 

fair to draw the conclusion that the performance of TV-ARMA 
with RLS method is behind asymmetric basis function TV-
ARMA model but surpasses the STFT and CWT methods, that 
is to say, the RLS based TV-ARMA approach can still remain 
excellent performance of the new TFSE and FI, which produce 
relatively high performance in detecting FOG events. Thus RLS 
based TV-ARMA model can be used to replace asymmetric 
basis function TV-ARMA model for online FOG detection. 

Besides, computational time is critical for real-time 
applications, for example, the detection of the risk of fall. Thus, 
a computational time comparison in these four methods based 
on the simulated data was performed and the results were 
shown in TABLE III. Actually, the asymmetric basis function 
method is not as fast as the direct spectrum estimation methods 
and can be another limitation of the asymmetric basis function 
TV-ARMA method. However, the RLS-ARMA method is quite 
fast and the FI can be calculated in 1 second with relatively high 
accuracy. On the other hand, the asymmetric basis function 
ARMA method can be used in some other scenario where the 
accuracy is critical but processing time is not the main concern, 
for example, in the automatic data labelling of FOG.  

 

V. CONCLUSION 
Freezing of gait in PD is common and debilitating. It can 

aggravate both motor and non-motor illness and could be 
demanding at supportive healthcare. On-going assessment and 
punctual supportive care becomes increasingly important in 
advanced PD. With the reduction of the efficacy of medication, 
non-pharmacologic treatments such as auditory cueing and 
visual cueing may eliminate or diminish freezing episodes. 
However, inappropriate intervention may be associated with an 
increasing risk of falling [43] because of increased cognitive 
burden and disturbance to patients’ gait. Hence, accurate 
detecting FOG episodes and giving punctual and essential 
interventions are crucial for the automatic management of PD 
with FOG.  

Based on the advanced system identification and time-
frequency spectral estimation techniques, the FI is significantly 
improved in robustness and temporal accuracy. Results have 
shown that the new FI can be used for detecting different FOG 
patterns and a properly selected threshold is applicable to other 
patients and robust to inter-subject variabilities. The symmetric 
basis function TV-ARMA method which has better accurate FI 
but the high computational cost can be used for off-line 
applications, such as, long term assessment of life quality, the 
effectiveness of pharmacological treatments, and automatically 
labelling of the FOG data, and so on. For the cases of online 
applications where real-time detection of FOG is needed, an 
alternative RLS algorithm based indirect TFSE method has 
been proposed. The RLS-TFSE method which shares the merits 
of parametric TFSE but with a much less computational cost 
provides a trade-off between the accuracy and computational 
cost. 

Combined the RLS-TFSE method with a cheap wearable 
sensor, FOG can easily be detected even predicted using just 
vertical accelerations measured at shank level. The new indirect 
FI calculation methods offer a promising application of 
wearable sensors in continuous FOG monitoring and automatic 
management in home conditions to improve patients’ living 
quality and reduce the increasing healthcare costs. 
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