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Previous neuroscientific findings have linked Alzheimer’s Disease (AD) with less

efficient information processing and brain network disorganization. However, pathological

alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive

Impairment (aMCI) remain largely unknown. The present study aimed at comparing

patterns of the detection of functional disorganization in MCI relative to Mild Dementia

(MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild

AD patients who underwent electroencephalographic (EEG) data acquisition during a

resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet

Transform (ODWT), and directional brain network analysis were applied on the EEG data.

This computational model was performed for networks that have the same number of

edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density

values). All groups exhibited a small-world (SW) brain architecture. However, we found a

significant reduction in the SW brain architecture in both aMCI and MD patients relative to

the group of Healthy controls. This functional disorganization was also correlated with the

participant’s generic cognitive status. The deterioration of the network’s organization was

caused mainly by deficient local information processing as quantified by the mean cluster

coefficient value. Functional hubs were identified through the normalized betweenness

centrality metric. Analysis of the local characteristics showed relative hub preservation

even with statistically significant reduced strength. Compensatory phenomena were also

evident through the formation of additional hubs on left frontal and parietal regions. Our

results indicate a declined functional network organization even during the prodromal

phase. Degeneration is evident even in the preclinical phase and coexists with transient

network reorganization due to compensation.

Keywords: Alzheimer Disease, amnestic Mild Cognitive Impairment, electroencephalography, graph analysis,

Relative Wavelet Entropy

INTRODUCTION

Alzheimer’s Disease (AD) is regarded as a progressive, neu-

rodegenerative disease with a relatively long pre-morbid asymp-

tomatic period (Caselli et al., 2004). Although, no cognitive

symptoms may be obvious this pre-morbid period is character-

ized by abnormal protein (amyloid-β/Aβ and hyperphosphory-

lated) production which results gradually in the formation of

neurofibrillary tangles and neuritic plaques (Buerger et al., 2006).

These alterations are particularly evident in brain areas crucial for

the functional co-operation of distant brain regions (Delbeuck

et al., 2003; Drzezga et al., 2011). Once clinical detection of

AD is possible, based mostly on cognitive and daily function-

ing assessment, brain atrophy and thus functional impairments

can be hardly inverted (Citron, 2010). It is therefore reasonable

that research on Alzheimer’s has focused on the reliable detection

of early AD signs that precede functional and cognitive impair-

ment (Sperling et al., 2011). As a result of this research effort,

the term Mild Cognitive Impairment (MCI) (Petersen et al., 1999;

Albert et al., 2011) was introduced to define a transition state

between healthy aging and the clinical onset of dementia. It has

been proposed that approximately 7% of people diagnosed with

MCI eventually progress to Alzheimer’s dementia (Mitchell and

Shiri-Feshki, 2009). MCI is generally defined as memory impair-

ment, despite normal daily functioning (Petersen, 2004). It has

also been suggested that MCI is not a unitary disorder, but it

can be further divided into various subtypes, indicating mostly
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the etiology: vascular, metabolic, amnestic, etc. (Petersen, 2004).

Among them, the amnestic subtype it is considered to be a pre-

clinical stage of AD (Dubois and Albert, 2004; Petersen, 2004; Vos

et al., 2013).

The purpose of the present study is to investigate brain func-

tional alterations that may characterize the amnesic subtype of

MCI in order to aid to the early diagnosis of AD. Functional anal-

ysis can be performed by employing neurophysiological features

derived from electroencephalographic (EEG) rhythmic activity

(Moretti et al., 2011, 2012, 2013). During the last decade, a

new category of metrics, based on the topological architecture of

brain connectivity, has been introduced to estimate the organi-

zation characteristics of brain networks (Bassett and Bullmore,

2006). Connectomics may provide valuable information regard-

ing the quantification of the network properties (Van Dijk et al.,

2010). They employ either structural or functional connectiv-

ity to construct brain networks. Network properties are then

computed through graph theory analysis (Stam and Reijneveld,

2007). A major notion of graph theory is that of small-world,

which describes how efficient and cost-effective the network is.

Computation of the small-world value considers both the quality

of local information processing and the co-operation of distant

brain regions. Therefore, brain networks with large small-world

values are densely locally clustered, and at the same time employ

the optimal number of distant connections to process informa-

tion more efficiently and with lower information cost (Bassett and

Bullmore, 2006; Bullmore and Sporns, 2009).

During the last few years, several research efforts have pro-

vided evidence of loss of “small-worldness” and reorganization

of the brain networks due to neurodegeneration (Stam et al.,

2009; Sanz-Arigita et al., 2010; Zhao et al., 2012). The majority

of these studies have compared healthy adult participants with

dementia patients. To the best of our knowledge, only a cou-

ple of studies so far have analyzed small-world networks in MCI

patients using magnetoencephalography (MEG) (Buldú et al.,

2011) and functional MRI (Seo et al., 2013), respectively. Both

studies found abnormally increased and decreased synchroniza-

tion in (pre)frontal and parieto-occipital regions respectively in

the MCI patients compared to the healthy adults. More specifi-

cally, MCI patients showed an abnormal synchronization increase

in comparison to healthy controls during the execution of mem-

ory tasks. It was associated with high energy expenditure which

may be attributed to the existence of compensatory mechanisms

recruited by MCI patients toward the successful execution of cog-

nitive functioning (Buldú et al., 2011). Another study reported

loss of functional integration as quantified by the characteristic

path length (Seo et al., 2013). However, findings are quite con-

tradictory among studies, since some of them report either no

significant changes (Seo et al., 2013) or increased characteris-

tic path lengths for the patients suffering from Alzheimer’s (Yao

et al., 2010; Zhao et al., 2012). Seo et al. reported diminished

information transfer among brain regions for both MCI and MD

participants due to functional impairment of the hubs, which are

network nodes connecting local networks and facilitating global

information processing (Seo et al., 2013).

Binary brain networks are usually constructed by applying a

threshold to the metric quantifying the synchronization between

two network nodes. A pair of nodes is connected with a network

edge when the synchronization degree between these two nodes

exceeds the pre-defined threshold. The ratio of the number of

network connections (edges) to the number of possible edges is

defined as the network’s density. The threshold selection is impor-

tant for the network formation. Application of a fixed threshold

value is vulnerable to inter-participant variability, thereby result-

ing in networks with different density values. The latter influences

the network properties (characteristic path length, mean cluster

coefficient) and computation of small-worldness cannot be easily

performed. Aiming to face this methodological limitation, recent

studies adopted the adaptive threshold selection for each partic-

ipant in order to produce brain networks of fixed density. So, all

graphs may have the same number of edges; in this way, group

comparison is facilitated. However, there is not yet a gold standard

for selecting a fixed density-based threshold. Therefore, the full

network analysis is repeated over a density range. Adopting the

aforementioned methodological approach, a more recent study

recruited a large number of participants (94 controls, 183 MCI

patients and 216 MD patients) employing fluorodeoxyglucose

positron emission tomography (FDG-PET) (Seo et al., 2013). In

addition to the global network analysis through the small-world

property, this research investigated the vulnerability of the net-

work hubs. The results showed that both MCI and AD groups

had lower local clustering compared to healthy controls. Both

pathological groups demonstrated vulnerability of the nodes that

are crucial for the information transfer within the brain network

(functional hubs). These hubs were mainly associated with the

Default Mode Network (DMN).

It has been, therefore, suggested that brain networks are

altered in people with neurodegenerative brain disorders, and

this alteration is usually evidenced as diminished local processing

and disrupted co-operative activity among distant brain regions.

However, most focus has so far been placed on the clinical

AD phase, while research on functional network analysis during

the preclinical (aMCI) phase is scarce. Electroencephalographic

(EEG) analysis may provide a direct window of brain function-

ing. Its excellent temporal resolution could offer a reliable way

of quantifying brain co-operative activity during the resting-state

condition. Aiming to enhance the understanding of the disease

progression and to propose contemporary mathematical tools

able to identify early functional disorganization phenomena, this

piece of work employs EEG recordings and attempts to answer the

following research questions:

1. Is there any evidence of functional disorganization in aMCI,

which can be differentiated from healthy aging?

2. Is there a relationship between network architecture and gen-

eral cognitive state?

3. Are there any significant differences in the network disorga-

nization among aMCI and MD groups? If yes could we also

detect any recruitment of additional brain regions during the

prodromal phase?

According to previous evidence we expect that aMCI patients

will exhibit significant network deficiency as compared to healthy

older adults (Buldú et al., 2011; Seo et al., 2013). We also expect
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network disorganization in aMCI to result mostly from a reduced

local information processing capacity as expressed by the mean

cluster coefficient value (Seo et al., 2013). Since previous research

has shown that the characteristic path length, which quantifies

information integration and transmission, remains relatively sta-

ble across different neurodegenerative phases in AD (Seo et al.,

2013), we do not expect this parameter to be affected in the

groups of aMCI or MD, relative to the group of healthy controls.

The interplay among reduced local processing and relatively sta-

ble information transmission is hypothesized to affect the global

network functional organization. Since aMCI is regarded as the

earliest AD phase, we expect that aMCI individuals would exhibit

network deficiencies similar to those of patients suffering from

AD and these alterations would be mainly manifested as a dis-

rupted small-world property and abnormal local information

processing (Buldú et al., 2011; Seo et al., 2013). It is also expected

that the global network architecture would be correlated with

neuropsychological tests estimating the generic cognitive status.

Finally, the two pathological groups, aMCI and MD, would prob-

ably show a vulnerability of network nodes that are crucial for

information transfer and cognitive functioning (Seo et al., 2013).

These nodes are defined as network hubs and their robustness is

estimated by centrality metrics. However, since the aMCI patients

relatively preserve their cognitive and daily functioning, compen-

satory mechanisms may invoke a network reformation in that

stage. Therefore, we hypothesize that functional hubs occurred

in the healthy brain become less robust and additional hubs are

formed during the aMCI phase (Qi et al., 2010).

MATERIALS AND METHODS

PARTICIPANTS

Twenty-three cognitively healthy older adults, 17 aMCI and 24

mild demented (MD) individuals participated in the present

study. All of them went through a neuropsychological assess-

ment which was part of the screening process for the Long

Lasting Memories (LLM) project. LLM was a multi-centric,

European Commission-funded project that proposed a comput-

erized intervention of cognitive and physical exercise in order

to promote independent living of senior participants (www.

longlastingmemories.eu) (Bamidis et al., 2011; González-Palau

et al., 2014). Screening took place 1–14 days before the partici-

pants’ enrollment to the training (Frantzidis et al., 2014). Prior

to neurophysiological acquisition, all participants were informed

about the study and signed an informed consent form. The study

was approved by the ethics committee of the Greek Association of

Alzheimer’s Disease and Related Disorders.

The following Table (Table 1) reports information about the

participants’ age and generic cognitive status as estimated by

the Mini Mental State Examination (MMSE) and the Montreal

Cognitive Assessment (MoCA) test (mean values ± standard

deviation), and the number of participants per group. The groups

were matched on age and male-to female ratios (all ps > 0.05).

NEUROPSYCHOLOGICAL EXAMINATION

The neuropsychological examination included a complete set

of tests aiming to assess the participant’s generic cognitive sta-

tus as well as other specific cognitive domains (verbal memory,

Table 1 | Mean age, sex and cognitive status for the participants of

each group enrolled in the present study.

Group Age Number of MMSE MoCA

participants

Healthy 68.0 ± 5.5 23 (6 males) 28.0 ± 2.1 26.0 ± 2.4

aMCI 68.6 ± 2.7 17 (4 males) 25.6 ± 2.2 25.6 ± 2.2

MD 72.3 ± 6.3 24 (7 males) 22.3 ± 2.5 17.3 ± 4.3

executive functions, independent living, etc.) that are essential to

the diagnostic procedure and the group formation. A detailed list

may be found in Bamidis et al. (2012).

MEDICAL EXAMINATION

Medical examination consisted of a full blood count, biochemi-

cal tests and examination of various parameters such as thyroid

hormones, anti-thyroid auto-antibodies, homocysteine and folic

acid levels. The Erythrocyte Sedimentation Rate (ESR) was also

estimated. Neuroimaging examination either through MRI or

Computerized Tomography (CT) was adopted to exclude partic-

ipants suffering from various parameters that may influence the

study results (e.g., cancer of the central nervous system, hyper-

cholesterolemia, etc.). Finally, the participants visited a doctor

involved in the current study. Their medical and family history

as well as their current and past medication were recorded.

DIAGNOSTIC PROCEDURE

A dementia expert neurologist performed the diagnosis of

each participant considering the aforementioned examinations.

AD diagnosis was performed according to both the DSM-IV

and the criteria of the National Institute of Neurological and

Communicative Disorders and Alzheimer’s Disease and Related

Disorders (NINCDS-ADRDA) (McKhann et al., 1984). Patients

suffering from aMCI, met Petersen’s criteria (Petersen, 2004).

The study groups were matched according to the baseline demo-

graphic variables (age and sex). This study was focused on MCI

patients suffering from multiple domains and having as major

problem that of memory impairment (Petersen, 2004). This

group of patients would be referred as aMCI in the remaining of

the manuscript, but merely for briefness, as the most appropri-

ate term is that of multiple domain + amnestic MCI (Petersen,

2004).

EEG ANALYSIS

Data acquisition and pre-processing

Neurophysiological data acquisition was performed through a

Nihon Kohden JE-207A. The device was equipped with 57 active

electrodes attached on a cap fitted to the scalp (EASYCAP). There

were also 2 reference electrodes attached to the mastoids and a

ground electrode placed at a left anterior position. Both verti-

cal and horizontal electrooculograms (EOG) and electrocardio-

graphic (ECG) activity were recorded through bipolar electrodes.

Electrode impendances of brain signals, ground electrode and ref-

erences were kept lower than 2 K�s. The sampling rate was set

at 500 Hz. Participants were sitting in a comfortable armed chair

located in a quiet room with minimal ambient light. They were
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instructed to remain calm, with their eyes closed, for 5 min at

least.

The brain electrodes were re-referenced using the two refer-

ence electrodes located on the mastoids in a way described also in

Frantzidis et al. (2014). Then, Butterworth digital filtering of 3rd

order was performed through a high pass filter with cut-off fre-

quency at 1 Hz and a notch filter centered on 50 Hz. Independent

Component Analysis (ICA) was then employed to remove arti-

factual components. Finally, visual inspection was performed to

eliminate data segments contaminated with noise. The afore-

mentioned pre-processing procedure was performed through the

Matlab Signal Processing Toolbox and the EEGLAB graphic user

interface (Delorme and Makeig, 2004).

Synchronization analysis

The synchronization analysis involved 75 epochs of artifact-free,

continuous data of high quality (Figure 1; Step “A”). The dura-

tion of each epoch was set at 20 s, since it was demonstrated in

a previous work that this time interval is sufficient for extract-

ing the synchronization degree in a robust way (Gudmundsson

et al., 2007; Hsu et al., 2012; Frantzidis et al., 2014). Aiming to

avoid methodological and sampling errors, the epoch selection

was performed in a completely randomized way. More specifi-

cally, a random number generator output choices of continuous,

artifact-free epochs to be used for the unbiased synchronization

analysis.

Synchronization analysis (Figure 1; Steps “B-D”) aimed firstly

at the robust extraction of activity for each frequency band

for every electrode (Step “B”), its relative energy contribution

(Step “C”) and finally at the quantification of the co-operative

degree among pairs of electrodes (Step “D”) by employing wavelet

analysis through the Orthogonal Discrete Wavelet Transform

(ODWT). Wavelets were subjected to scaling and translation in

order to extract both frequency and time-dependent compo-

nents with optimal resolution. ODWT also involved an iterative

decomposition scheme through recursive low-pass filtering for

computing the wavelet coefficients of the five frequency bands

in a way that discarded redundant information, while allowing

the perfect reconstruction of the whole EEG. Wavelet coefficient

amplitudes indicated the degree of correlation among the wavelet

and the signal, while the sign of each coefficient represented the

type of correlation (positive/negative). All computations were

implemented through Matlab functions (Wavelet Toolbox).

The family of 5th order bi-orthogonal wavelets was selected as

the mother wavelet (Frantzidis et al., 2010, 2014). This specific

type of wavelets was selected due to its resemblance with com-

mon EEG waveforms and its attractive mathematical properties

(e.g., semi-orthogonality, symmetry, smoothness and maximum

time-frequency resolution). Therefore, phase distortion and dis-

continuity effects are avoided (Unser et al., 1992; Quian Quiroga

and Schürmann, 1999; Frantzidis et al., 2010). Each epoch was

divided in non-overlapping windows of 128 ms duration and

computations were performed for each window, in which the

first step was the computation of the wavelet coefficients using a

decomposition scheme of j = 1 . . . 5 levels. Multiple coefficients

(k = 1 . . . K) were calculated for each decomposition level, except

of the last one (j = 5). The energy of each frequency band (Ej)

FIGURE 1 | Visualization of the proposed analysis framework: there

are five main analysis steps (A–E). Firstly, a randomization, bootstrap

technique∗ is employed during step “A” to select (N = 75) multiple, artifact

free data epochs. This bootstrap technique is implemented through a

generator of random numbers which produces choices of data epochs.

Each epoch lasts for 20 s. For each data segment and for each electrode the

Orthogonal Discrete Wavelet Transform (ODWT) is applied through an

iterative, recursive decomposition scheme (Step “B”). The ODWT

framework results in the estimation of the wavelet coefficients for each

frequency band and for each epoch. The computations are performed on

(Continued)
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FIGURE 1 | Continued

128 ms intervals, resulting in one (1) wavelet coefficient for the slow (delta,

theta rhythms), two (2) coefficients for the alpha, four (4) for beta and eight

(8) for gamma (Step “C”). These coefficients are then squared in order to

express the rhythm’s energy. So, the relative energy contribution of each

frequency band is then computed by dividing the energy of each rhythm by

the total EEG energy during Step “D.” The Relative Wavelet Entropy (RWE)

is then computed for each electrode pair. The RWE provides a directed

metric of the co-operative degree among two electrodes. Then,

synchronization matrices based on the RWE values are formed. These

matrices are then thresholded and directed, non-weighted networks are

formed. These networks are employed toward the estimation of both global

(small-world, characteristic path length, mean cluster coefficient) and local

(relative betweenness centrality) characteristics.

was estimated by firstly squaring and then summing the wavelet

coefficients (Ck) corresponding to each rhythm:

Ej =

K
∑

k = 1

∣

∣C2
k

∣

∣ , j = 1 . . . 5 (1)

A simple summation of all energies for each frequency band

provided the total EEG energy:

Etot =

5
∑

j = 1

Ej (2)

Relative energies at each frequency band were estimated by divid-

ing each absolute energy value Ej with the total energy Etot.

These computations involved the 57 brain electrodes that

formed 3192 electrode pairs. The number of electrode pairs was

computed as follows: each one of the 57 electrodes was compared

with all the other electrodes. Since the metric is a directional one

the electrode pair (p, q) is different from the pair (q, p). Therefore,

we had 57 × 57 = 3249 comparisons. Among these there are

57 pairs that compare the same electrode (p, p). That elec-

trode pairs are not meaningful and were subtracted. Therefore,

the total number of electrode pairs is 3249−57 = 3192. The

mathematical framework resulted in a probabilistic energy dis-

tribution (Figure 1; Step “D”) for each one of the 57 electrodes

participating in the 3192 electrode pairs. The probabilistic energy

distribution of each electrode was consisting of contributions of

each frequency band (a positive number) to the total energy of

a specific electrode for a given time period (window duration).

Since, these numbers quantify the energy ratio of each frequency

band to the total EEG energy, their summation was equal to one

(Rosso et al., 2001; Frantzidis et al., 2010, 2014). Finally, the syn-

chronization degree among each electrode pair was computed

through the notion of the Relative Wavelet Entropy (RWE) which

represented the co-operation degree of the generalized rhyth-

mic activity among two distinct electrode sites (Figure 1; Step

“E”). Since there were N = 57 electrodes, the dimension of the

synchronization matrix is N × N = 57 × 57. In case of two elec-

trodes with energy distributions pj and qj, the synchronization

degree (RWE value) was given by the following formula (the

smaller the RWE value, the greater the synchronization):

RWE =

5
∑

j = 1

pj × ln

(

pj

qj

)

(3)

Therefore, the main diagonal of the synchronization matrix con-

tained zero values (comparison of a signal with itself). As men-

tioned earlier, these 57 electrode pairs do not participate in the

computations.

NETWORK ANALYSIS

Synchronization matrix thresholding

Synchronization matrices were then passed through a threshold to

be transformed into binary, directed brain graphs (Figure 1; Step

“E”). Aiming to avoid the influence of methodological limitations

posed by brain networks of varying density, the selection of an

adaptive threshold was preferred. This choice ensured that the

brain network of each participant would have the same number of

edges. So, both global and local network properties (small-word

value, characteristic path length, mean cluster coefficient, global

efficiency and normalized relative betweenness) were quantified

for each participant and for four (4) fixed density ranges (500,

600, 700, 800 edges). The number of edges corresponded to 15.39,

18.47, 21.55, and 24.62% density values, respectively. Analysis,

over a wide density range was preferred since there is lack of

a golden standard for density selection. It was also unknown

whether the influence of neurodegeneration phenomena could

be detected in both low and high density networks. The fol-

lowing section provides a brief description of these network

characteristics.

Description of network parameters

A network is represented by a graph that consists of nodes and

edges. Each electrode represents a node, which is connected

with another one through an edge (Bassett and Bullmore, 2006).

These edges may be directed (directed graphs) or not (undi-

rected graphs). The size of a graph depends on the total number

of nodes, while its degree is the mean value of edges per node.

The distance between two nodes is computed by the total num-

ber of edges of the shortest path needed to reach from one

node to another. The characteristic path length (L) is computed

by the mean (or in some cases median) value of the shortest

paths among all pairs of nodes (Bassett and Bullmore, 2006; Stam

and Reijneveld, 2007; Bullmore and Sporns, 2009; Stam et al.,

2009).

To calculate the cluster coefficient, C, for each node, a 3-step

procedure is followed:

• Immediate neighbors of (those directly connected with) a given

node are identified.

• The number of connections among immediate neighbors is

computed (existing connections).

• C, for a given vertex/node, is then computed as the ratio of

the number of existing connections to the total number of all

possible connections in the immediate vertex neighborhood,

ranging from zero to one. Finally, the mean cluster coefficient

is computed as the mean value of all cluster coefficient values

(Lithari et al., 2012).
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The small-world property, introduced by Watts and Strogatz

(1998), is usually employed to characterize network architectures

by means of dense clustering of local connections, as well as,

short characteristic path lengths achieved by a few long-range

connections, thereby facilitating the fast and efficient information

transfer among all network nodes. Thus, small-network topolo-

gies offer an attractive model for brain network connectivity

quantification, since they combine strong local information pro-

cessing (high cluster coefficient value) with fast and efficient,

global information transfer through small characteristic path

length (Sanz-Arigita et al., 2010; Buldú et al., 2011; De Haan

et al., 2012; Lithari et al., 2012; Seo et al., 2013); estimating the

small-world property involves computation of the network char-

acteristic path length (L) and mean cluster coefficient (C), as well

as, the comparison with the corresponding properties (Lrand and

Crand) of a random graph containing the same number of nodes

(N), edges (K) and degree of distribution as shown by formulae

(4) and (5):

Lrand =
ln(N)

ln
(

k
N − 1

) (4)

Crand =

(

k
N

)

N
(5)

Then the ratios λ = L/Lrand and γ = C/Crand are combined to

retrieve the small world property (sigma), sigma = γ/λ. Small-

world networks exhibit sigma values greater than one (Bassett and

Bullmore, 2006).

The local nodal metric of betweenness centrality, Bi (for each

node i = 1 . . . N), is also employed to investigate whether the

age-related neuro-degeneration affects nodes with a functionally

significant role (hubs) or not. Bi is defined as the number of short-

est paths from all nodes to all others that run through node i.

Therefore, it quantifies the amount of information transferred

through node i. To normalize raw Bi values, the value for each

node is divided by the mean Bi value of the whole network. In

this way, and when Bi is greater than 1.5, a node can be regarded

as a functional hub. This parameter setting was adopted from a

previous study (Seo et al., 2013). The threshold value, which was

a strict one, was the same.

RESULTS

GLOBAL CHARACTERISTICS AND THEIR ALTERATIONS IN AMCI

AND MD

All groups (Healthy, aMCI, MD) demonstrated small-world char-

acteristics (σ > 1) over the entire range of densities. Tables S1–S3

in Supplementary Material show means and standard deviation as

a function of group and density for each network characteristic.

Figure 2 illustrates the mean (grand average) brain networks for

each one of the three groups (Healthy, aMCI, MD) as well as the

networks with the strongest (1%) connections only. The visual-

ization is performed for the entire density range employed in the

study (N = 500, 600, 700, 800).

To analyze the data we conducted a 3 × 4 by (3) MANOVA

with group (Healthy, aMCI, and MD) as the between subject

factor, density (500, 600, 700, 800) as the within subject factor,

FIGURE 2 | (Top) Visualization of grand average brain graphs for each one of

the three study groups (Healthy, MCI, MD) and for each edge density value

(500, 600, 700, 800). (Bottom) visualization of the strongest (1%) network

connections and their (edge) strengths, depicted through a colorbar.

and the 3 interrelated dependent variables (small-world value,

C and L). Using Pillai’ trace, there were significant effects of

group [V = 0.44, F(6, 120) = 5.63, p < 0.0001], and density [V =

0.999, F(9, 53) = 8766.855, p < 0.0001], and a significant group

by density interaction [V = 0.541, F(18, 108) = 2.225, p = 0.006]

on small world property, Cluster Coefficient and Length path.

Separate 2 × 4 ANOVAs on the 3 outcomes variables revealed

a significant1 main effect of group for the small world prop-

erty, F(2, 61) = 17.92; p < 0.0001, and the Cluster Coefficient

F(2, 61) = 10.83; p < 0.0001. Also there was a main effect of

density for the three outcomes variables, small world property,

F(3, 183) = 4236.71, p < 0.0001; cluster coefficient, F(3, 183) =

524.28; p < 0.0001, and path length, F(3, 183) = 529.10; p <

0.0001. Tukey HSD post-hoc comparisons for the group factor

showed significant differences between the Healthy controls

1Notice: to correct for multiple analyses we adopted a stricter significance

criterion, p = 0.01 ∗Bootstrapping involves the resampling of an observed

dataset by randomly sampling it with replacement.
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group (2.217) and the aMCI (2.146) and MD groups (2.099)

for the Small World property, p = 0.005 and p = 0.0001, respec-

tively. There were no significant differences between the aMCI

and the MD groups. Similarly, for the Cluster Coefficient, there

were significant differences between the Healthy controls group

(0.549) and the aMCI (0.521), and MD groups (0.508), p = 0.01

and p = 0.0002, respectively. Again, there were no significant dif-

ferences between the aMCI and the MD groups. For the Small

World property, Tukey HSD post-hoc comparisons showed sig-

nificant differences between the four density values, 500 (2.609),

600 (2.245), 700 (1.977), and 800 (1.784), all ps < 0.0001. That

is, the Small World property value decreased as the density value

increased. The same pattern was observed for the Path length

(Mean500 = 2.357, Mean600 = 2.199187, Mean700 = 2.071634,

Mean800 = 1.962972). The Path Length value decreased as the

density value increased, all ps < 0.0001. Finally, for the Cluster

Coefficient, Tukey HSD post-hoc comparisons showed again sig-

nificant different between all density conditions (Mean500 =

0.489, Mean600 = 0.518, Mean700 = 0.539, Mean800 = 0.559),

all ps < 0.0001. However, the Cluster Coefficient value increased

as the density increased. The statistically significant results regard-

ing the graph parameter differences for the three groups are

visualized in Figure 3.

In order to test if there was a linear relationship between cog-

nitive status as measured with the MMSE and the MOCA, and

the small-world property value we computed Pearson’s corre-

lations. The analyses showed a significant positive correlation

between the MMSE scores and the Small World property,

r = 0.367, df = 63, p = 0.003, and between the MoCA scores

and the Small World property, r = 0.470, df = 63, p < 0.0001.

Figure 4 illustrates these correlations through scatter plots of

the MoCA/MMSE data distributions against the Small-World

data. More specifically, the horizontal axis (Small-World value)

was estimated as the mean of the four small-world values

of each edge density range (N = 500, 600, 700, 800). Since

this metric quantifies the linear correlation among two vari-

ables, the statistically significant results indicate a linear cor-

relation of medium strength among the network architecture

and the performance on the generic neuropsychological esti-

mation. This finding may demonstrate that the degree of net-

work performance may reflect deficiency in generic cognitive

processing.

FUNCTIONAL HUB IDENTIFICATION

Following the work of Seo et al. (2013), electrodes were iden-

tified as functional hubs based on their standardized Bi value

(Bi ≥ 1.5). The identification procedure was performed for each

one of the three groups (Healthy, aMCI, MD) for the density

condition N = 500 edges. Visualization of the functional hubs is

presented in Figure 5.

The mean normalized Bi value of the identified hubs of

the healthy group computed for all participants and all groups

(Table 2). These values were then submitted to One-Way ANOVA

with group as the between subject factor. Results showed

FIGURE 3 | Visualization of the statistically significant network

parameters results (Small-World, Characteristic Path Length,

Cluster Coefficient). Results refer to network differences among the

three groups (Healthy, aMCI, MD) and are dependent on the density

parameter (N = 500, 600, 700, 800). More specifically, statistical

analysis demonstrated a significant group by density interaction. Both

group and density main effects were further analyzed in order to

highlight how global network characteristics differ among the three

groups and how these parameters are affected by the density of

the graph.
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FIGURE 4 | Visualization of the linear correlation among the

network architecture (Small-World) with the generic

neuropsychological tests. The correlation degree was estimated

through the Pearson coefficient and was greater for the MoCA

(r = 0.470) and lower for the MMSE (r = 0.367). Both correlations

would be characterized of medium strength and may indicate that

deficient generic cognition may be attributed to disturbances of the

resting-state brain networks.

FIGURE 5 | Visualization of the functional hubs identified for each one

of the three groups (Healthy, aMCI and MD). The hub identification was

based on the normalized relative betweenness centrality value. According

to a previous study, a node is defined as a hub when its centrality value is

greater or equal to 1.5 (Seo et al., 2013). This threshold is a strict one.

Therefore, the analysis was performed on the lower density range

(N = 500). A small density value is more likely to result in a greater number

of functional hubs. The hubs (names and locations) are visualized in a

sensor level for each group. The hub strength is also reported through its

relative betweenness centrality (bi) value.

a significant main effect of group, F(2, 61) = 5.87; p = 0.005.

Tukey HSD post-hoc comparisons showed significant differences

between the Healthy Controls group (Mean = 1.849; SD = 0.463)

and the aMCI (Mean = 1.365; SD = 0.523) and MD groups

(Mean = 1.503; SD = 0.435), p = 0.006, and p = 0.037, respec-

tively. There were no significant differences between the aMCI

and the MD groups. That is, both aMCI and MD groups had sig-

nificantly lower nodal strength of functional hubs as compared to

healthy controls.

To investigate whether neurodegeneration induced the addi-

tional recruitment of anterior, bilateral regions we proposed the

computation of the Anterior Hub Ratio (AHR) as the ratio

of the nodal significance of left anterior/right anterior func-

tional hubs in terms of relative betweenness centrality. This

Table 2 | Description of the functional hubs identified in the three

(Healthy controls, aMCI, MD) groups.

Electrode Healthy aMCI MD

Relative betweenness centrality (Bi)

F3 1.9149 1.8843

Fz 1.5812 2.2090 1.7431

FC1 1.6167

POz 1.5173

F2 1.9143 2.1717 1.8704

P1 1.6265

P2 1.8004

P5 1.8483 2.0669 1.6949

P6 1.5940

F4 1.5521

CP1 1.5511

C1 1.7077

AF4 1.6829

AF3 1.7343

The functional hubs were identified in terms of their normalized relative

betweenness centrality value (Bi ). Nine (9) hubs covering mainly frontal and pari-

etal areas were identified in the healthy controls. Seven (7) hubs located mainly

on right frontal and left posterior areas were identified in the aMCI patients. Five

(5) hubs located mainly on frontal and on left parietal areas were identified in the

MD group.

AHR metric quantifies the functional interplay among anterior

hemispheres. It was based on the hub identification described

previously. So, the nominator included the left anterior hubs

(F3, FC1, AF3, F1, FC3) and the denominator included the

right anterior hubs (F2, F4, Fz, Afz, FCz, FC2, FC4). One-

Way ANOVA with group as the between subject factor showed

a significant main effect of group [F(2, 61) = 3.27, p = 0.045].

Tukey HSD post-hoc comparisons showed significant differences
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only between the group of Healthy controls (Mean = 0.517;

SD = 0.327) and the group of aMCI (Mean = 1.179, SD =

1.279), p = 0.0430. There were no significant differences between

the MD group (Mean = 0.943, SD = 0.868) and the other

groups.

DISCUSSION

To investigate functional network organization in aMCI and MD,

we employed graph analysis of resting-state electroencephalo-

graphic data. The results of the global characteristics indicated

that all three (3) groups demonstrated small-world character-

istics. However, both aMCI and MD patients showed reduced

global network properties (small-world value and mean cluster

coefficient) in comparison with the healthy controls. This result

is in agreement with previous studies that showed a loss of opti-

mal network organization in AD patients (Stam et al., 2007; He

et al., 2008; Supekar et al., 2008; Zhao et al., 2012) and the general

category of MCI (Yao et al., 2010; Seo et al., 2013).

Previous studies with MCI participants yielded contradictory

results. Specifically, Yao et al. performed cortical network anal-

ysis through gray matter volume characteristics obtained from

MRI (Yao et al., 2010). The study design included 98 healthy

controls, 113 MCI participants and 91 AD patients. The MCI

group exhibited intermediate small-world values. Further anal-

ysis, revealed that comparison of the MCI network characteristics

(cluster coefficient and characteristic path length) either with

the healthy or the AD group did not reach statistical signifi-

cance. Nevertheless, in a more recent study recruiting 94 healthy

controls, 183 MCI and 216 AD patients, graph analysis was per-

formed through FDG-PET data. It was found that both MCI and

AD patients demonstrated lower cluster coefficient than healthy

controls, while the characteristic path length was not affected.

The study also reported that MCI participants exhibited the lower

cluster coefficient values. (Seo et al., 2013). Aiming to avoid

the heterogeneity of the entire MCI spectrum, we tested only

patients suffering from the amnestic subtype which is consid-

ered to be a pre-stage of AD (Dubois and Albert, 2004; Petersen,

2004). Our results support that there are no differences between

aMCI and MD patients in terms of network function (small-

world, mean cluster coefficient and characteristic path length).

That is, both groups of patients showed the same pattern of

network property breakdown as compared to Healthy controls.

Since these two groups are diagnostically different, we consider

these results in terms of compensatory mechanisms. That is,

we propose that compensatory mechanisms are preserved in

aMCI, and that loss of these mechanisms may lead to progres-

sion to mild dementia. This hypothesis would be in agreement

with our finding of additional hub formations in the group of

aMCI.

However, absence of statistically significant findings regard-

ing the characteristic path length seems to be in contradiction

with the only other (prior) study that has investigated network

organization in a group of 37 aMCI patients (Wang et al., 2013).

That study employed fMRI recordings combined with frequency-

dependent wavelet based correlation analysis and reported abnor-

mally increased path length characteristic in the group of aMCI.

This contradiction may be attributed to the much smaller number

of participants that our study enrolled in both groups. Another

possible explanation may be that Wang et al. extracted frequency-

dependent brain networks, while our methodology received

the entire EEG range as input and computed the co-operative

degree in terms of frequency-based similarity of the probability

distribution among electrode pairs.

In addition, we found a statistically significant positive cor-

relations between small-worldness and cognitive status as mea-

sured with MMSE and MoCA. That is, the more cognitively

deteriorated (lower scores in MMSE and MoCA) the patients

are, the less optimal the network organization is (lower small

world values). This finding is also in agreement with a pre-

vious finding of a positive correlation between characteris-

tic path length values and MMSE scores in a group of AD

patients (De Haan et al., 2009). We deem our findings to

be important in this sense, as we extended those results to

small-world property which better quantifies the global net-

work performance. In addition we included a larger sam-

ple with healthy adults, aMCI and MD individuals. Overall,

these findings suggest network analysis may be used as a

tool for detecting age-related pathological disorders due to

neurodegeneration.

Local network analysis was performed through the identi-

fication of those nodes that were important for the network

organization. Those nodes were named functional hubs. The

hub definition was based on the amount of information flow

the nodes transfer. The normalized betweenness centrality was

previously proposed to be a robust metric of the hub strength

(Seo et al., 2013). The results demonstrated that healthy hubs

seem to be preserved to some extent during the aMCI and mild

dementia phase. However, they are functionally impaired, as it

is demonstrated by statistically significant decreases in terms

of betweenness centrality. This finding may be indicative of

deficiency due to neurodegeneration and impaired functional

connection of distant brain regions. Apart from hub strength

reductions, aMCI participants formed additional hubs espe-

cially in the left frontal and parietal regions. The hub forma-

tion may be attributed to compensatory mechanisms (Cabeza

et al., 2002; Hämäläinen et al., 2007; Qi et al., 2010); accord-

ing to these studies healthy elderly recruit additional frontal

and parietal regions during memory processes (Cabeza et al.,

2002), while increased frontal activation of MCI patients com-

pared to controls is observed through fMRI recordings even in

the resting state condition (Hämäläinen et al., 2007). A more

recent study employing aMCI patients and fMRI during rest-

ing state reported diminished anterior DMN symmetry due to

increased left frontal activation (Qi et al., 2010). The results

derived from the proposed local characteristic analysis (strength

of healthy hubs and additional hub formation in the pathologi-

cal groups) are in line with previous findings, thereby implying

a reorganization of the brain’s architecture during early neu-

rodegeneartion. The additional hubs are mainly evident in the

preclinical (aMCI) phase and attenuate during the onset of the

clinical AD phase. This temporal pattern seems to enhance the

compensatory hypothesis.

The current piece of research employed brain network analysis

on EEG recordings. Despite its excellent temporal resolution,
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which facilitates the understanding of functional interactions

among distant brain regions, EEG’s spatial resolution is extremely

low in comparison to other recording modalities (fMRI, PET,

MEG). Moreover, it faces the problem of volume conduction

especially, when analysis is not performed on the source level.

Therefore, the interpretation of results, especially in the case

of local characteristics analysis, should be supported by neu-

roimaging studies (Hämäläinen et al., 2007; Qi et al., 2010). To

this extent, any synergy between EEG and fMRI with simul-

taneous recordings may be able to reliably track transient

network alterations and their locations. However, the analysis

performed herein with regards to estimating the brain net-

work reorganization and the quantification of the underlying

compensatory mechanisms was based on the definition of a

Region of Interest (ROI). The ROI identification was based on

the previous analysis step (identification of functional hubs)

and on a priori hypothesis of an increased frontal symmetry

(Hämäläinen et al., 2007; Qi et al., 2010). Despite the posi-

tive results and validating previous neuroimaging evidence (Qi

et al., 2010), this point may be regarded as a current lim-

itation, since it introduces a methodological bias posed by

the study hypothesis. Finally, estimation of the disease pro-

gression was performed by forming three separate groups of

participants and analyzing their brain network characteristics.

However, longitudinal studies employing the same participants

and investigating their network alterations during different tem-

poral phases may estimate the disease progression much more

accurately.

To sum up, this piece of work proposed a mathematical

model consisting of both wavelet and brain network analysis

to study neuropathological alterations due to AD and the dis-

ease progression. It provided evidence that AD evolution from

its preclinical phase (aMCI) to the dementia phase is accom-

panied by a gradual loss of optimal brain network organiza-

tion as quantified by the small-world property. This mainly

occurs due to the reductions of local information processing, as

expressed by lower values of the mean cluster coefficient. The

degree of non-economical wiring was correlated with the amount

of cognitive decline as estimated by generic neuropsychologi-

cal testing (MMSE and MoCA). The functional disorganization

of the EEG-based brain network is apparent during the aMCI

phase. It often coexists with compensatory mechanisms involv-

ing the formation of additional hubs located mainly on left

frontal and parietal regions. However, these mechanisms are tran-

sient and attenuate when progressing to the clinical AD phase.

Then, the global brain network characteristics (small-world prop-

erty and cluster coefficient) deteriorate much more. This com-

putational framework seems to be a robust and reliable tool,

which may be used toward the identification of functional alter-

ations preceding structural isolation/atrophy in senior citizens

facing increased risk of future progression to the clinical AD

phase.
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