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ABSTRACT. Machine learning techniques have found their way into many problems in 8 

geoscience but have not been used significantly in the analysis of tight rocks. We present a case 9 

study testing the effectiveness of artificial neural networks and genetic algorithms for the 10 

prediction of permeability in tight carbonate rocks. The dataset consists of 130 core plugs from 11 

the Portland Formation in southern England, all of which have measurements of Klinkenberg-12 

corrected permeability, helium porosity, characteristic pore throat diameter, and formation 13 

resistivity. Permeability has been predicted using genetic algorithms and artificial neural 14 

networks, as well as seven conventional ‘benchmark’ models with which the machine learning 15 

techniques have been compared. The genetic algorithm technique has provided a new empirical 16 

equation that fits the measured permeability better than any of the seven conventional 17 

benchmark models. However, the artificial neural network technique provided the best overall 18 

prediction method, quantified by the lowest the root-mean-square error (RMSE) and highest 19 

coefficient of determination value (R2). The lowest RMSE from the conventional permeability 20 

equations was from the RGPZ equation, which predicted the test dataset with an RMSE of 21 

0.458, while the highest RMSE came from the Berg equation, with an RMSE of 2.368. By 22 

comparison, the RMSE for the genetic algorithm and artificial neural network methods were 23 

0.433 and 0.38, respectively. We attribute the better performance of machine learning 24 

techniques over conventional approaches to their enhanced capability to model the connectivity 25 

of pore microstructures caused by codependent and competing diagenetic processes. We also 26 

provide a qualitative model for the poroperm characteristics of tight carbonate rocks modified 27 

by each of eight diagenetic processes. We conclude that, for tight carbonate reservoirs, both 28 

machine learning techniques predict permeability more reliably and more accurately than 29 

conventional models and may be capable of distinguishing quantitatively between pore 30 

microstructures caused by different diagenetic processes. 31 

KEYWORDS: permeability, neural networks, genetic algorithms, machine learning, tight 32 

carbonates, MICP, porosity, diagenesis.33 
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Introduction  34 

The permeability of reservoir rocks needs to be measured with a high accuracy in order to 35 

maximize the efficiency of hydrocarbon production from unconventional reservoirs (Ma and 36 

Holditch, 2015). The pulse-decay method is an efficient method for measuring permeability in 37 

very tight rocks (Rashid et al., 2017; Hussein et al., 2017). This technique measures the 38 

reduction in the inlet pressure of a fixed volume of gas as it passes into a low permeability 39 

sample. However, for very tight core plugs this measurement can take many hours. 40 

Furthermore, multiple measurements are required at different gas pressures in order to calculate 41 

the Klinkenberg-corrected permeability (Zhang et al., 2013). Since all tight rocks are extremely 42 

sensitive to gas slippage, this correction is extremely important if an accurate permeability is 43 

required (Akai et al., 2016). Each of these measurements is expensive, and consequently a 44 

limited number of core plugs can be measured in any given reservoir. Furthermore, tight 45 

carbonate reservoirs have a tendency to be heterogeneous, resulting from patchy development 46 

of a range of different diagenetic properties (Al -Zainaldin et al., 2015; Glover et al., 2018), 47 

leading to a variability in petrophysical properties and reservoir quality over a range of scales. 48 

It is generally not possible to representatively sample and measure the permeability of 49 

heterogeneous tight carbonate reservoirs because to do so would require an unfeasibly large 50 

and expensive dataset. A quicker, less expensive and more reliable way to estimate the 51 

permeability of very tight and heterogeneous reservoir rocks would, therefore, be a valuable 52 

and welcome technical resource in the characterisation of these reservoirs.  53 

 In this paper, we have assessed the capability of two machine learning techniques for the 54 

estimation of the permeability of tight carbonate rocks using a limited set of input parameters 55 

that can be obtained easily, cheaply, and often routinely from core analysis measurements. The 56 

first technique is the use of artificial neural networks (e.g., Rajasekaran and Pai, 2003), while 57 

the second technique uses genetic algorithms (e.g., Cuddy and Glover, 2002; Rajasekaran and 58 

Pai, 2003). The results have been compared against the predicted permeabilities from a set of  59 

seven of the best currently available theoretical and empirical permeability prediction models 60 

(equations) from the literature (e.g., Rashid et al., 2015a; 2015b). 61 

It is not the intention of this paper to be a review of either machine learning, or of neural 62 

networks or genetic algorithms, or even a review of the application of these approaches to 63 

geophysical problems. There is a very rich literature for the former, the latter is served by a 64 

very good reviews (e.g., Van der Baan and Jutten, 2000; Sen and Mallik, 2018). For neural 65 

networks alone, there is a distinction to be made between feedforward multilayer perceptron 66 
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network (MLPN) and radial basis function (RBF) types. The former, itself has many types, 67 

including probabilistic approaches (PNN), time delay neural networks (TDNN), convolutional 68 

neural networks (CNN), deep stacking and tensor deep stacking neural networks (DSNN and 69 

TDSNN). It is far better that we consider some of the recent applications of machine learning 70 

to petrophysical applications. While there are many possible applications, recent advances have 71 

included all aspects of petrophysics from logging, through facies determination and rock 72 

characterisation to the determination of key parameters for calculating reservoir volumetrics 73 

and permeability.  74 

In logging both integrated hybrid neural network (IHNN) (Zhu et al., 2018) and Integrated 75 

Deep Learning Models (IDLM) (Zhu et al., 2019a) have been implemented in order to improve 76 

the estimation of total organic carbon (TOC) significantly, allowing the characterisation of 77 

shale gas reservoirs to be improved, while Onalo et al. (2018; 2019) have used a non-linear 78 

autoregressive neural networks with exogenous input (NARX) to estimate the shear and 79 

compressional sonic travel times in well logs, finding sufficiently accurate predictions of the 80 

actual sonic well logs that many of the sonic properties including sonic porosity, Poisson’s 81 

ratio were capable of being predicted. 82 

Machine learning has also been used to determine the optimal parameters for reservoir 83 

characterisation. A good example of this is Zhu et al.’s recent study (Zhu et al., 2019b) of water 84 

saturation in organic shale reservoirs, where the parameters of a shale petrophysical model are 85 

calculated using genetic algorithms. The approach does not need electrical measurements as 86 

input, which makes it ideally suitable for organic shale reservoirs. The characterisation of 87 

fractures in reservoirs is also a multi-parameter problem which cannot be approached simply. 88 

A combination of genetic algorithms and back propagation neural networks (BPNN) has been 89 

found to have the ability to predict fracture zones using deep and shallow electrical logs as 90 

input (Xue et al., 2014). 91 

Facies determination and petrophysical characterisation is a clear beneficiary of machine 92 

learning techniques. Back propagation neural networks and convolutional neural networks 93 

have been used to improve the estimation of total organic carbon, as well as volatile 94 

hydrocarbon and remaining hydrocarbon determinations in shale oil reservoirs (Wang et al, 95 

2019), outperforming conventional methodologies for estimating these parameters. 96 

In this work, we are interested in the prediction of permeability in tight carbonate rocks and 97 

the effect of diagenesis. Lim and Kim (2004) proposed fuzzy logic and neural network 98 

approaches to the prediction of porosity and permeability in reservoirs, indicating that the 99 

approaches showed some potential for future development. Tang (2008) and Tang et al. (2011) 100 
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have used probabilistic neural networks to classify facies in carbonate reservoirs with some 101 

degree of success. Zhou et al. (2019) have combined the study of diagenesis with the use of a 102 

deep-autoencoder random forest algorithm to determine the link between different states of 103 

diagenesis and the electrical parameters (m and n values) of tight gas sandstone reservoirs, 104 

while Zhu et al. (2017a; 2017b) were able to produce a reasonable prediction of permeability 105 

in tight gas sandstone reservoirs using a complex combination of machine learning techniques 106 

and input from NMR data, giving results comparable to those obtained by Rashid et al. (2015b) 107 

with conventional permeability prediction approaches. 108 

 While there are many papers now available in the literature exploring machine learning 109 

methods for permeability prediction, fewer compared approaches together and also with a 110 

cohort of conventional prediction methods. In addition, there are very few which concentrate 111 

on the prediction of permeability in challenging tight carbonate reservoirs. Considering that 112 

this type of unconventional reservoir is likely to be more important in the future, and that 113 

conventional experimental determination of permeability in very low permeability rocks is 114 

complex, time-consuming and expensive, the use of machine learning could be a method of 115 

choice if it is found to be reliable. In this work we also consider the interplay between machine 116 

learning efficacy and its derived parameters with the diagenetic processes that control 117 

permeability in these rocks. 118 

 119 

Dataset 120 

The core plug dataset consisted of 130 samples derived from the Portland Formation, which 121 

crops out in quarries on the Isle of Portland in southern England. The samples were all sourced 122 

from either the Jordans quarry and mine, or the Fancy Beach quarry, which are all in close 123 

proximity at 50o33’10”N 02o26’25”W, and which are operated by Albion Stone. The Isle of 124 

Portland is composed mostly of Upper Jurassic marine strata with a small thickness of basal 125 

Cretaceous Purbeck Formation on top. The lowest formation to be exposed in the area is the 126 

Upper Jurassic Kimmeridge Clay, which occurs beneath Portland Harbour and Castletown and 127 

is exposed under the foot of the high northern cliffs. Above it lies the Portland Sand, which is 128 

composed largely of marls with some sandy horizons. The true Portland Stone lies above the 129 

Portland Sand and consists of the Portland Cherty Series overlain by the Portland Freestone. 130 

The Portland Freestone is a well-cemented oolitic limestone. Stone from the various beds of 131 

the Portland Freestone have historically and contemporaneously been in much demand as fine 132 
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building stone (e.g., St. Paul’s Cathedral). The Purbeck sequence lies on top of the Portland 133 

Freestone and marks the bottom of the Cretaceous.  134 

 The samples used in this work have been sourced from the Base Bed and the Whitbed, which 135 

occur in the Portland Freestone, and which are dominated by sparite-cemented oolites (Barton 136 

et al., 2011). The Whitbed contains common shells, usually distributed evenly but sometimes 137 

concentrated in zones. These shells are commonly cemented. The Base bed is less shelly and 138 

commonly contains completely cemented shell moulds. The cemented nature of this rock 139 

makes it ideal building stone as well as a good, well-studied tight carbonate reservoir analogue.  140 

 Helium porosity , characteristic pore throat size from mercury injection capillary pressure 141 

measurements dPT, formation resistivity factor F, and fluid permeability k were measured on 142 

each sample at the University of Aberdeen and by oil service companies in the late 1990s. 143 

Table 1 gives a summary of these measurements.  144 

 The helium porosity was measured on dried 1.5” core plugs using a helium pycnometer that 145 

had been built in the laboratory and optimised to allow measurements to be made with an error 146 

of better than ±0.001, and provides measurements with approximately five times better 147 

accuracy than typical standard automated commercial pycnometers. Porosity was also 148 

calculated by water saturation and Archimedes bulk volume, but the difficulty in fully 149 

saturating these tight carbonates resulted in discrepancies of greater than 0.05, which led us to 150 

discount using the saturation porosity measurements for permeability prediction with 151 

conventional methods. The mercury injection capillary measurements were made with a 152 

Micromeritics Autopore V, with a maximum applied pressure of 60,000 psi. Formation factor 153 

was calculated from saturated sample conductivity and saturating fluid resistivity, both 154 

measured using a Quadtech LCR meter at the frequency where the quadrature component was 155 

minimised (approximately 1 kHz) according to the methodologies set out in Glover (2015). 156 

The observed incompleteness of saturation in some samples leads us to believe that the 157 

formation factors and cementation exponents measured in this work may be in more error than 158 

some of the other core measurements. However, as we will see later, such errors do not translate 159 

into large errors in predicted permeability when using conventional permeability prediction 160 

equations. 161 

 Since it is a critical parameter in the comparative analyses carried out in this work, a 162 

considerable amount of effort was put into measuring the permeability of the samples 163 

accurately using both steady-state measurements and pulse-decay measurements. The former 164 

of these was used to measure the higher permeability samples, while the latter was used for the 165 
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tighter samples. Klinkenberg-corrected steady-state helium gas permeability was measured on 166 

a bespoke gas permeability rig composing three ranges of gas pressure application and three 167 

ranges of gas flow measurement. Pulse-decay measurements were made using helium as the 168 

process gas according to the methodology given in Jones (1997). For both the steady-state and 169 

pulse-decay measurements, Klinkenberg corrections were made based on at least 5 effective 170 

pressure measurements, while measurements which did not provide the required linear plot of 171 

apparent permeability against the inverse mean effective flow pressure were discarded. 172 

 A graphical summary of the dataset is shown in Figure 1. A portion (100) of the 130 samples 173 

were used as a training data set for both of the machine learning applications, and in those 5 174 

conventional models which required calibration of one or more constant values in their 175 

formulae. 176 

 177 

Conventional Permeability Models 178 

A total of seven conventional permeability equations were implemented on the dataset to 179 

compare with the results of the machine learning methods. The first is based on one of the 180 

earliest permeability models proposed by Kozeny (1927), and modified later by Carman 181 

(1937). The modified equation is commonly written (e.g., Glover et al., 2006) as 182 ࢔ࢇ࢓࢘ࢇ࡯ି࢟࢔ࢋࢠ࢕ࡷ࢑ ൌ ૛ࢍࢊࢉ  ࣘ૜ሺ૚ିࣘሻ૛  ,    (1) 183 

where ׋ is porosity, dg is the mean grain size in µm, and c is a constant. Though commonly 184 

used, the Kozeny-Carman relationship has been superseded by other models due to its inability 185 

to take account of dead-end pores (Walker and Glover, 2010). The constant is usually found 186 

empirically, though some ‘standard’ but often erroneous values have been published. 187 

 188 

Table 1. Statistical summary of the limestone dataset used in this work. 189 

 Porosity 
(-)  

Formation 
resistivity factor 

(-) 

Characteristic 
pore throat 

diameter (m) 

Permeability 
(mD) 

Maximum 0.265 200 2.27×10−7 0.185 
Minimum 0.107 17 3.92×10−10 1.917×10−6 
Arithmetic 

mean 
0.179 62.3 2.88×10−8 0.00525 

Standard 
deviation 

0.0371 29.6 4.06×10−8 0.0202 

Skewness 0.264 1.56 2.85 6.73 
 190 
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Figure 1.  Graphical view of the 191 

Portland dataset. Histograms of 192 

parameters are shown on the 193 

diagonal, while the cross-plots 194 

describe the strength of 195 

correlation between parameters. 196 

Note the logarithmic 197 

transformation applied on some 198 

parameters in this figure. Phi = 199 

total (He) porosity, dPT = pore 200 

throat diameter (m), F = 201 

Formation Factor, K = 202 

Klinkenberg-corrected pulse-203 

decay permeability (mD).204 
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The second equation is that of Berg (1975), which is 205 ݇஻ ൌ ͺǤͶ ൈ ͳͲିଶ݀௚ଶ߶ହǤଵ ,     (2) 206 

where the permeability is in m2, while the porosity ׋ is fractional, and dg is the mean grain 207 

diameter in meters. This model was derived empirically from a mixed dataset including 208 

carbonates, but not containing tight carbonates. Consequently, this model was not expected to 209 

perform well in tight carbonates (Rashid et al., 2015b), an expectation that was borne out in 210 

the results. 211 

A similar equation was derived empirically by Van Baaren (Van Baaren, 1979) 212 ݇௏஻ ൌ ͳͲ݀ௗଶ߶ሺଷǤ଺ସା௠ሻିܤଷǤ଺ସ ,    (3) 213 

where dd is the dominant modal grain size in metres, m is the cementation exponent, and B is a 214 

sorting index, which is equal to 0.7 for extremely well sorted grains, and unity for extremely 215 

poorly sorted grains (Glover et al., 2006). Since the sorting index is unknown here, it was 216 

treated as an empirical parameter to be found from fitting the training data. 217 

Unlike the previous three empirical models, the RGPZ equation is an analytically-derived 218 

permeability model based on electro-kinetic theory (Glover et al., 2006). This model has both 219 

an approximate and an exact form (Glover et al., 2006; Rashid et al., 2015a; 2015b) 220 

݇ோீ௉௓ି௔௣௣௥௢௫௜௠௔௧௘ ൌ ௗ೒మ థయ೘ସ௔௠మ  , and    (4) 221 

݇ோீ௉௓̴௘௫௔௖௧ ൌ ௗ೒మସ௔௠మிሺிିଵሻమ ,     (5) 222 

where k is in m2, ׋ is porosity, dg is the grain size in meters, m is the cementation exponent, a 223 

is a constant equal to 8/3 for spherical grains, and F is the formation resistivity factor. The 224 

approximate form can be used only if F>>1, which for the purposes of the model practically 225 

means F>20. Since all tight rocks will conform to this limitation, the approximate form of the 226 

RGPZ equation should perform as well as the exact form.  227 

 Rashid et al. (2015b) proposed a modified form of the original RGPZ equation to 228 

account for the fact that carbonate pores are less connected than pores in sandstones. The 229 

resulting modified RGPZ equation for carbonates includes a multiplier Ș which is carbonate 230 

microstructure-dependent. The addition of this multiplier essentially converts Eqs. (4) and (5) 231 

into empirical relationships with Ș as a fitting parameter (Rashid et al., 2015a; 2015b) 232 ݇ோீ௉௓ି௖௔௥௕௢௡௔௧௘ ൌ ௗ೒మସ௔௠మఎிሺఎிିଵሻమ .    (6) 233 



9 

 

The multiplier Ș is expected to depend upon the extent and timing of different diagenetic 234 

processes as each seeks to modify the pore network architecture in its own way. Consequently, 235 

the value of the multiplier Ș is expected to be useful in trying to quantify the effects of 236 

competing diagenetic processes in the control of reservoir quality. 237 

Rashid et al. (2015b) also proposed a new equation which relates permeability to the grain 238 

size dg, and the formation resistivity factor F 239 ீܭ௘௡௘௥௜௖ ൌ ௗ೒మ௕ிయ  ,      (7) 240 

where b is an empirically-derived fitting parameter. This permeability equation conforms to 241 

the general form of permeability equations which is discussed in Walker and Glover (2010). 242 

 243 

Permeability Prediction & Machine Learning 244 

The prediction of permeability is a relatively simple case of what is known in machine learning 245 

and statistics as regression (Vapnik, 1999; Cuddy and Glover, 2002). Difficulties only arise 246 

because (i) the predicted permeabilities are very small (Nazari et al., 2019), (ii) the accuracy of 247 

input parameters, whether it be training or test parameters can be low (Rashid et al., 2015b), 248 

and (iii) the input parameters are not independent in a complex and often unknown way. 249 

Regression is a supervised learning approach where the computer program learns from a set of 250 

training input data to estimate or predict the value of a new observation of continuous variable 251 

type. The machine learning software allows the computer to reach some learned state on the 252 

basis of training data which contains both measurable parameters that may or may not be 253 

directly related to permeability, and measurement of the permeability itself (Cuddy and Glover, 254 

2002). The application of that learned state to new data results in a predicted permeability, 255 

which should be compared against independent measurements of permeability for the purposes 256 

of validation, as in this paper. However,  in general use the predicted results would not be 257 

checked in such a way, or may perhaps be checked occasionally. 258 

 There are many types of machine learning algorithms. A non-exhaustive list of the main 259 

types would include (i) naive Bayes classifiers, (ii) nearest neighbour classifiers, (iii) support 260 

vector machines (Cortes and Vapnik, 1995) (iv) decision trees, (v) boosted trees, (vi) random 261 

forests, (vii) artificial neural networks (ANNs) (Cuddy and Glover, 2002; Yarveicy et al. 262 

(2018), and (viii) genetic algorithms (GAs) (Cuddy and Glover, 2002). Most of these, and other 263 

machine learning algorithms come in various different types. For example, a type of support 264 

vector machine allowing robust least-squares fitting, called the least-squares support vector 265 
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machine (LSSVM) is described and used by Yarveicy et al. (2014), and has been applied in the 266 

field of petroleum and natural gas engineering successfully by number of authors 267 

(Eslamimanesh et al., 2012; Farasat et al., 2013; Rafiee-Taghanaki et al., 2013; Shokrollahi et 268 

al., 2013; Ghiasi et al., 2014). 269 

 This paper compares the efficacy of using ANNs and GAs to predict the permeability of 270 

tight carbonate rocks, in a similar way that Yarveicy and Ghiarsi (2017) compared the  efficacy 271 

of the extremely randomised trees approach and the LSSVM approach to modelling gas hydrate 272 

phase equilibria. Yarveicy et al. (2018) have also carried out comparative studies using ANNs, 273 

LSSVMs, adaptive neuro-fuzzy inference systems (ANFIS) and adaptive boosting 274 

classification and regression trees (AdaBoost-CART) to predict equilibrium in carbon 275 

dioxide/water/Piperazine system, finding that the latter was by far the better approach in this 276 

particular system. 277 

 In addition, this paper also compares machine learning approaches with seven conventional 278 

permeability prediction equations. 279 

 280 

Artificial Neural Networks  281 

Artificial neural networks are models which mimic the ability of the brain to learn and solve 282 

extremely diverse problems. There are many types of such a model, and the one used here is 283 

the Feed Forward Multilayer Perceptron Network (MLPN), which is commonly used for 284 

nonlinear regression (Hagan et al., 2014). This type of network consists of an input layer which 285 

includes the input parameters. In this work three input parameters were used; the porosity , 286 

the pore throat diameter dPT and the formation factor F.  287 

 There is also an output layer which provides the output of the network, and which is 288 

the logarithmically-transformed predicted permeability. Between the input and output layers 289 

there exists at least one hidden layer as shown in  290 

Figure 2. The basic unit of a neural network is called the artificial neuron, which completely 291 

or partially composes one layer. The function of each neuron is to sum all incoming signals, 292 

together with a bias value. After the summation, a transfer/activation function is applied to the 293 

sum before the signal is transmitted to other neurons, in a different layer. 294 

Before it can be deployed to predict permeability, a neural network must be trained. During 295 

this training process the network’s internal model parameters are adjusted to optimize the 296 

network’s output by reducing the difference (or error) between the output of the neural network 297 

and the reference data (the training permeability in our case). These internal model parameters 298 



11 

 

are the weighting factors connecting the neurons together and the bias values. The overall 299 

process of training progressively reduces the error between the network output and the 300 

reference (measured) values (Negnevitsky, 2002; Hagan et al., 2014). There are many training 301 

methods such as stochastic learning and gradient descent learning (Rajasekaran and Pai, 2003). 302 

The algorithm used here is Adam, one of the most efficient general purpose stochastic learning 303 

algorithms which has been introduced and described in detail by Kingma and Lei Ba (2015).  304 

The complexity of the neural network model is influenced by its size, i.e., the number of 305 

neurons and hidden layers. Bearing in mind the principle of Occam’s razor, a network needs to 306 

have enough complexity to model the patterns inherent in the data, yet not be so complex that 307 

it attempts fitting any random noise that will occur to some extent in any dataset (Hagan et al., 308 

2014).  309 

Figure 2 shows the neural network structure adopted in this case study, and was optimised 310 

by experimentation with different structures. The adopted structure is simple but also efficient 311 

in capturing the inherent patterns in the data. It consists of a single neuron in each of two hidden 312 

layers.  313 

 314 

 315 

Figure 2. The MLPN structure which has been used in this work. There is one hidden 316 

neuron in each of the hidden layers. The transfer function in the first hidden layer is a 317 

sigmoidal function while the transfer function in the second hidden layer and the output layer 318 

are linear functions. 319 

 320 
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It is known that artificial neural networks perform better when their parameters are 321 

distributed normally or quasi-normally (Hagan et al., 2014). Many of the used parameters are 322 

naturally normal or quasi normal. However, some, such as measured permeability follow a log-323 

normal distribution. These parameters were transformed so they resembled a normal 324 

distribution more closely so that the modelling could take place. The results of the neural 325 

network modelling can be transformed back to a lognormal distribution. 326 

 327 

Genetic Algorithms  328 

Genetic algorithms optimize fit to a pattern by simulating the process of natural selection. In 329 

this process the most successful ‘organisms’ from a population survive to pass their genes on 330 

to their progeny (Cuddy and Glover, 2002). The chance of survival is related to certain 331 

characteristics of the organism which can be passed on to the next generation and/or mutated. 332 

Consequently, some of their progeny inherit those characteristics from their parents which 333 

improve their survival.  334 

 In the genetic algorithm method, the starting point is a population of ‘organisms’ which, in 335 

this specific case represent prediction equations. These ‘organisms’ have randomly allocated 336 

genes, which contain the information required to reconstruct each permeability prediction 337 

equation. The most successful equations, defined as those which are best at predicting the 338 

permeability of a training set of data, are allowed to partially swap their genes, in the hope that 339 

their ‘progeny’ become even more successful. Random mutations are also allowed at a 340 

probability which serves to enhance the diversity of the genetic information of the population 341 

(Aminzadeh and De Groot, 2006).  342 

 The genetic algorithm technique has been used successfully in the search for suitable 343 

empirical permeability prediction equations (e.g., Cuddy and Glover, 2002, Fang et al., 1992). 344 

Its particular strength is that it is able to suggest the form of a prediction equation as well as its 345 

various coefficients. In our application, the objective is to predict permeability from porosity, 346 

pore throat diameter and formation factor. The general equation for the empirical relationship 347 

that would have the ability to predict permeability from these three input parameters can be 348 

written as 349 ݇ ൌ ݂ሺ߶ǡ ݀௉் ǡ ሻܨ ൌ ሾܽ ߶௕ሿ Ȉଵ ൣܿ ݀௉்ௗ൧  Ȉଶ ሾ݁ ܨ௙ሿ Ȉଷ ሾ݃ሿ ,  (8) 350 

where k is permeability. The coefficients and exponents are denoted as letters a, b, c, d, e, f and 351 

g, all of which have continuous values, and the entities represented by Ȉଵ , Ȉଶ and Ȉଷ, which are 352 
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operators that can be either multiplication or addition. It should be noted that subtraction and 353 

division are not required as these operations are taken account of by negative values of the 354 

coefficients and exponents. These 10 parameters can be written in the form shown in Figure 3, 355 

which is called a ‘chromosome’, and can be manipulated in the same way as a biological 356 

chromosome.  357 

 358 

 359 

Figure 3. Representation of the permeability equation using a ‘chromosome’. 360 

 361 

Different types of encoding can be used in genetic algorithms (Rajasekaran and Pai, 2003). 362 

The type used in this work is ‘value encoding’, which implies the use of actual values for the 363 

numerical parameters, while binary encoding is used for the two types of operators; 364 

multiplication and addition. 365 

In this implementation, a genetic algorithm starts with a randomly generated population of 366 

permeability prediction equations, encoded by their chromosomes. All the permeability 367 

prediction equations are tested for their goodness of fit to the real data represented by the 368 

training dataset. Those that perform well are allowed to survive in a mutated form, and retested 369 

against the training dataset. A large number of iterations can be carried out, with the prediction 370 

equations becoming more and more precise in their permeability predictions. The processes 371 

stopped when a given prediction accuracy is reached.  372 

The survival of permeability prediction equations is judged on the calculation of a ‘fitness 373 

to survive’ parameter, which is higher for equations that provide a smaller prediction error. 374 

Two successful permeability prediction equations are then chosen at random to reproduce using 375 

their successful genetic information. The genetic information of all new progeny is also 376 

subjected to random mutation at a certain probability (Rajasekaran and Pai, 2003). In this type 377 

of genetic algorithm, the random mutation was achieved by multiplying the chromosomal 378 

numerical values by a random number between 0.8 and 1.2 and flipping the binary code for the 379 

operators (Cuddy and Glover, 2002). When run reiteratively, the solution improves over 380 

generations until no major improvement can be achieved, and by then the solution can be 381 

considered to be converged (Negnevitsky, 2002). The equation corresponding to the 382 
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chromosome having the highest fitness among the last generation is selected for being the 383 

solution model because it has the highest predictive power. 384 

 385 

Results and Discussion 386 

The full dataset of 130 samples was divided at random into two subsets. The first subset, 387 

comprising 100 samples, was called the training data subset. This was used to train machine 388 

learning techniques and to calibrate those conventional models which required tuned empirical 389 

parameters. The second subset comprised 30 samples, and was called the test data subset. This 390 

was used to test the efficacy of both the machine learning techniques and the conventional 391 

prediction equations.  392 

 393 

Conventional models 394 

Figure 4 shows the permeability predicted using each of the benchmark conventional models 395 

as a function of the measured permeability. Of the conventional models, the Berg model 396 

performed the worst because this model has an empirical origin that is not calibrated for tight 397 

carbonates but for the clastic dataset for which it was originally developed. Consequently, its 398 

empirical coefficient of 8.4×10-2 is fixed. If this value were allowed to vary and to be used as 399 

a fitting parameter, it would provide an improved solution.  400 

 The other models provided very good results over almost 6 orders of magnitude, especially 401 

the various forms of the RGPZ model and the Generic models, which are either purely 402 

analytical (RGPZ-exact and the RGPZ-approximate models), or empirical (RGPZ-carbonate 403 

and Generic models). Table 2 contains the coefficient of determination and RSME values for 404 

the training and test datasets associated with each implementation, as well as the final trained 405 

equation. 406 

 407 

 408 

 409 

(Overleaf) Figure 4. Permeability prediction using the seven conventional permeability 410 

prediction equations, each shown as a function of the independently measured permeability. 411 

The whole dataset is split into a training subset and a test subset. Only the Berg equation and 412 

the two original RGPZ equations do not require the fitting of at least one parameter to data. 413 

For these three, there is no distinction between the training and test data. For the others, their 414 

empirical parameters will have been fitted using the training dataset, for which the fit should 415 

be optimal, and then applied to the test data, for which the fit should be slightly suboptimal. 416 

In each case the uncertainties in each value are approximately the same size as that of the 417 

symbols. 418 
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 Overall the quality of the fits obtained from the conventional models was considered to be 420 

very good. This is partly due to the choice of benchmarking conventional models we have used 421 

in this paper. There are many other equations, some with a very long pedigree, that would do 422 

much worse.  423 

 Although this paper concerns itself predominantly with machine learning, it is worthwhile 424 

taking away a lesson from the conventional model test that we have done. First, permeability 425 

prediction will only be good if it uses input parameters that are of high quality. In this work, 426 

we strove to make the highest quality measurements we could. Second, the permeability 427 

prediction equation needs to be one which is relevant to the type of rock being predicted. Hence, 428 

for tight carbonate rocks, the permeability prediction equation ought to have been developed 429 

with tight carbonate rocks in mind. Third, those permeability prediction equations that require 430 

fitting to obtain one or more empirical coefficients need to use calibration data sets that contain 431 

data for the type of rock being fitted. In our particular case this is tight carbonate rocks, the 432 

observation is equally true of other types of rocks.  433 

 In all cases, the conventional models which have performed most successfully on tight 434 

carbonate rocks are those which have either (i) been specifically designed for tight carbonate 435 

rocks, or (ii) have been developed, or had their empirical coefficients determined using datasets 436 

containing tight carbonate rocks. In general, good quality prediction can only be expected over 437 

a large number of orders of magnitude if the calibration data also extends over a similar range 438 

of orders of magnitude. In other words, if the rocks on which one wishes to predict permeability 439 

varies from a few D to hundreds of mD, the calibration of the empirical coefficients needs to 440 

be carried out using a dataset which covers the same range.  441 

 442 

Neural network models 443 

The optimum network structure for our implementation of the neural network approach was 444 

found through experimentation, varying the number of neurons in the hidden layers and 445 

observing the response of the objective function. In this work, we found predicting permeability 446 

itself does not produce equally good results over the entire range. As some permeabilities are 447 

order of magnitude higher than others, the error associated with these far exceeds the error from 448 

lower end permeability samples, causing the algorithm to be biased toward predicting the few 449 

highest permeabilities as accurately as possible, while disregarding accurate prediction of the 450 

lower  values. To alleviate this major issue, the root mean squared error (RMSE) of log 451 

transformed permeability was implemented as the objective function. This approach has the 452 
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advantage of equalizing the contribution of the errors from the entire permeability range. The 453 

objective function is given by Eq. (9), where it should be noted that the permeabilities are 454 

treated in the logarithmic domain because they are distributed log normally. 455 

݊݋݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܱܿ݁ 456  ൌ ටଵ௡ σ ൫lo�൫ܭ௣௥௘ௗ௜௖௧௘ௗ൯ െ lo�ሺܭ௠௘௔௦௨௥௘ௗሻ൯ଶ௡௜ୀଵ   (9) 457 

 458 

In our application, it became clear that using larger number of neurons improved the fit of 459 

the predicted permeability to the training subset resulting in a lower value of the objective 460 

function. However, the accuracy of the subsequent use of the neural network on unseen samples 461 

diminished. This is because the neural network was ‘over-fitting’ the training samples. 462 

Overfitting occurs due to the model being too powerful such that it exceeds the requirement of 463 

just fitting the patterns in the data, and starts to memorize the training points. This process 464 

results in the performance of the model on the training dataset increasing without limit, but 465 

such an increase in performance is counter-productive because it occurs at the expense of the 466 

model’s capability to fit unseen data (Negnevitsky, 2002). Since the training data points are 467 

normally noise contaminated, and may not adequately represent the entire population, it is 468 

critical to avoid overfitting when deciding on the size of the neural network size to be used. 469 

Often simple neural networks perform just as well, and sometimes even better than very 470 

complex neural networks.  471 

Figure 5 shows the results of varying the number of neurons for our application with three 472 

input parameters: porosity, grain size and formation factor.  A network with one neuron in each 473 

hidden layer was chosen, giving the smallest value of objective function for the test samples.  474 

The permeability prediction results from the MLPN model are shown in Figure 6, where the 475 

predicted permeability is plotted as a function of the measured permeability for both the 476 

training and the test data in the dual-logarithmic domain. It is clear from this figure that the 477 

neural network provides a very good fit to the measured permeability data over six orders of 478 

magnitude. 479 

 480 

 481 
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 482 

Figure 5. Hyperparameter testing of network size showing that, for this application, a 483 

smaller network size is less accurate on the training data but its generalization on 484 

unfamiliar samples is more robust. 485 

 486 

The permeability prediction results from the MLPN model are shown in Figure 6, where the 487 

predicted permeability is plotted as a function of the measured permeability for both the 488 

training and the test data in the dual-logarithmic domain. It is clear from this figure that the 489 

neural network provides a very good fit to the measured permeability data over six orders of 490 

magnitude. 491 

 492 

Genetic algorithm models 493 

The permeability prediction results from implementing the genetic algorithm technique are also 494 

shown in Figure 6, once again with the predicted permeability plotted as a function of the 495 

measured permeability for both the training and the test data and in the dual-logarithmic 496 

domain. The predicted permeabilities using this technique are also clearly very good compared 497 

to most of the conventional models.  498 

The genetic algorithm technique has the advantage of also providing a prediction equation 499 

that is tailored to the training dataset. In this case the genetic algorithm technique provides 500 

permeability prediction through this equation  501 

݇ ൌ ଵଶଶଷ଺ହଷସଵ଻଻଻ଷ଴଼ థమǤళరఴ ௗು೅భǤఴలరிబǤల  ,    (10) 502 
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which can be rewritten in a generalized form 503 ݇ ൌ  ெథೌ ௗು೅್ி೎  ,      (11) 504 

which is consistent with Eq. (10), and where M, a, b and c are fitting parameters, whose exact 505 

values are sample-dependent and whose mean values are formation-dependent.  506 

 Equation (11) contains two parameters which are known to be partially correlated. The 507 

formation factor F is known to be dependent on both porosity and cementation exponent m 508 

through Archie’s first law (Archie, 1942), which can be stated as F = -m. This equation arises 509 

from the fact that electrical flow through a rock with insulating grains occurs only through the 510 

conducting fluid occupying the pores. The resistivity of the rock depends on the amount of 511 

fluid present, which is given by the porosity and assumes that the pores are completely saturated 512 

with the fluid, and also depends on how well that fluid is connected, which is described by the 513 

value of the so-called cementation exponent m (Glover, 2015). Consequently, Equation (10) 514 

may be rewritten as 515 ݇ ൌ ͳʹʹ͵͸ͷ͵Ͷͳ͹͹͹͵Ͳͺ ߶ሺଶǤ଻ସ଼ା଴Ǥ଺௠ሻ ݀௉்ଵǤ଼଺ସ ,   (12) 516 

or generically as 517 ݇ ൌ ሺ௔ା௖௠ሻ݀௉்௕߶ܯ   .     (13) 518 

 The large value of M in Equation (12) arises solely from the fact that the input parameters 519 

for the genetic algorithm model used permeability training data in millidarcies. When 520 

converted to m2, this value becomes 0.0122, which corresponds well to the value for the 521 

constant term in the RGPZ equation. This term is ͳ Ͷܽ݉ଶΤ , and can be calculated for the mean 522 

behaviour of the dataset from the data given in Table 1. When the cementation exponent is 523 

calculated using Archie’s first law from this data, we obtain a mean cementation exponent of 524 

m=2.402, which provides a value of 0.0162 for the constant term. Consequently, we conclude 525 

that the M term in Equation (12) is consistent with the theoretically-derived RGPZ equation. 526 

 Considering the other variables in Equation (12), we find that the genetic algorithm method 527 

underestimates the porosity exponent compared to the RGPZ equation, providing 2.748+0.6m, 528 

which is equal to 4.189 when m=2.402, compared to a value of 3m, which is equal to 7.206 for 529 

the RGPZ equation; an overestimation of just over 3. The genetic algorithm method also 530 

underestimates the grain size exponent, giving 1.864 compared to the RGPZ equation’s value 531 

of exactly 2. 532 

  533 
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 534 

Figure 6. Permeability prediction results for the trained neural network (a) and using the 535 

genetic algorithm approach (b), when applied to the training and the test datasets as a 536 

function of the laboratory measured permeabilities. (c) Cross-plot of the absolute residuals 537 

from the genetic algorithm (GA) method with that from the neural network method. (d) 538 

Cross-plot of the normalised absolute residuals from the genetic algorithm (GA) method with 539 

that from the neural network method. Almost all the predictions fall within one order of 540 

magnitude away from the actual measurements. 541 

 542 

Equation (13) gives some insight into the controls on permeability offered by the rock matrix 543 

and its microstructure. It implies three main controls on permeability: 544 

1. Porosity. This recognizes that the higher the porosity, the higher the permeability is 545 

likely to be. The sensitivity of permeability to changes in porosity is given by what we 546 

might now call the sensitivity factor a in Equation (13). 547 
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2. Connectivity of the pores. This recognizes that high porosities, if unconnected will have 548 

zero permeability and for any given porosity permeability will be greater if pore 549 

connectivity is higher. The sensitivity of permeability to changes in connectivity is 550 

given by what we might now call the sensitivity factor c in Equation (13). 551 

3. The characteristic pore throat diameter. It is an important parameter for permeability 552 

since narrower pore throats act like bottlenecks for fluid flow. The sensitivity of 553 

permeability to characteristic pore throat diameter is given by what we might now call 554 

the sensitivity factor b in Equation (13). 555 

 556 

Prediction performance 557 

The error metrics for all predictions are shown in Table 2 and in Figure 7. 558 

Good fits are represented by low values of root mean squared error (RSME) together with high 559 

values of coefficient of determination (R2). The quality of the predictions is far from uniform. 560 

Even with their historic success on conventional sandstone reservoirs, the older empirical 561 

models were not successful on these tight carbonate rocks. The RGPZ-carbonate equation 562 

provided the best fit from the conventional approaches, with the lowest RMSE error of 0.458. 563 

The other RGPZ equations performed slightly worse as they do not include the carbonate 564 

calibration parameter, but nevertheless provided acceptable predictions. The genetic 565 

algorithm solution performed marginally better than the rest of the conventional equations, 566 

with an RMSE of 0.433. On the other hand, the artificial neural network technique provided 567 

the most accurate predictions with an RMSE of only 0.380.  568 

 The marginal difference between the two machine learning approaches arises from only a 569 

few data points. Reference to Figure 6 shows that there are two data points, one in the training 570 

dataset and another in the test dataset whose permeabilities are underestimated by one order of 571 

magnitude. The reason why these particular points are not predicted well is not currently 572 

known. However, we carried out a sample by sample comparison of both machine learning 573 

approaches, and find that the prediction error for the genetic algorithms correlates with the 574 

prediction error. Figure 6c shows a cross-plot of the absolute residuals from the genetic 575 

algorithm method (GA) against that from the neural network (NN) method. It is clear that 576 

samples whose permeability is badly predicted by one method is also badly predicted by the 577 

other, with correlation coefficients of 0.963, 0.994 and 0.962, for the training dataset, test 578 

dataset, and combined datasets, respectively. We recognise that this comparison might be 579 

biased towards large permeability measurements due to the large range of permeabilities used 580 
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in the study. The large range of permeabilities covered in the prediction might lead to small 581 

percentage errors in large permeabilities being given more weight than large percentage errors 582 

in small permeabilities. Hence, we also show the cross-plot of the absolute residuals normalised 583 

by the measured permeability, which is shown in Figure 6d. Once again, the normalised 584 

absolute residuals correlate well, with coefficients of correlation of 0.945, 0.991 and 0.969, for 585 

the training dataset, test dataset, and combined datasets, respectively. In Figure 6d, the abscissa 586 

x=1 and ordinate y=1 represent an error in prediction of the same magnitude as the measured 587 

permeability (i.e., a ±100% error) for the neural network and genetic algorithm methods, 588 

respectively. Those points with coordinates (x,y) > (1,1) represent predictions by both 589 

techniques that are very much in error, and for these the degree of bad prediction in one 590 

machine learning method is similar to that in the other. For those points where the prediction 591 

is better, i.e., (x,y) < (1,1), there is more scatter indicating that one method produces a better 592 

prediction than the other. 593 

 From the analysis above we infer that the lack of prediction accuracy is not predominantly 594 

a function of the technique being used, but due to a problem with the input parameters. There 595 

are two possibilities here: (i) that non-systematic errors in one or more of the input parameters 596 

leads to both machine learning techniques badly predicting some of the samples, and (ii) the 597 

permeability of the tight carbonate rocks depending upon some petrophysical characteristic 598 

that is not characterised sufficiently by any of the input parameters used in this study. An 599 

example of the latter might be that the permeability is dependent upon the rock wettability, but 600 

none of the input parameters include information about rock wettability. Further work would 601 

need to be carried out in order to ascertain whether this was the case.  602 

 We note, however, that the few samples for which the predictions were worst have a 603 

different structure from the rest of the dataset in that they have a high permeability but a low 604 

porosity and a small pore throat size. From such parameters, we infer that the pore space that 605 

is present must be highly connected. Samples with this type of microstructure occur when the 606 

diagenetic process of cementation has occluded original pore volume, reducing the size of the 607 

throats connecting the pores as well as the pores themselves, but leaving the remaining flow 608 

paths highly connected. Examples of such behaviour can be found in Fontainebleau and 609 

Lochaline sandstones (Walker and Glover, 2018) and in carbonates (Rashid et al., 2015a; 610 

2015b, 2017). The inefficiency of the machine learning techniques stems from the relative lack 611 

of samples with this type of structure in the training dataset. The permeability is predicted badly 612 

precisely because the machine learning techniques have not been prepared to recognise samples 613 

with this type of pore microstructure. It is a sobering thought that any machine learning 614 
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algorithm is only as good as the quality of the data with which it is trained and upon which it 615 

is applied. 616 

 It is worth noting that the fits by empirical equations and machine learning implementations 617 

are slightly better for the training dataset than the test dataset. This is due to the chance that the 618 

models are calibrated on a sample that is not quite representative enough of the characteristics 619 

of the formation. Besides this, there is also a chance of inclusion of two outliers in the test 620 

dataset that reduces the efficacy of all the models in the test dataset. 621 

 622 

 623 

 624 

Figure 7. Permeability prediction metrics for all conventional and machine learning 625 

techniques for the training and test datasets. 626 
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Table 2. A summary of accuracy measures for the permeability prediction solutions for the Portland limestone, arranged in order of performance, 627 

best first.  628 

Permeability 
Model Trained equation/model 

Training subset  Test subset 

RMSE R2 RMSE R2 

Feed forward 
multilayer 
perceptron 
network 

A fitted model as following: 

N1=[-0.37531-2.19641log(dPT)+0.30725log(F)]+0.61237 

1st neuron output=1/(1+e-N1) 

2nd neuron output=-0.8194A1+0.33022 

Log(k)=2.78812nd neuron output+0.22452 

Input and output parameters are normalized to a range of -1 to 1 

0.357 0.908 0.380 0.886 

Genetic 
algorithm ͳʹʹ͵͸ͷ͵Ͷͳ͹͹͹͵Ͳͺ ߶ሺଶǤ଻ସ଼ା଴Ǥ଺௠ሻ ݀௉்ଵǤ଼଺ସ 0.394 0.888 0.433 0.858 

RGPZ 
carbonate 

݀௚ଶͶܽ݉ଶܨߟሺܨߟ െ ͳሻଶ  w�e�e ߟ ൌ ͳǤͳͷ  0.445 0.858 0.458 0.838 

RGPZ 
approximate 

ௗ೒మ˗యౣସ௔௠మ  * 0.476 0.858 0.461 0.837 

RGPZ exact 
ௗ೒మସ௔௠మிሺிିଵሻమ * 0.482 0.858 0.462 0.839 

RGPZ 
Generic 

݀௚ଶͺ͵Ǥ͹ʹܨଷ 0.415 0.876 0.467 0.836 

Kozeny-
Carman 

ͺ͸ͳͷͻ͸ͳͻ͵ͳ݀௚ଶ˗ଷሺͳ െ ˗ሻଶ  0.696 0.712 0.833 0.651 

Van Baaren ͳͲ݀ௗଶ˗ሺଷǤ଺ସା୫ሻͲǤͲͲͳିଷǤ଺ସ 0.704 0.803 0.907 0.738 

Berg ͺǤͶ כ ͳͲିଶ݀௚ଶ˗ହǤଵ * 2.344 0.73 2.368 0.672 

* These equations are not calibrated but are fixed empirical (Berg) or theoretically derived equations (RGPZ approximate and RGPZ exact). 629 
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The results presented in this paper show that the implementation of genetic algorithms and 630 

artificial neural networks results in more accurate predictions in comparison to predictions 631 

made by all the benchmark permeability models including the most recent ones. The genetic 632 

algorithm technique helped reduce the error of the best performing conventional permeability 633 

model by 5%. On the other hand, the artificial neural networks technique reduced the error by 634 

17%, which is a significant improvement. On the other hand, the solution of the neural network 635 

approach, which is something of a ‘black box’, is not as transparent as the trained equation 636 

provided by the genetic algorithm method. The representation of the solution in a concise 637 

mathematical equation provides a much clearer insight into the significance and role of each 638 

input parameter into the permeability prediction. Also, the resulting equation can be applied 639 

more easily to similar facies without the need for special software and/or technical skills. The 640 

solution equation can also be recalibrated with a small number of samples because of the 641 

smaller number of model parameters.  642 

By contrast, the permeability prediction using artificial neural networks is mathematically 643 

more complex. While it is simple to visualize the solution of a neural network that has a single 644 

input feature on a xy graph, to visualize it when two input parameters are used requires a three-645 

dimensional plot. Nonetheless, visualizing the response of networks that use multi-dimensional 646 

input features is indeed challenging. 647 

 648 

Limitations of machine learning 649 

The main result of this study is that both the machine learning techniques tested performed 650 

better than all of the conventional permeability equations over a range of 6 orders of magnitude. 651 

There are, however, some important limitations of machine learning which need to be 652 

considered before blindly applying them.  653 

 The first is that it can be simple to fall into the trap of creating neural networks which are 654 

too complex, and which will seem to be doing a good job of permeability prediction on the 655 

training data, but which lead to over-training. Such models will not perform as well on the 656 

target dataset, and that partial failure will not be clear because independent permeability 657 

measurements will not be available. Why, after all, predict permeability if one already knows 658 

it.  659 

 The second is that both techniques are to some extent a black box, although that is less true 660 

of genetic algorithms. Consequently, if there is a failure in the techniques, it is not always clear 661 

to the operator. 662 
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 Third, both techniques need training. The training dataset must be a random sample of the 663 

whole population on which the technique is to be used. This is not just the trivial constraints 664 

that the sampling should be truly random, of sufficient number to capture all of the complexities 665 

in the target data, and covering the same range of measurements in the same proportion. By 666 

definition, rare events, conditions and outliers in general will be lost from the analysis. Machine 667 

learning is in a certain light, a form of conservative filtering that keeps the common and rejects 668 

the rare. Consequently, machine learning will fail to predict rare but important values. 669 

 The fourth limitation concerns the interpretation of what is a good genetic algorithm result. 670 

If there are sufficient organisms evolving, it is reasonable that one of the most successful will 671 

provide the permeability prediction equation that is the most appropriate. We use the words 672 

‘most appropriate’ deliberately, because it will not necessarily be the best. The set of successful 673 

chromosomes, however numerous and however statistically defined are non-unique. In other 674 

words, two chromosomes which are very different could provide equally good results. How is 675 

one then to choose which to use on a set of target data, where the accuracy of the result cannot 676 

be tested. 677 

 In summary, no matter how well-implemented, the use of machine learning will always be 678 

associated with some anxiety that the predictions are as good as we have found. If that anxiety 679 

is such that the final results always need to be validated by some independent measure of 680 

permeability, the utility of the approach is weakened. 681 

 682 

Diagenesis and machine learning 683 

As we have seen, both the genetic algorithm and neural network models perform better than 684 

the best of the theoretical and empirical models. It is instructive to examine the reasons for this 685 

in tight, often diagenetic altered, carbonate rocks. Conventionally, the spread in a poroperm 686 

diagram is attributed to the permeability depending upon factors other than porosity. However, 687 

many of the theoretical and empirical models presented in this paper include a range of other 688 

parameters, including, for example, grain size, formation factor and cementation exponent but 689 

still result in a suboptimal prediction of permeability. This is because the permeability is some 690 

additional function of a parameter that is not included in the structure of the prediction equation, 691 

or that there is a lack of orthogonality between the input parameters.  The defined structure of 692 

the prediction equation limits the efficacy of the model to predict permeability in only those 693 

rocks where the imposed structure is valid, i.e., simple functional dependencies of a limited 694 

number of known input parameters.  695 
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 Here, both machine learning techniques perform better than all the conventional approaches, 696 

so we can infer that they have a common ability to make better use of the available data than 697 

conventional predictive equations. The common characteristic of the two machine learning 698 

methodologies used in this work, as well as all machine learning approaches, is that they start 699 

with either no structure or relatively little structure. The neural networks have only defined 700 

input and output values, while the genetic algorithm has input and output values as well as a 701 

very generalised equation. In machine learning, structural complexity arises from training and 702 

is theoretically only limited by the availability of a representative training dataset. 703 

Consequently the result of complex interacting processes should be modellable with accuracy. 704 

 The permeability of  tight carbonate rocks is the result of the complex, interacting process 705 

of diagenesis. Hence, we hypothesize that the permeability of rocks which have undergone 706 

diagenesis would be ideally suited to machine learning methods, whose greater sensitivity to 707 

subtle and complex changes in the input parameters can be taken into account. 708 

 Of all of the conventional models, it was the carbonate version of the RGPZ model that 709 

came closest to the machine learning models. This model includes the  parameter, which is 710 

supposed to take account of the fact that the pore network architecture in carbonate rocks is 711 

more complex than that in clastic rocks (Rashid et al., 2015b). However, a single value, set to 712 

=1.15 in this work, is a very crude method for taking account of the pore network which will 713 

have a connectedness that may depend upon codependent and competing processes of 714 

compaction, cementation, vug formation, dissolution, dolomitisation and fracturing.  715 

 Figure 8 shows a generic poroperm cross plot implemented for the modified carbonate 716 

RGPZ model for four different grain sizes. The superimposed arrows (which are imposed at an 717 

arbitrary point on an arbitrary curve, but are equally relevant to any point on any of the curves) 718 

show the approximate directions each diagenetic process will produce when acting upon the 719 

pore network architecture of a carbonate rock. None of the arrows follow the curves, because 720 

that would indicate that the process was not altering either the rock matrix or the pore network 721 

architecture. The transparent grey areas in the figure are an indication of those where gain or 722 

loss in porosity leads to a loss or gain in permeability. There are however no diagenetic 723 

processes which cause such tendencies. 724 

  725 
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 726 

Figure 8. Diagrammatic poroperm cross-plot based on the modified carbonate RGPZ model 727 

for grain sizes. The arrows, which all originate at an arbitrary point on one of the curves, but 728 

equally well apply to any point on any of the curves, represents the results of different 729 

diagenetic processes altering the pore network architecture of the rock and hence its porosity 730 

and permeability characteristics. High reservoir quality occurs towards the top right of the 731 

figure. 732 

 733 

Compaction (grey arrow) reduces porosity, but can result in less permeability loss than 734 

expected depending on the sorting, shape and strength of the grains. Cementation (red arrow) 735 

results in loss of porosity as cement fills the pore spaces, and significant loss of permeability 736 

because the cement will either partially or totally occlude pore throats, hence blocking fluid 737 

flow pathways. By comparison, dissolution (magenta arrow) tends to dissolve rock matrix 738 

indiscriminately, increasing porosity but not preferentially in the pore throats. Consequently, 739 

though mobility does increase, it does not do so significantly. Dolomitisation (orange arrow) 740 

has a much greater effect because the recrystallisation concomitant upon dolomitisation 741 

provides larger porosity within pores that are well connected, and hence support much greater 742 
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permeability. Vug formation (dark blue arrow), for example by preferential dissolution, 743 

introduces significant porosity. However, this porosity is often distributed in an unconnected 744 

manner in a background matrix of low permeability, and hence results in very little increase in 745 

permeability. Stylolitisation (green arrow) has negligible impact upon the porosity of a rock, 746 

but by concentrating clay minerals along the stylolite surface, the macroscopic permeability of 747 

the rock perpendicular to the stylolites is greatly reduced. Since stylolite form perpendicular to 748 

the direction of greatest principal stress, this direction is usually vertical. Fracturing (light blue 749 

arrow), of course, introduces very little extra porosity to a rock, but that porosity is arranged 750 

for the efficient transport of fluid in the direction of the fractures. Consequently, porosity 751 

increases slightly upon fracturing, but permeability in the direction of the fractures can increase 752 

by two or more orders of magnitude if the fractures are open. If the fractures are closed, the 753 

trend would be very similar to that for the stylolites, with the closed fractures providing a 754 

similar compartmentalised single role. 755 

 Taking all of these diagenetic factors in consideration, it is unlikely that the  parameter 756 

would be able to take account of all of the diagenetic controls on permeability provided by 757 

these codependent and competing diagenetic processes. However, the training of either a new 758 

network or genetic algorithm on a reasonable size training dataset would be likely to result in 759 

a model that takes account of the main controls of diagenesis on permeability. 760 

 Finally, we recognize that the true novelty of this paper is not that it tests two machine 761 

learning methodologies for the first time on a high-quality, well-characterised tight carbonate 762 

system, but the recognition that the quasi-quantitative parameters obtained from these 763 

techniques may contain information which will help us improve the quantitative analysis of the 764 

type and extent of diagenesis with regards to its control on rock permeability. 765 

 766 

Conclusions 767 

In this work, both artificial neural network and genetic algorithm techniques have been 768 

demonstrated to show potential for the prediction of technically challenging tight carbonate 769 

reservoirs. The genetic algorithm technique is more useful if one wishes to gain more insight 770 

into which parameters are controlling the predicted permeability, and has the benefit of 771 

providing an equation that can be subsequently applied easily to other datasets or used as the 772 

starting point of training with another dataset. However, when accuracy is the top priority, the 773 

neural network technique was found to be more accurate.  774 
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 We have considered the reasons for the machine learning techniques providing a better 775 

predicted permeability compared to the conventional models, considering that some of the 776 

conventional models are very high quality and contain the same parameters used in machine 777 

learning approaches. We have concluded that the better performance of machine learning 778 

techniques over conventional approaches can be attributed to their enhanced capability to 779 

model the connectivity of pore microstructures using a significant training dataset. This allows 780 

machine learning methods to take account of small changes in pore microstructure caused by 781 

the complex, codependent and competing diagenetic processes that have conspired to create 782 

the pore microstructure of any given carbonate rock. In doing so, we have created a qualitative 783 

model which describes how the poroperm characteristics of tight carbonate rocks are modified 784 

by each of eight diagenetic processes.  785 

 We conclude that, for tight carbonate reservoirs, both machine learning techniques predict 786 

permeability more reliably and more accurately than conventional models and may be capable 787 

of distinguishing quantitatively between pore microstructures caused by different diagenetic 788 

processes. 789 
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