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Abstract 22 

The acquisition of plasmids is often accompanied by fitness costs such that compensatory evolution is 23 

required to allow plasmid survival, but it is unclear whether compensatory evolution can be extensive or 24 

rapid enough to maintain plasmids when they are very costly. The mercury-resistance plasmid pQBR55 25 

drastically reduced the growth of its host, Pseudomonas fluorescens SBW25, immediately after 26 

acquisition, causing a small colony phenotype. However, within 48 hours of growth on agar plates we 27 

observed restoration of the ancestral large colony morphology, suggesting that compensatory mutations 28 

had occurred. Relative fitness of these evolved strains, in lab media and in soil microcosms, varied 29 

between replicates, indicating different mutational mechanisms. Using genome sequencing we identified 30 

that restoration was associated with chromosomal mutations in either a hypothetical DNA-binding protein 31 

PFLU4242, RNA polymerase, or the GacA/S two-component system. Targeted deletions in PFLU4242, 32 

gacA, or gacS recapitulated the ameliorated phenotype upon plasmid acquisition, indicating three distinct 33 

mutational pathways to compensation. Our data shows that plasmid compensatory evolution is fast 34 

enough to allow survival of a plasmid despite it imposing very high fitness costs upon its host, and indeed 35 

may regularly occur during the process of isolating and selecting individual plasmid-containing clones. 36 



Introduction 37 

Plasmids are important vehicles for horizontal gene transfer (HGT), allowing bacteria to rapidly adapt to 38 

new environments by transferring niche-adaptive traits (1). Plasmid acquisition can, however, disrupt 39 

normal cellular function (2). The consequent fitness costs can limit plasmid survival because plasmid-40 

bearers will be outcompeted by plasmid-free cells that do not suffer the cost (2). Beneficial genes carried 41 

by the plasmid cannot ensure its long-term persistence, as these genes can recombine onto the 42 

chromosome (3,4). An important mechanism allowing plasmid survival is compensatory evolution 43 

whereby mutations in chromosomal and/or plasmid genes ameliorate fitness costs (e.g. (5–7)). Where 44 

transmission rates are too low to maintain plasmids by infectious transfer, plasmid survival effectively 45 

becomes a race between the rate of compensatory evolution and the rate at which plasmid-bearers are 46 

outcompeted (8). 47 

Plasmid compensation is often explored using experimental evolution. In general, these experiments 48 

involve the introduction of an initially costly plasmid to a strain, prolonged culture of plasmid bearers 49 

(often through dozens of serial transfers), followed by assays on evolved plasmid-bearing strains and 50 

often re-sequencing to identify underlying mutations. These studies have highlighted targets of loss-of-51 

function compensatory mutation, varying with the bacterial-plasmid pairing. Chromosomal accessory 52 

helicases have been implicated with Pseudomonas aeruginosa and the small plasmid pNUK73 (7), and 53 

with Pseudomonas sp. H2 and plasmid RP4 (6). Chromosomal global regulators have been identified: the 54 

fur gene in Shewanella oneidensis MR-1 with pBP136 (9), and the gacA/gacS genes in P. fluorescens 55 

SBW25 with pQBR103 (5). Compensatory mutations can also occur on plasmids, targeting replication 56 

genes (10) or conjugation machinery (11–13). However, for very costly plasmids compensatory evolution 57 

may be insufficient or too slow to enable persistence. For example, the mercury resistance plasmid 58 

pQBR103 was lost from all populations of P. aeruginosa PAO1 even under mercury selection (3), and 59 

plasmid pMS0506 was either lost or suffered large deletions when grown in Acinetobacter baumannii 60 

ATCC19606 under selective (kanamycin) conditions (10). 61 



In the current work, we show that several different routes of compensatory mutation, emerging during the 62 

process of transconjugant colony growth, can overcome the heavy costs imposed when P. fluorescens 63 

SBW25 newly acquires the conjugative plasmid pQBR55. pQBR55 is a member of the pQBR plasmid 64 

collection, a set of relatively large (>130 kb) conjugative mercury resistance elements exogenously 65 

isolated in the 1990s from Wytham Farm, Oxford. The sequenced pQBR plasmids, pQBR55, pQBR57, 66 

and pQBR103, fall into different ‘groups’ based on RFLP fingerprint (14) (all of the sequenced pQBR 67 

plasmids fall outwith the Enterobacteriaceae incompatibility typing scheme (15)) but DNA sequencing 68 

indicated that pQBR57 and pQBR103 are distantly related to one another, and both are distantly related to 69 

a family of IncP-2-related Pseudomonas megaplasmids (16,17). Besides mercury resistance, the 70 

sequenced pQBR plasmids have few identifiable accessory traits, and no antibiotic resistance genes. Our 71 

results indicate that compensatory evolution can rapidly and effectively facilitate the maintenance of 72 

newly acquired mobile genetic elements. 73 

Materials and Methods 74 

Strains and standard culture 75 

Pseudomonas fluorescens SBW25 was tagged with the mini-Tn7 streptomycin resistance (SmR) or 76 

gentamicin resistance (GmR) cassette (5). For the 20 replicates used in the evolution experiment a lacZ-77 

expressing strain (18) was used, generating P. fluorescens SBW25 SmR-lacZ to aid identification of small 78 

colonies by addition of X-gal (50 µg/ml) to solid media. Strains were cultured in King’s B media at 28°C, 79 

with addition of 1.2% w/v agar where appropriate. The pQBR55 donor strain, P. putida 80 

UWC1(pQBR55), was a gift from Andy Lilley (KCL) via Andrew Spiers (University of Abertay). 81 

Establishing experimental lines 82 

Each replicate was established from an independent recipient colony. Overnight cultures of P. fluorescens 83 

SBW25 SmR-lacZ and P. putida UWC1(pQBR55) were mixed in equal ratios and diluted 1:100 into 6 ml 84 

KB broth which was incubated for 24 h at 180 rpm. Samples were spread on selective plates (250 µg/ml 85 



streptomycin, 20 mM HgCl2, with 50 µg/ml X-gal) and colonies allowed to grow for 48 hours before 86 

photographing (Figure S1). For each replicate, a colony was randomly selected as the one closest to a line 87 

drawn down the centre of the plate, and was re-streaked twice onto selective media. A random colony was 88 

again photographed, resuspended in KB + 20% w/v glycerol, and maintained at -80°C. Colonies were 89 

tested for pQBR55 carriage by PCR using 1x GoTaq Green (Promega, WI USA) and 0.4 µM each of 90 

primers pQBR55_0051_R1, pQBR55_0050_F1, merA_F, merA_R and thermocycling for 95°C 5’, 30 x 91 

(95°C 30“, 58°C 30”, 72°C 1’), 72°C 1’ and in all cases were found to carry the plasmid. pQBR55_0050–92 

pQBR55_0051 adjoin the experimentally determined origin of pQBR55 replication, and thus their 93 

presence is consistent with an independently-replicating plasmid (19). Primer sequences are in Table S3. 94 

Glycerol stocks were used to establish subsequent experiments. Images were analysed with Imagemagick 95 

(ImageMagick Studio LLC) and ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, 96 

Bethesda, Maryland, USA, 1997-2018). pQBR55 was conjugated into knockout strains from 97 

UWC1(pQBR55) as described above, except selective plates included 30 µg/ml gentamicin and 20 mM 98 

HgCl2. 99 

Assays on experimental lines 100 

Phenotypic assays were performed largely according to Cheng et al. 2013 (20) on inocula from overnight 101 

cultures. Production of extracellular protease was tested on nutrient agar supplemented with 5% w/v 102 

powdered milk. Spots of 1:100 dilutions of culture (2.5 µl) were added and zones of clearing assessed 103 

after 24 h incubation at room temperature. Viscosin production was assessed by drop collapse assay. A 104 

sample (2 µl) of culture supernatant was spotted onto parafilm. The ‘beading up’ of the droplet indicated 105 

a lack of viscosin. Flagellum-mediated motility was assessed by spotting cultures onto ‘swim plates’ 106 

consisting of 5 g NaCl and 10 g tryptone per litre supplemented with 0.3% w/v agar, and assessing the 107 

distance travelled after 24 h. Pectinase activity was assessed on slices of potato, which had been peeled, 108 

soaked in 10% v/v bleach solution, and washed twice in deionised water (dH2O). Approximately 8 mm 109 

sections were placed in a petri dish and a depression cut into the surface, into which 50 µl culture was 110 



pipetted. Potato slices were scored for soft rot after 4 days. Assays were repeated at least two times for 111 

each evolved strain. All strains were tested alongside a P. fluorescens SBW25 wild-type positive control 112 

and ∆gacA and ∆gacS negative controls. 113 

Growth curves were carried out by subculturing overnight cultures and growing to OD600 ~ 0.4. Samples 114 

of each culture were diluted 1:100 in KB and 5 µl dilution used to inoculate 150 µl KB in a 96-well 115 

microtitre plate. Cultures were grown at 28°C, 180 rpm shaking in a Tecan M200 plate reader with 116 

measurements taken every 15 minutes for 48 hours. Maximum growth rate across 3 timepoints was 117 

estimated using Magellan (Tecan, Switzerland). Replica plating samples of endpoint culture onto 100 mM 118 

HgCl2 and testing by PCR showed no evidence of plasmid loss during the course of the experiment. 119 

Rifampicin resistance of sequenced clones was assessed in a similar manner, except samples were added 120 

to varying concentrations of KB + rifampicin (twofold dilutions from 0.2 to 200 µg/ml). The threshold for 121 

growth was set at OD600 > 0.03 after 48 h. 122 

Phenotypic assays and growth curves were conducted on all 20 lineages, but six experimental lineages 123 

either had a small colony morphology and/or slow or inconsistent growth, suggesting that they had not 124 

ameliorated pQBR55 carriage. Competitions were therefore conducted only on the 14 remaining lineages. 125 

Competitions were performed as described previously (21). Briefly, overnight cultures were washed in 126 

M9 buffer (48 mM Na2HPO4, 22 mM KH2PO4, 8.55 mM NaCl, 19 mM NH4Cl, pH 7.4, (22)), mixed with 127 

plasmid-free P. fluorescens SBW25 GmR in approximately equal numbers, and samples serially diluted 128 

and spread on KB + X-gal (50 µg/ml) to enumerate starting cfus. Mixtures were diluted 1:100 into 6 ml 129 

fresh KB media in a 30 ml glass universal and grown for 48 hours, or added 1:100 v/w to potting soil 130 

microcosms pre-wetted with 900 µl dH2O and grown for 96 hours. Potting soil microcosms designed to 131 

represent a more natural growth substrate of P. fluorescens consisted of 10 g unseived twice-autoclaved 132 

John Innes #2 (manufactured by J. Arthur Bower, supplied by Vertigrow Ltd., UK) with ~25% w/v water 133 

content as described previously (4,21). At the endpoint, samples of culture or soil wash were serially 134 

diluted and spread on KB + X-gal and endpoint cfus were calculated. Relative fitness was calculated as 135 



the ratio of Malthusian parameters (24). Endpoint colonies were replicated onto 100 mM HgCl2 which 136 

showed maintenance of mercury resistance in pQBR55-starting clones in all cases, and PCR analysis of 137 

colonies from each sample showed no evidence of plasmid loss. 138 

Photographs of transconjugant colonies were analysed with ImageJ using the Watershed and 139 

AnalyseParticles tools. Measurements ±2 standard deviations from the mean colony area for each image 140 

were discarded as doublets or other errors, and the mean of the remaining measurements (n ≥ 8for each 141 

sample) was analysed. To estimate the number of generations occurring during colony growth, three 48 h 142 

old colonies were measured using ImageJ before each was dispersed in KB broth, serially diluted, and 143 

plated to calculate cfu/colony. Ancestral plasmid-free colonies were calculated to contain 4.9 x 108 cells 144 

with a standard error of 1.3 x 108 (2.5±0.5 x 107 cells/mm^2), whereas small colonies contained 2.2±0.8 x 145 

106 cells (3.3±1.1 x 106 cells/mm^2). We therefore estimate an average of log2(2.2 x 106) = 21 146 

generations per small colony and log2(4.9 x 108) = 29 generations per large colony. Assuming that each 147 

lineage underwent two cycles of small colony and one of large colony morphology, we calculate ~70 148 

generations. 149 

Sequencing 150 

Lineages were picked for genome resequencing based on gac and fitness phenotypes. Resequencing was 151 

performed using Illumina technology (MiSeq/HiSeq) by MicrobesNG (https://microbesng.uk) which is 152 

supported by the Biotechnology and Biological Sciences Research Council (BBSRC; grant number 153 

BB/L024209/1), and reads are available at the ENA Short Read Archive with project accession number 154 

PRJEB32206. Targeted sequencing of gacA/S and PFLU4242 was performed by PCR amplifying the loci 155 

with Phusion HF polymerase (NEB, MA USA) using 1x High-Fidelity buffer, 0.2 mM dNTPs, 0.5 µM 156 

each primer (see Table S3), and 1 µl of glycerol stock as a template, with the following program: 98°C 157 

30“, 30 x (98°C 20”, 63°C 30“, 72°C 30”), 72°C 5’. Samples were run on agarose gels to ensure a single 158 

product and amplicons purified using the QIAGEN PCR purification kit before sending for Sanger 159 



sequencing. In the case of lineage 04, it was not possible to generate amplicons with any of six different 160 

combinations of PFLU4242 primers and thus this lineage was considered a PFLU4242 deletion. 161 

Analysis of short-read sequencing 162 

Reads were mapped onto the P. fluorescens SBW25 chromosome (EMBL accession AM181176) and 163 

pQBR55 (LN713927) using bwa mem version 0.7.17 (25) and variants called using gatk HaplotypeCaller 164 

version 4.0.11.0 (26). Additionally, analysis with breseq version 0.33.0 (27) was carried out using the 165 

default parameters. For each approach, predicted variants were compared between sequences and with the 166 

plasmid-free ancestor to exclude those common to all sequenced strains. Repetitive regions prone to 167 

spurious calling (28) were likewise masked from the analysis. The remaining predicted mutations were 168 

examined manually for depth of coverage and consistency between reads using IGV (29), using a 169 

threshold of mapping quality ≥ 60 and depth ≥ 10. PFLU4242 from lineages 19 and 20 was additionally 170 

Sanger sequenced to verify this approach and confirm mutation presence. 171 

To analyse plasmid copy number, coverage for plasmid and chromosome over 1 kb windows was 172 

calculated. Windows with coverage ±2 SD from the mean, due largely to poor mapping quality in 173 

repetitive regions, were removed, and the mean across remaining windows was calculated. The ratio of 174 

plasmid/chromosomal coverage in sequenced lineages ranged from 2.86 to 3.90 with a mean of 3.4, 175 

suggesting modal pQBR55 copy number for all lineages of 3/cell. For pQBR57 the ratio in the ancestral 176 

strain was 1.18 and for pQBR103 it was 1.36, suggesting modal copy number for these plasmids is 1/cell. 177 

Allelic replacement to generate knockout strains 178 

Strains lacking gacA or gacS were previously described by Harrison et al. (2015)(5). The PFLU4242 179 

knockout was generated in a similar manner using a two-step process with the suicide vector pUIC3. Both 180 

PCR and whole genome resequencing indicated that the gene of interest had been knocked out. The 181 

∆gacS mutant and the ∆PFLU4242 mutant had no evidence of second-site mutations, however ∆gacA had 182 

a single A3084294>G transition resulting in a F155L substitution in the putative integral membrane 183 



protein PFLU2795, which was confirmed by Sanger sequencing. The consistent phenotypes between the 184 

two different gac mutants and the fact that the ∆gacA mutant recapitulates the phenotype of lineage 13 185 

suggests that this second-site mutation does not have a significant impact on our findings. 186 

Statistical analysis 187 

Fitness data for plasmid-bearers was analysed using a linear model with lineage and media as fixed 188 

effects. Replicates where fitness could not be estimated due to lack of plasmid-bearer growth were 189 

excluded. We did not detect an effect of marker (plasmid-free fitness no different from 1, KB t[3] = 190 

0.485, p = 0.66, soil t[3] = 0.815, p = 0.475), so to test whether plasmid-bearing strains were statistically 191 

indistinguishible from plasmid-free we ran one-sample t-tests with µ = 1. Logistic regression was used to 192 

test association between gac activity and fitness, and non-parametric (Kruskal-Wallis) analysis was used 193 

to test for the effect of different knockouts on colony size, due to heteroscedasticity. Analysis was 194 

performed in R (R Core Team, Vienna). 195 

Results and discussion 196 

Acquisition of the plasmid pQBR55 caused a small-colony phenotype in P. fluorescens SBW25 197 

transconjugants, a phenomenon not observed following acquisition of unrelated sympatric plasmids 198 

pQBR57 or pQBR103 (Figure 1A) (21). The small colony phenotype was, however, transient: a further 199 

48 h growth in liquid media or on agar plates (approx. 21 generations, Figures 1A, S1; Movie S1) restored 200 

the ancestral (large) colony morphology. Re-emergence of large colony morphologies was not due to 201 

plasmid loss as colonies remained mercury resistant and pQBR55-positive by PCR testing for oriV. Small 202 

colony phenotypes in P. aeruginosa and Staphylococcus aureus reflect adaptations enabling prolonged 203 

infection of humans and animals (30,31). However, as the pQBR55 small colony phenotype was 204 

associated with plasmid acquisition and was rapidly lost, we hypothesized that it represented a 205 

maladaptive response consistent with exceptionally high plasmid cost, and that restoration of the large 206 

colony morphology was due to extremely fast compensatory evolution. 207 



Unlike previous studies (e.g. (5–7,32)) it was not possible to conduct assays on transconjugants that had 208 

just received the plasmid, as putatively compensated large colony variants emerged during assay 209 

preparation. We therefore compared transconjugants that had restored the large morphology with one 210 

another and with the ancestral plasmid-free strain. Twenty fresh independent P. fluorescens 211 

SBW25(pQBR55) transconjugants were twice re-streaked on selective KB agar (~70 generations growth 212 

in total). All remained pQBR55-positive, and 14/20 evolved a clear compensated (large colony) 213 

morphology (Figures 1B, S1, S3). These 14 lineages varied in their fitness relative to the plasmid-free 214 

ancestor when measured in nutrient-rich KB broth and in soil microcosms designed to approximate the 215 

natural substrate of P. fluorescens (21) (Figures 1B, S2, Table S4). While most showed amelioration such 216 

that fitness was similar to plasmid-free, five lineages still displayed low relative fitness, particularly in 217 

soil (linear model, effect of lineage:media F(10,74) = 11.94, p < 0.001), where in some cases we failed to 218 

detect competitive growth altogether. The fitness differences between evolved lineages suggested 219 

occurrence of different compensatory mechanisms, as found previously (7,9), which could enhance 220 

plasmid survival by increasing the supply of compensatory mutations. 221 

To identify targets of compensatory mutation we chose 6 representative lineages (Figure 1B) and 222 

performed whole genome resequencing. A single non-synonymous chromosomal mutation was detected 223 

in each clone (Table S1), suggesting that the rapid emergence of compensation was not associated with 224 

plasmid-induced hypermutation. No pQBR55 mutations were detected in any lineage. Lineages with the 225 

least amelioration, 03 and 16, had mutations affecting RNA polymerase: lineage 03 had a 7 bp deletion in 226 

the P26 partial terminator upstream of rpoB (PFLU5534) while lineage 16 had acquired a missense 227 

mutation Pro584Ser in rpoC (PFLU5533). Lineages with intermediate amelioration, 13 and 18, had 228 

mutations in gacS (PFLU3777) and gacA (PFLU2189), respectively (lineage 13 had an additional 229 

synonymous C>T transition in PFLU3410). Lineage 19, which showed the most complete amelioration, 230 

and 20, had mutations in PFLU4242, which encodes a hypothetical 527 amino acid protein with two 231 

domains of unknown function (DUF262, DUF2081). The remaining evolved lineages phenotypically 232 



resembled lineage 19 and targeted sequencing revealed each also had a mutation in PFLU4242 (Figure 233 

1B, Table S6). To test the ameliorative roles of gacA/S and PFLU4242 mutations we generated pQBR55 234 

transconjugants in P. fluorescens SBW25 ∆gacA, ∆gacS, and ∆PFLU4242. Unlike wild-type, deletion-235 

mutant strains immediately and exclusively produced large-sized transconjugant colonies with fitness 236 

similar to the evolved lineages (Figure 2, Figure S4, Table S7), suggesting that disrupting any of these 237 

genes rendered P. fluorescens ‘pre-ameliorated’ for pQBR55 acquisition, and implicating these genes in 238 

the high fitness costs of pQBR55. 239 

GacA/GacS signaling positively regulates a suite of stationary phase phenotypes including flagella-240 

mediated motility and secreted products, suggesting that mutations affecting these genes have major 241 

pleiotropic effects (20,33). Correspondingly, only strains with gacA or gacS mutations (13 and 18) had 242 

lost the ability to produce extracellular protease, pectinase, surfactant (viscosin) and to swim (Figure 1B), 243 

potentially restricting amelioration via this pathway in complex habitats like soil (34). Indeed, lineages 244 

with the highest level of fitness in soil tended to retain GacA/GacS-regulated phenotypes (logistic 245 

regression, effect of fitness in soil on protease result LRT Chisq(1) = 15.8, p = 6.9e-5). Mutation of 246 

gacA/gacS was previously implicated in ameliorating the unrelated plasmid pQBR103, through 247 

widespread effects on transcription (5). In P. aeruginosa, GacA/S controls small colony variants 248 

generation through the activity of RsmA and the second messenger cyclic-di-GMP (31). Interestingly, 249 

pQBR55 carries an RsmA homologue (PQBR55_0192), which might directly affect GacA/S or cyclic-di-250 

GMP signalling to cause small colonies in P. fluorescens (35). 251 

Mutations to RNA polymerase are a common response to cellular stress, e.g. in rifampicin resistance (36) 252 

and elevated temperature (37), and have previously been implicated in plasmid adaptation (6). Of the two 253 

mutations detected here, one (RpoC Pro584Ser) probably affects specificity, whereas the other (deletion 254 

of an attenuator upstream of rpoB) likely increases expression (36). These mutations may be adaptations 255 

to modulate expression of specific disruptive genes, or to generally compensate for the transcriptional 256 

burden of plasmid gene expression (38), and seem functionally distinct from those conferring rifampicin 257 



resistance as we did not detect an increased rifampicin minimum inhibitory concentration (MIC) for 258 

lineages 03 and 16 (Table S2). 259 

The most complete amelioration occurred through PFLU4242 mutation (Figure 1, Figure S4). PFLU4242 260 

was likely acquired by P. fluorescens SBW25 via recent HGT as related strains P. protegens Pf-5 and P. 261 

fluorescens Pf0-1 do not encode homologues whereas similar genes are found in distantly related genera 262 

e.g. Burkholderia (WP_059533732.1, 80.5% amino acid identity), Fischerella (WP_016860471.1, 263 

60.4%), and Streptomyces (WP_086730045.1, 50.8%). The GC-content of PFLU4242 was 43.5%, 264 

compared with 60.5% across the whole genome, also consistent with recent horizontal acquisition, 265 

however we could not identify any neighbouring genes associated with mobility (e.g. transposases or 266 

integrases), and the genes neighbouring PFLU4242 homologues in these other species are not 267 

homologous to those in P. fluorescens SBW25. The function of PFLU4242 remains mysterious, but its 268 

principal domain, DUF262, is a member of the ParB superfamily that includes nucleases as well as 269 

partitioning systems (39). We did not detect any gross phenotypic effects of PFLU4242 knockout on 270 

colony morphology or growth in the absence of pQBR55. Further work is required to elucidate the 271 

mechanistic basis of PFLU4242 function, but our finding is consistent with a growing body of evidence 272 

implicating horizontally-transferred DNA-binding proteins as key determinants of plasmid cost (6,7). 273 

Re-examination of genome-resequencing data from previous experiments with P. fluorescens SBW25 274 

implicates PFLU4242 disruption in ameliorating unrelated plasmids pQBR103 (5) and pQBR57 (40), 275 

suggesting a general mechanism behind plasmid costs in this host. Though P. fluorescens SBW25 276 

isolated from the same site as the pQBR plasmids, it was originally plasmid-free (21), indicating it may 277 

be a naive host, potentially vulnerable to conflicts between resident and newly-acquired genes. 278 

Our observed rates of amelioration, occurring during the process of isolating individual plasmid-279 

containing clones, exceed those of previous studies and suggest a prominent role for compensation in 280 

bacterial evolution. Similar mutations emerging during the preparation of plasmid-containing strains may 281 

also influence the interpretation of experimental assays, leading, for example, to an underestimation of 282 



plasmid carriage costs. In natural communities, rapid compensatory mutations could overcome the 283 

oftentimes heavy metabolic and regulatory costs of plasmid-mediated horizontal gene transfer, and, in 284 

combination with stability functions that expand the window of opportunity for such mutations to arise, 285 

are likely to be a major factor promoting plasmid carriage and thus the maintenance and spread of 286 

adaptive traits. 287 
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298 

Figure 1. pQBR55-bearers rapidly ameliorate plasmid cost. (A) Transconjugants of pQBR55, but not 299 

sympatric mercury resistance plasmids, consistently produce a small colony phenotype which is rapidly 300 

resolved on restreaking. Scale bar indicates 1 mm. Lineage 20 is shown, photographs of all 20 lineages 301 

are in Figure S1. Plasmid size and approximate modal copy number (CN) are provided for reference. (B) 302 

Evolved lineages. Top: fitness relative to plasmid-free in KB (black) or in soil (grey). Four independent 303 

replicates are shown, with mean and standard error overlayed. Where fitness could not be estimated (no 304 

growth) it was set to zero. Control refers to competition between plasmid-free strains to assess any fitness 305 

effects of the antibiotic markers. Middle: Gac phenotype assay results. Bottom: evolved loci. Colour 306 

indicates target of locus-level parallel mutation, and the mutation is overlaid. del = deletion; P26 refers to 307 

a partial attenuator upstream of rpoB (36). Strains subject to whole genome resequencing are marked with 308 

triangles, the remaining PFLU4242 sequences were determined by Sanger sequencing of amplicons. 309 

  310 



 311 

Figure 2. pQBR55 transconjugant strains lacking in gacA, gacS, or PFLU4242 do not display a small 312 

colony morphology. Transconjugants of pQBR55 and pQBR57 were photographed and mean colony size 313 

after 48 hours growth was measured. Four independent replicates are shown with mean and standard error 314 

overlaid. Scale bar indicates 5 mm. We detected a significant effect of recipient on pQBR55 colony size 315 

(Kruskal-Wallis p = 0.016) driven by the wild-type recipient (planned contrast Wilcoxon Test p = 0.001), 316 

but not on pQBR57 (K-W p = 0.061; Wilcoxon p = 0.8615). 317 

  318 
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 433 

Figure S1. Colony morphologies of the 20 lineages. Where multiple colonies are visible, arrows mark the 434 

one which was selected. Lineages marked with an asterisk were deemed to have recovered ancestral 435 

phenotype based on growth curves and colony morphology. 436 

  437 



 438 

Figure S2. Maximum growth rate of the 20 lineages. Three independent replicates were performed for 439 

each lineage. The ancestral plasmid-free clone for each lineage was also measured (n = 20, ‘control’). 440 

  441 



 442 

Figure S3. The 20 lineages carry pQBR55. PCR for the merA resistance gene and the pQBR55 origin of 443 

replication was performed on the stocked colony for each lineage. PCR using primers specific for P. 444 

fluorescens SBW25 and P. putida KT2440 (from which the donor strain UWC1 was derived) were used 445 

to ensure strains were transconjugants. 15a and 15b are additional colonies retrieved from lineage 15. M = 446 

NEB 100 bp ladder. 447 

  448 



 449 

Figure S4. Knockout transconjugants have relative fitness similar to evolved lines. Transconjugant 450 

colonies from Figure 2 were restreaked twice to isolate a single clone and competed against a plasmid-451 

free competitor in KB. During this process, the wild-type small colony morphologies reverted to the large 452 

colony phenotype, and thus should be considered de novo mutants. We detected a significant effect of 453 

recipient (ANOVA F3,12 = 9.6, p = 0.002), driven largely by reduced amelioration by the ∆gacA mutant. 454 

  455 



 456 

Table S1. Mutations detected in whole genome resequenced lineages. Results are shown from the 457 

bwa/GATK pipeline, similar results were obtained using breseq. 458 

  459 

sample chromosome position reference alternative depth mapping quality quality name locus_tag nucleotide mutation amino acid mutation GATK

∆gacA AM181176 3084294 A G 21 60 786 PFLU_2795 PFLU_2795 c.463T>C p.Phe155Leu 1:0,21:21:99:816,0

lineage 03 AM181176 6062127 ATCAGCCT A 165 60 7242 rpoB-rplL PFLU_5534-PFLU_5535 n.6062128_6062134delTCAGCCT 1:0,163:163:99:7281,0

lineage 13 AM181176 4174597 T G 94 60 3164 PFLU_3777 PFLU_3777 c.2078T>G p.Val693Gly 1:0,94:94:99:3194,0

lineage 16 AM181176 6056066 G A 204 60 7317 rpoC PFLU_5533 c.1750C>T p.Pro584Ser 1:0,204:204:99:7347,0

lineage 18 AM181176 2373295 G A 72 60 2252 gacA PFLU_2189 c.614G>A p.Arg205His 1:0,72:72:99:2282,0

lineage 18 AM181176 3773830 C T 73 60 2246 PFLU_3410 PFLU_3410 c.618G>A p.Ser206Ser 1:0,73:73:99:2276,0

lineage 19 AM181176 4684561 T C 63 60 2042 PFLU_4242 PFLU_4242 c.1369A>G p.Asn457Asp 1:0,63:63:99:2072,0

lineage 20 AM181176 4685131 A T 83 60 2820 PFLU_4242 PFLU_4242 c.799T>A p.Leu267Met 1:0,83:83:99:2850,0



 460 

Table S2. Rifampicin minimum inhibitory concentrations (MIC) for sequenced evolved lineages. Values 461 

are in µg/ml. 462 

  463 

A B C

13 12.5 12.5 12.5

16 6.25 6.25 12.5

18 12.5 12.5 12.5

19 12.5 12.5 12.5

20 12.5 12.5 12.5

03 12.5 12.5 12.5

plasmid-free 12.5 25 12.5

replicate
lineage



 464 

Table S3. Sequences of primers used in this study. 465 

  466 

Primer name Sequence Purpose

pQBR55_0051_R1 ATGGCTGCCCTAGACCTGG

pQBR55_0050_F1 CAACGCCCGAACAAACGC

merA_F TGCAAGACACCCCCTATTGGAC

merA_R TTCGGCGACCAGCTTGATGAAC

∆PFLU4242_UF TATAGGATCCACTAGTATGTTCCGTGGCTCCTC

∆PFLU4242_UR GAAATTATTTAACGACTCTTCCCTACTCGCATT

∆PFLU4242_DF GGAAGAGTCGTTAAATAATTTCGCTTTAATACCGTTAT

∆PFLU4242_DR TATAGAATTCACTAGTGATTTTTGGCCTTAAAGCAAAGC

∆PFLU4242_TESTF GTCTCTACTACGATCAAGTATTGACAC

∆PFLU4242_TESTR CTTGGGCCAAAAGCGGAC

PFLU4242_FAMP GAACTCGAGTACATTGGCGC

PFLU4242_RAMP CGGGGCCTTTTACATAACGG

PFLU4242_FINT ACCTGGAGCGATGACTTTGA

PFLU4242_RINT TTCCAGAAAAGCACGTACGC

PFLU4242_intF_3 TTGCTGTGCGAAGGAATTTG

PFLU4242_intR_5 TCCCAAACAAAGCCACGC

PFLU4242_FSEQ AGGGAAGAGTCGTATGGAGT

gacA_F CAGCAAAATAGAGCCGTCCGCCTC

gacA_R CCAGCGCAGCTGTCTTGG

gacA_400F CGCCACGACCAAGTTGTTG

gacA_600R GGCTGGAAAGACTTGATGGC

gacS_F CCAATCGCCGCCGGAC

gacS_R CAGGCCTGGCGGCAG

gacS_600F CTTGCTGCCGGTGTTTGG

gacS_750R GAGTTGATCGTACGGCTGATG

gacS_1500F AGGACGAGCAGGAAGACAG

gacS_1650R GATTTCACCGCCCATCTGC

gacS_2350F TCGACTTGGTGCTGATGGAC

gacS_2550R GGTCAGGTAATCGTCCATGC

SBW25_F ACTGCATTCAAAACTGACTGA

SBW25_R AATCACACCGTGGTAACCG

KT2440_F ATGGCAATGTCCGCAATCC

KT2440_R CGGAAGCCTCTGAACACG

Distingishing strains

Amplifying and sequencing gacS

Detecting pQBR55 origin of replication

Detecting merA presence

Generating the PFLU4242 knockout

Amplifying and sequencing PFLU4242

Amplifying and sequencing gacA



Tables S4-S9 are provided as .csv files at doi:10.17638/datacat.liverpool.ac.uk/953 467 

Table S4. Relative fitness plotted in Figure 1B. 468 

Table S5. Gac assay results plotted in Figure 1B. 469 

Table S6. Summary of genetics information plotted in Figure 1B. 470 

Table S7. Colony size measurements plotted in Figure 2. 471 

Table S8. Growth curve data plotted in Figure S2. Time is in seconds and rate is in ∆OD/s. 472 

Table S9. Relative fitness of knockout strains plotted in Figure S4. Two replicate experiments were 473 

performed, data from experiment 1 was plotted. 474 
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 476 

Movie S1. Breakout of compensated mutants from a small morphology colony. Small colonies restreaked 477 

from lineage 15 were maintained at room temperature and photographed every 30 minutes. Multiple 478 

independent mutants can be seen emerging from each colony. This movie is provided through the journal 479 

website and at doi:10.17638/datacat.liverpool.ac.uk/953. 480 

 481 
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