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IDENTIFICATION OF OBSTACLES IMMERSED IN A STATIONARY OSEEN

FLUID VIA BOUNDARY MEASUREMENTS

ANDREAS KARAGEORGHIS AND DANIEL LESNIC

Abstract. In this paper we consider the interior inverse problem of identifying a rigid boundary
of an annular infinitely long cylinder within which there is a stationary Oseen viscous fluid, by
measuring various quantities such as the fluid velocity, fluid traction (stress force) and/or the
pressure gradient on portions of the outer accessible boundary of the annular geometry. The inverse
problems are nonlinear with respect to the variable polar radius parameterising the unknown star–
shaped obstacle. Although for the type of boundary data that we are considering the obstacle
can be uniquely identified based on the principle of analytic continuation, its reconstruction is still
unstable with respect to small errors in the measured data. In order to deal with this instability,
the nonlinear Tikhonov regularization is employed. Obstacles of various shapes are numerically
reconstructed using the method of fundamental solutions for approximating the fluid velocity and
pressure combined with the MATLAB c⃝ toolbox routine lsqnonlin for minimizing the nonlinear
Tikhonov’s regularization functional subject to simple bounds on the variables.

1. Introduction

Inverse problems concerned with the identification of obstacles immersed in fluids have important
practical applications in the detection of submerged objects such as submarines, aquatic mines,
foreign deposits in murky waters, sunken ships, etc. Depending on the value of the Reynolds
number various types of flows have been considered such as potential, see [7], Stokes, see [2], or
Navier–Stokes, see [1]. However, the case of Oseen low Reynolds number flow has been somehow
overlooked and it is the purpose of this paper to consider it in some detail.
In a recent paper [12] we have developed the method of fundamental solutions (MFS) [13] with
Tikhonov’s regularization for solving both direct and inverse problems for the Oseen steady–state
fluid flow past arbitrary obstacles of known or unknown shapes. In that exterior inverse problem,
the extra data needed to replace the obstacle’s shape missing information was taken as the internal
fluid velocity on a curve surrounding the obstacle at one [12] or multiple incoming flow directions
[14]. In contrast to the previous exterior problem formulated in an unbounded domain, the present
paper deals with the interior obstacle situation in a bounded domain in which the Oseen equations
hold in the annular domain formed within the region between the unknown obstacle, on which the
no–slip fluid velocity condition holds, and an exterior known boundary on which both the fluid
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velocity and traction are prescribed. In addition, partial boundary data is also considered as well
as the case of employing the measurement of the pressure gradient instead of the stress force.

2. Mathematical formulation

Consider a bounded and connected domain Ω ⊂ R
d, (d = 2, 3), with a sufficiently smooth bound-

ary, containing an unknown fixed object/obstacle D (such that Ω\D is connected) in between
which there is an Oseen stationary viscous fluid. Note that D may have several disjoint com-
ponents forming an array of unknown obstacles. We wish to detect D from the measurements
of the fluid velocity, the traction (stress force) and/or the pressure gradient on portions of the
outer accessible boundary ∂Ω. Note that the unknown obstacle D may be composed of several
components.
The different inverse formulations that we are considering are depicted in Figure 1. Some of these
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Figure 1. Schematics of the inverse problems under investigation.

formulations have been previously considered in the case of the stationary Stokes fluid in [2, 3, 6]
and in the case of the Navier–Stokes fluid in [4, 8].
Corresponding to the situations in Figure 1(a) we have the inverse problems given by:

µ∆u−∇p = u0 ϱ
∂u

∂x1

in Ω\D, (2.1)

∇ · u = 0 in Ω\D, (2.2)

u = 0 on ∂D, (2.3)

u = f on ∂Ω, (2.4)

t = g on Γ, (2.5)
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or

∇p = h on Γ, (2.6)

where Γ is a non–empty open portion of ∂Ω, µ is the dynamic viscosity of the fluid, u is the fluid
velocity, p is the fluid pressure, ϱ is the constant density of the incompressible fluid and u0 is a
given characteristic speed.
In the above, equation (2.1) represents the steady Oseen equations as a linearized version of the
Navier–Stokes equations linearized with respect to the fixed velocity u0 i in the x1–direction, equa-
tion (2.2) expresses the incompressibility of the fluid flow, equation (2.3) is the no–slip condition
on the obstacle D at rest, f is a prescribed fluid velocity satisfying

∫

∂Ω

f · n dS = 0,

h is a prescribed pressure gradient and g is a prescribed stress force, where

t =
(

−p I+ µ
(

∇u+ (∇u)T
))

n, (2.7)

n is the outward unit normal to the boundary ∂Ω and I is the identity tensor.
Corresponding to the partial data situation in Figure 1(b) we have the more ill–posed inverse
problem given by equations (2.1)–(2.3), (2.5) and

u = f on Γ. (2.8)

Assuming that f ̸≡ 0, the uniqueness of solution (u, p,D) of the inverse problems (2.1)–(2.5) and
(2.1)–(2.3), (2.5), (2.8), follows from the unique continuation property for the Oseen system, see
[1, 8, 9]. In addition, the uniqueness result also holds for the steady–state nonlinear Navier–Stokes
equations µ∆u −∇p = ϱ(u · ∇)u generalizing their linearized version represented by the Oseen
equations (2.1), [8].
For the inverse problem (2.1)–(2.4), with prescribed pressure gradient (2.6) only a partial result
concerning uniqueness is known in the two–dimensional case when ∂Ω contains a non–empty open
segment Γ′, see [8].

3. The method of fundamental solutions (MFS)

For simplicity, we only consider the two–dimensional case. The MFS for the exterior stationary
Oseen fluid flow past an arbitrary obstacle has been recently introduced in [12]. For our interior
problem in the annular domain Ω\D, it approximates the fluid velocity u = (u1, u2) and pressure
p as

ui(x) =
M+N
∑

j=1

(

αjUi1(x, ξj) + βjUi2(x, ξj)
)

, i = 1, 2, x ∈ Ω\D, (3.1)

p(x) =
M+N
∑

j=1

(

αjP1(x, ξj) + βjP2(x, ξj)
)

, i = 1, 2, x ∈ Ω\D, (3.2)
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where the matrix U and the vector P represent the fundamental solution of the Oseen system,
which in two dimensions is given by

U11(x,x
′) = κ eκ (x−x′)

[

K0(κ r) +
x− x′

r
K1(κ r)

]

−
x− x′

r2
,

U12(x,x
′) = U21(x,x

′) = −
y − y′

r

{

1

r
− κ eκ (x−x′)K1(κ r)

}

,

U22(x,x
′) =

x− x′

r2
+ κ eκ (x−x′)

[

K0(κ r)−
x− x′

r
K1(κ r)

]

,

For the pressure, we also define

P1(x,x
′) =

(x− x′)

r2
, P2(x,x

′) =
(y − y′)

r2
,

where x = (x, y), x′ = (x′, y′), r = |x − x′|, κ =
ϱu0

2µ
, and K0 and K1 are the modified Bessel

functions of the second kind of order zero and one, respectively.
Assuming that, for simplicity, Ω is a disk of radius R > 0 centred at the origin containing the
star–shaped obstacle D parameterised by

D := {r(ϑ) (cosϑ, sinϑ) |ϑ ∈ [0, 2π)} , where 0 < r(ϑ) < R, (3.3)

the source points
(

ξj
)

j=1,N+M
in the MFS expansions (3.1) and (3.2) are taken as

ξj = ηext R (cosϑj, sinϑj) , ϑj = 2π(j − 1)/M, j = 1,M, ηext > 1, (3.4)

ξj+M = ηint rj

(

cos ϑ̃j, sin ϑ̃j

)

, ϑ̃j = 2π(j − 1)/N, rj := r(ϑ̃j), j = 1, N, 0 < ηint < 1. (3.5)

The coefficient ηext > 1 is a dilation coefficient which is taken to be greater than one because
the source points need to be taken outside the disk of radius R. The coefficient 0 < ηint < 1
is a contraction coefficient which is taken to be less than one because the source points need to
be taken inside the star–shaped obstacle D. Note that all source points need to be outside the
annular domain Ω\D, see Figure 2, such that the functions in (3.1) and (3.2) satisfy the Oseen
system of equations (2.1) and (2.2).
For expressing the stress force (2.7) and the pressure gradient (2.6) we need the normal n =
(cosϑ, sinϑ) and the gradients ∇u and ∇p, which from (3.1), (3.2) and the expressions for the
fundamental solution yield the formulæ given in the Appendix.
From (2.7), we have componentwise that

t1 = −p n1 + 2
∂u1

∂x
n1 +

(

∂u2

∂x
+

∂u1

∂y

)

n2, t2 = −p n2 +

(

∂u1

∂y
+

∂u2

∂x

)

n1 + 2
∂u2

∂y
n2,

where n = (n1, n2). Then, using (3.1) and (3.2) we obtain

t1(x) =
M+N
∑

j=1

(

αjD11(x, ξj) + βjD12(x, ξj)
)

, t2(x) =
M+N
∑

j=1

(

αjD21(x, ξj) + βjD22(x, ξj)
)

,
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Figure 2. Geometry of the problem. The "+" denote the source points.

where

D11 = −P1 n1+2
∂U11

∂x
n1+

(

∂U21

∂x
+

∂U11

∂y

)

n2 , D12 = −P2 n1+2
∂U12

∂x
n1+

(

∂U22

∂x
+

∂U12

∂y

)

n2 ,

D21 = −P1 n2+

(

∂U11

∂y
+

∂U21

∂x

)

n1+2
∂U21

∂y
n2 , D22 = −P2 n2+

(

∂U12

∂y
+

∂U22

∂x

)

n1+2
∂U22

∂y
n2 .

We now consider the boundary collocation points

xj = R (cosϑj, sinϑj) , j = 1,M on ∂Ω, (3.6)

and

xM+j = rj

(

cos ϑ̃j, sin ϑ̃j

)

, j = 1, N on ∂D. (3.7)

We also assume, without loss of generality, that Γ contains the first 0 < M1 ≤ M boundary
collocation points (xj)j=1,M1

.

For the inverse problems (2.1)–(2.5) or (2.1)–(2.4), (2.6), illustrated in Figure 1(a), we minimize
the nonlinear least–squares functionals

F1(α,β, r, ηint, ηext) = ||u||2L2(∂D) + ||u− f ||2L2(∂Ω) + ||t− gε||2L2(Γ) +R(α,β,∇r;µ1, µ2) (3.8)

or

F2(α,β, r, ηint, ηext) = ||u||2L2(∂D) + ||u− f ||2L2(∂Ω) + ||∇p− hε||2L2(Γ) +R(α,β,∇r;µ1, µ2), (3.9)

where α = (αj)j=1,M+N
, β = (βj)j=1,M+N

, noise is introduced in (2.5) or (2.6) (representing

boundary measurements of the stress force or the pressure gradient) as

gε = g + ε (3.10)
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or

hε = h+ ε, (3.11)

where ε represents some noise, and R is a regularization term given by

R(α,β,∇r;µ1, µ2) = µ1

(

|α|2 + |β|2
)

+ µ2 ||∇r||2L2(∂D) , (3.12)

where µ1 and µ2 are positive regularization parameters which need to be prescribed, e.g. by trial
and error or using some criterion such as the L–surface method [5], or the L–curve criterion if we
take µ1 = µ2 = µ, or µ1 = 0 and vary µ2, or µ2 = 0 and vary µ1, [11]. Other multi–parameter
regularization choices based on the discrepancy principle can also be applied, [15]. The first three
terms in the right–hand side of equation (3.8) and the third term in the right–hand side of equation
(3.9) impose the boundary conditions (2.3)–(2.6) in a least–squares sense, while the functions u(x)
and p(x) are parameterised using the vectors α and β in the MFS approximations (3.1) and (3.2).
Noise can also be introduced in the boundary fluid velocity data (2.4), but, for simplicity, we do
not consider these errors herein.
For the inverse problem (2.1)–(2.3), (2.5) and (2.8), illustrated in Figure 1(b), we minimize

F3(α,β, r, ηint, ηext) = ||u||2L2(∂D) + ||u− f ||2L2(Γ) + ||t− gε||2L2(Γ) +R(α,β,∇r;µ1, µ2). (3.13)

On discretizing the norms in (3.8), (3.9) and (3.13), and using the MFS approximations (3.1) and
(3.2), we obtain

F1(α,β, r, ηint, ηext) = T0(α,β, r, ηint, ηext) + Tf (α,β, r, ηint, ηext)

+ Tgε(α,β, r, ηint, ηext) +R(α,β, r′;µ1, µ2), (3.14)

F2(α,β, r, ηint, ηext) = T0(α,β, r, ηint, ηext) + Tf (α,β, r, ηint, ηext)

+ Thε(α,β, r, ηint, ηext) +R(α,β, r′;µ1, µ2), (3.15)

F3(α,β, r, ηint, ηext) = T0(α,β, r, ηint, ηext) + T 1
f (α,β, r, ηint, ηext)

+ Tgε(α,β, r, ηint, ηext) +R(α,β, r′;µ1, µ2), (3.16)

respectively, where

R(α,β, r′;µ1, µ2) = µ1

(

|α|2 + |β|2
)

+ µ2

N
∑

j=2

(rj − rj−1)
2 , (3.17)

T0(α,β, r, ηint, ηext) =
2

∑

i=1

N
∑

k=1

[

M+N
∑

j=1

(

αjUi1(xM+k, ξj) + βjUi2(xM+k, ξj)
)

]2

,

Tf (α,β, r, ηint, ηext) =
2

∑

i=1

M
∑

k=1

[

M+N
∑

j=1

(

αjUi1(xk, ξj) + βjUi2(xk, ξj)
)

− fi(xk)

]2

,

Tgε(α,β, r, ηint, ηext) =
2

∑

i=1

M1
∑

k=1

[

M+N
∑

j=1

(

αjDi1(xk, ξj) + βjDi2(xk, ξj)
)

− gεi (xk)

]2

,
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Thε(α,β, r, ηint, ηext) =
2

∑

i=1

M1
∑

k=1

[

M+N
∑

j=1

(

αjEi1(xk, ξj) + βjEi2(xk, ξj)
)

− hε
i (xk)

]2

,

T 1
f (α,β, r, ηint, ηext) =

2
∑

i=1

M1
∑

k=1

[

M+N
∑

j=1

(

αjUi1(xk, ξj) + βjUi2(xk, ξj)
)

− fi(xk)

]2

,

where E1i =
∂Pi

∂x
and E2i =

∂Pi

∂y
for i = 1, 2.

As in the analysis of [11], performed for inverse scattering, the regularization term (3.12) (or its
discretized version (3.17)) is included in order to achieve stability, corresponding to the ℓ2–norm
of the MFS coefficients α and β and the gradient H1–norm of the smooth obstacle polar radius
r(ϑ), ϑ ∈ [0, 2π). The minimization of (3.8), (3.9) and (3.13) subject to the simple bounds on the
variables

−105 ≤ αj ≤ 105, −105 ≤ βj ≤ 105, j = 1,M +N,

0 < rmin ≤ rℓ ≤ rmax < R, ℓ = 1, N,

0.1 ≤ ηint ≤ 0.99, 1.1 ≤ ηext ≤ 2, (3.18)

where rmin and rmax are lower and upper bounds on the size of the obstacle D, respectively, is
performed using the MATLAB c⃝ [16] optimization toolbox routine lsqnonlin.

4. Numerical examples

We take the radius of the disk Ω = B(0;R) to be R = 2.5, and, in general, consider the case of full
data when Γ is the whole of the boundary ∂Ω. In this case, the boundary fluid velocity conditions
(2.4) and (2.8) coincide. Limited aperture data (2.5) or (2.6) taken over an arc Γ ⊂ ∂Ω = ∂B(0;R),
will also be considered for the first example below.
For an arbitrary star–shaped obstacle (3.3), the additional input data (2.5) or (2.6), representing
the stress force or the pressure gradient on Γ, is numerically simulated by first solving the direct
problem (2.1)–(2.4) with known D using the MFS, while ensuring that an inverse crime is not
committed. We take [2]

u(x, y) = f(x, y) = (−y, x), (x, y) ∈ ∂Ω, (4.1)

for the specified boundary velocity in (2.4). We also take ϱ = 1, µ = 1 and u0 = 0.5.
The data (2.5) and (2.6) is perturbed by multiplicative noise

gε(xk) = (1 + χk p)g(xk), hε(xk) = (1 + χk p)h(xk), k = 1,M1, (4.2)

where p is the percentage of noise and χk is a pseudo–random noisy variable generated from a
uniform distribution in [-1,1].
We consider both inverse problems (2.1)–(2.5) and (2.1)–(2.4) and (2.6). We have a total of 2(M+
M1) + 2N equations (2M equations for boundary conditions (2.4), 2N equations for boundary
conditions (2.3) and 2M1 equations for boundary conditions (2.5) or (2.6)) in 2(M +N) +N + 2
unknowns (α,β, r, ηint and ηext) and therefore need to take M1 ≥ N/2 + 1. In all the examples
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considered we took N = 20, M = 51, M1 = M length(Γ)/lenght(∂Ω) and the initial guesses
α0 = β0 = 0, η0

int
= 2/3 and η0

ext
= 3/2.

Except for the limited aperture case illustrated at the end of Section 4.1, in all the other numerical
simulations we consider the case of fully specified data (2.5) or (2.6) on Γ = ∂Ω.

4.1. Example 1: Circular obstacle. In this case the obstacle to be reconstructed is a circle of
radius

r(ϑ) = 1, ϑ ∈ [0, 2π). (4.3)

The direct problem (2.1)–(2.4) was solved with M = 60, N = 30 and ηint = 3/4 and ηext = 5/3.
For solving inverse problem (2.1)–(2.5) we took rmin = 0.5, rmax = 1.5 and the initial guess a circle
of radius 0.7. In Figure 3(a) we show the convergence of the numerical results for various numbers
of iterations niter, no noise (p=0) and no regularization (µ1 = µ2 = 0), for inverse problem (2.1)–
(2.5). The results for p=5% noise and various µ1 when µ2 = 0, and various µ2 when µ1 = 0, for
niter =1000 are illustrated in Figures 3(b) and 3(c), respectively. These are showing the stable
reconstructions obtained provided that regularization with a suitable parameter is employed.
For inverse problem (2.1)–(2.4) and (2.6), the corresponding numerical reconstructions are illus-
trated in Figure 4 and the same conclusions as in Figure 3 can be observed. In some instances the
method converges in fewer iterations than the prescribed number niter because the change in the
sum of squares relative to its initial value is less than the selected value of the function tolerance.
We have also considered the case of limited aperture data (2.5) or (2.6) taken over an arc
Γ ⊂ ∂B(0;R). For p=5% noise, the numerical reconstructions of the circular shape obstacle
(4.3) for the inverse problems (2.1)–(2.5) and (2.1)–(2.4) and (2.6), and Γ is 2/3 or 1/3 of the
exterior boundary ∂B(0;R), are illustrated, for various µ1 when µ2 = 0 and µ2 when µ1 = 0,
in Figures 5 and 7, and 6 and 8, respectively. Although uniqueness of solution due to analytical
continuation holds for any non–zero measure boundary Γ, we expect that the stability decreases
as the length of Γ decreases. Consequently, as expected, compared to the case of full data (2.5)
or (2.6) on Γ = ∂Ω = ∂B(0;R) illustrated in Figures 3(b,c) and 4(b,c), it can be seen that, in
the limited aperture case, the results become more sensitive to the choice of the regularization
parameter µ1 or µ2, but still stable and accurate reconstructions can be observed. The more
ill–posed case of supplying the potential boundary velocity data (2.8) on Γ instead of the full data
(2.4) on ∂Ω can also be considered.

4.2. Example 2: Peanut–shaped obstacle. We attempt to reconstruct a more irregular shape
than the previous example, given by a peanut–shaped obstacle D with the parametrisation [10,
12, 14]

r(ϑ) =
1

2

√

1 + 3 cos2(ϑ), ϑ ∈ [0, 2π). (4.4)

The direct problem (2.1)–(2.4) was solved with M = 60, N = 30 and ηint = 0.95 and ηext = 5/3.
We took rmin = 0.1 and rmax = 1.5 and the initial guess a circle of radius 1. The inputs (4.1)
and (4.2), and the remaining computational details for the inverse problems are the same as in
the previous example. Figures 9 and 10 represent the same quantities as Figures 3 and 4 but
with p=3% noise, respectively, and the same performant reconstructions in terms of accuracy and
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Figure 3. Example 1: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 5% noise, (c) for various values of
µ2 and µ1 = 0 for p = 5% noise, for inverse problem (2.1)–(2.5).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-7
1=10-6

1=10-5

(b)

2=0 2=10-4
2=10-3

2=10-2

(c)
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Figure 4. Example 1: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 5% noise, (c) for various values of
µ2 and µ1 = 0 for p = 5% noise, for inverse problem (2.1)–(2.4) and (2.6).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-7
1=10-6

1=10-5

(b)

2=0 2=10-3
2=10-2

2=10-1

(c)



OSEEN FLOW 11

Figure 5. Example 1, aperture case, Γ is 2/3 of the exterior circle: Reconstructions
with p = 5% noise, (a) for various values of µ1 and µ2 = 0, (b) for various values of
µ2 and µ1 = 0, for inverse problem (2.1)–(2.5).

1=0 1=10-6
1=10-5

1=10-4

(a)

2=0 2=10-4
2=2  10-3

2=10-2

(b)

stability can be observed. Also, on comparing Figures 9(b) and 10(b) with Figures 9(c) and 10(c)
it can be seen that regularization with µ1 > 0 is more stable and accurate than regularization
with µ2 > 0. Based on (3.12) or (3.17), that is, penalising the MFS coefficients α and β is more
important to alleviate the ill–conditioning than penalising the shape r dealing with the smoothness
and nonlinearity of the obstacle. One can also consider allowing at the same time both positive
regularization parameters µ1 and µ2, but the investigation becomes more tedious. Finally, on
comparing Figures 9 and 10 it appears that the stress force measurement (2.5) contains more
information than the pressure gradient measurement (2.6).
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Figure 6. Example 1, aperture case, Γ is 2/3 of the exterior circle: Reconstructions
with p = 5% noise, (a) for various values of µ1 and µ2 = 0, (b) for various values of
µ2 and µ1 = 0, for inverse problem (2.1)–(2.4) and (2.6).

1=0 1=10-5
1= 2  10-5

1=10-4

(a)

2=0 2=10-3
2=10-2

2=10-1

(b)

4.3. Example 3: Bean–shaped obstacle. We attempt to reconstruct a more irregular shape
than the previous example, given by a bean–shaped obstacle D with the parametrisation [3, 12, 14]

r(ϑ) =
1 + 0.9 cos(ϑ) + 0.1 sin(ϑ)

1 + 0.75 cos(ϑ)
, ϑ ∈ [0, 2π). (4.5)

The direct problem (2.1)–(2.4) was solved with M = 60, N = 30 and ηint = 0.95 and ηext = 5/3.
We took rmin = 0.1 and rmax = 1.5 and the initial guess a circle of radius 0.75 for problem
(2.1)–(2.5) and radius 0.9 for problem (2.1)–(2.4) and (2.6). The inputs (4.1) and (4.2), and the
remaining computational details for both the direct and the inverse problems are the same as
in the previous example. Figures 11 and 12 represent the same quantities as Figures 9 and 10,
respectively, and the same conclusions on the good reconstructions in terms of accuracy and
stability can be observed.
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Figure 7. Example 1, aperture case, Γ is 1/3 of the exterior circle: Reconstructions
with p = 5% noise, (a) for various values of µ1 and µ2 = 0, (b) for various values of
µ2 and µ1 = 0, for inverse problem (2.1)–(2.5).

1=0 1=10-6
1=10-5

1=10-4

(a)

2=0 2=10-4
2=2  10-3

2=10-2

(b)

5. Conclusions

In this paper, the reconstruction of interior obstacles immersed in a stationary incompressible
Oseen fluid from exterior boundary measurements of the fluid velocity, stress force or the pressure
gradient has been considered. The approximations of the fluid velocity and pressure are based
on the MFS finite sums (3.1) and (3.2). The nonlinear objective functions (3.14)–(3.16) have
been minimized with respect to the MFS characteristics α,β, ηint and ηext, and the polar radius
r(ϑ) parameterizing the star–shaped obstacle (3.3), subject to the constraints (3.18) using the
MATLAB c⃝ toolbox routine lsqnonlin. The numerical results show accurate and stable recon-
structions provided that regularization is included, especially in penalising the MFS coefficients
problem (2.1)–(2.5). Also, it seems that the stress force measurements (2.5) contain more informa-
tion than the pressure gradient measurements (2.6). The MFS has further potential for extensions
to three–dimensional such Oseen obstacle problems.
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Figure 8. Example 1, aperture case, Γ is 1/3 of the exterior circle: Reconstructions
with p = 5% noise, (a) for various values of µ1 and µ2 = 0, (b) for various values of
µ2 and µ1 = 0, for inverse problem (2.1)–(2.4) and (2.6).

1=0 1=10-6
1= 5  10-6

1=10-5

(a)

2=0 2=10-3
2=10-2

2=10-1

(b)
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Appendix

In this appendix we provide the formulæ for the partial derivatives needed for expressing the
stress force (2.5) and the pressure gradient (2.6).

∇p(x) =
M+N
∑

j=1

(

αj∇P1(x, ξj) + βj∇P2(x, ξj)
)

, (A.1)
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Figure 9. Example 2: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 3% noise, (c) for various values of
µ2 and µ1 = 0 for p = 3% noise, for inverse problem (2.1)–(2.5).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-4
1=10-3

1=10-2

(b)

2=0 2=10-4
2=10-3

2= 10-2

(c)
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Figure 10. Example 2: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 3% noise, (c) for various values of
µ2 and µ1 = 0 for p = 3% noise, for inverse problem (2.1)–(2.4) and (2.6).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-5
1=10-4

1=10-3

(b)

2=0 2= 10-3
2= 10-2

2= 10-1

(c)



OSEEN FLOW 17

Figure 11. Example 3: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 3% noise, (c) for various values of
µ2 and µ1 = 0 for p = 3% noise, for inverse problem (2.1)–(2.5).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-4
1=10-3

1=10-2

(b)

2=0 2=10-3
2=10-2

2=10-1

(c)
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Figure 12. Example 3: Reconstructions (a) with no noise and no regularization,
(b) for various values of µ1 and µ2 = 0 for p = 3% noise, (c) for various values of
µ2 and µ1 = 0 for p = 3% noise, for inverse problem (2.1)–(2.4) and (2.6).

niter=1 niter=10 niter=100 niter=1000

(a)

1=0 1=10-4
1=10-3

1=10-2

(b)

2=0 2=10-3
2=10-2

2=10-1

(c)
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where

∇P1(x,x
′) =

(

∂P1

∂x
,
∂P1

∂y

)

=

(

(y − y′)2 − (x− x′)2

r4
, −

2(x− x′)(y − y′)

r4

)

,

∇P2(x,x
′) =

(

∂P2

∂x
,
∂P2

∂y

)

=

(

−
2(x− x′)(y − y′)

r4
,
(x− x′)2 − (y − y′)2

r4

)

,

∂U11

∂x
(x,x′) = κ2eκ(x−x′)

[

1−
(x− x′)2

2r2

]

K0(κr) + κeκ(x−x′) (y − y′)2

r3
K1(κr)

−κ2eκ(x−x′) (x− x′)2

2r2
K2(κr) +

(x− x′)2 − (y − y′)2

r4
,

∂U11

∂y
(x,x′) = −κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K0(κr)− κeκ(x−x′) (y − y′)

r

[

κ+
(x− x′)

r2

]

K1(κr)

−κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K2(κr) +

2(x− x′)(y − y′)

r4
,

∂U22

∂x
(x,x′) =

(y − y′)2 − (x− x′)2

r4
+ κ2eκ(x−x′)

[

1 +
(x− x′)2

2r2

]

K0(κr)

−κeκ(x−x′)

[

2κ(x− x′)

r
+

(y − y′)2

r3

]

K1(κr) + κ2eκ(x−x′) (x− x′)2

2r2
K2(κr),

∂U22

∂y
(x,x′) = −

2(x− x′)(y − y′)

r4
+ κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K0(κr)

+κeκ(x−x′) (y − y′)

r

[

−κ+
(x− x′)

r2

]

K1(κr) + κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K2(κr),

∂U12

∂x
(x,x′) =

∂U21

∂x
(x,x′) =

2(x− x′)(y − y′)

r4
− κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K0(κr)

+κeκ(x−x′) (y − y′)

r

[

κ−
(x− x′)

r2

]

K1(κr)− κ2eκ(x−x′) (x− x′)(y − y′)

2r2
K2(κr),

∂U12

∂y
(x,x′) =

∂U21

∂y
(x,x′) =

(y − y′)2 − (x− x′)2

r4
− κ2eκ(x−x′) (y − y′)2

2r2
K0(κr)

+κeκ(x−x′) (x− x′)2

r3
K1(κr)− κ2eκ(x−x′) (y − y′)2

2r2
K2(κr).

In the derivation of the above expressions, we have used the identities

K ′
0(s) = −K1(s), K ′

1(s) = −
1

2
(K0(s) +K2(s)) ,

where K2 is the modified Bessel function of the second kind of order two.
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