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a b s t r a c t

There exists continued interest in building accurate models of wind turbine power curves for better

understanding of performance or assessment of the condition of the turbine or both. Better predictions of

the power curve allow increased insight into the operation of the turbine, aid operational decision

making, and can be a key feature of online monitoring and fault detection strategies. This work proposes

the use of a heteroscedastic Gaussian Process model for this task. The model has a number of attractive

properties when modelling power curves. These include, removing the need to specify a parametric

functional form for the power curve and automatic quantification of the variance in the prediction. The

model exists within a Bayesian framework which exhibits built-in protection against over-fitting and

robustness to noisy measurements. The model is shown to be effective on data collected from an

operational wind turbine, returning accurate mean predictions (<1% normalised mean-squared error)

and higher likelihoods than a corresponding homoscedastic model.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The power curve of a wind turbine is one of its key performance

indicators. As the popularity of wind-based power generation

continues to grow, the characterisation of the performance of tur-

bines is an important step in the justification for, and management

of, this renewable energy source. Being able to accurately predict

the power output of a turbine has a number of beneficial use cases

for the operator. The prediction of power output allows more ac-

curate prediction of expected income from the turbine (and by

extension, farm) allowing for more forward-thinking business

planning. Alternatively, the power curve of the turbine has been

shown to be an effective indicator of degradation in performance of

the system, for example see Papatheou et al. [1]. That work sits

within a wider body of work on monitoring wind turbines, usually

via SCADA (supervisor control and data acquisition) systems in

order to infer the structural condition of the turbine d this being

one example of structural health monitoring [2].

Typical power curve data collected from a wind turbine SCADA

system is shown in Fig. 1. Visually, it can be seen that the power

curve exhibits a number of interesting features from the modelling

perspective. The relationship between the wind speed and the

power output is nonlinear. The data has a stochastic element or

there is noise in the measurement of the data and that this noise is

not constant across the input domain. This input-dependent noise

variance is referred to as heteroscedasticity, as opposed to homo-

scedastic noise where the variance of the noise is independent of

the input. Finally, there are a number of data points which could be

considered outlying from the bulk of the data distribution. The

combination of these factors makes modelling the behaviour and

variance of the power curve robustly an interesting and challenging

prospect.

This paper presents a methodology for building probabilistic

models of wind turbine power curves based on a heteroscedastic

Gaussian Process method. This allows predictions to be made of the

mean and variance which approximate the distribution of power

output from a turbine given the measured wind speed. The ques-

tion remains: why might this be useful to the end user?

Considering applications in Structural Health Monitoring (SHM)

[2,3], the value of a probabilistic model is made apparent. Here,* Corresponding author.
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probabilistic methods provide a natural framework in which de-

cisions can be made based on quantifiable risk. Most simply, there

is a distinction between saying there is or is not damage, as

compared to considering the probability of damage on a structure.

Alternatively, if predicting fatigue damage accrual, providing a

distribution over expected crack lengths from a model returns in-

formation, not only about the most likely result, but also confers a

measure of confidence which can guide the decision-making pro-

cess. Finally, it is worth considering that a deterministic approach

to these problems does not remove the inherent uncertainty from

the process but it does fail to account for it. By failing to acknowl-

edge uncertainty when attempting to understand a structure’s

condition, the engineer implies perfection in models and processes

which are inherently imperfect. In safety critical applications, this

can lead to failure in planning for unlikely events, greatly magni-

fying the consequences of these.

Beyond the realm of SHM, the quantification of uncertainty

continues to add value. For example, one key use of power curve

models is for investors to calculate expected returns from a turbine

or farm. Models which can account not only for the mean trend but

also quantify uncertainty in predictions allow financial planning to

be done on the basis of more information. Clearly there exists a

distribution over wind speeds that a turbine will be subject to. An

uncertain model of the power output of the turbine allows com-

bination of these distributions. The possession of models which

quantify and handle uncertainty allows for robust uncertainty

propagation. In this, all the uncertainty present throughout the

power generation process can be combined to give a distribution

over a variable of interest d e.g. monthly income. Again, being in

possession of this distribution, allows better confidence in the

models and enables long-term risk-based financial planning.

It is hopefully clear that the accurate modelling of uncertainty

offers tangible cost benefit across a range of situations. This in-

cludes day to day benefits in operation such as health monitoring

applications or longer term benefits in assistance with high-level

financial planning. The final reason for building probabilistic

models of uncertainty, for systems such as wind turbines, is that it

is possible. To not do so fails to make full use of the data which has

been collected. The process of sensing and data acquisition remains

expensive and difficult in comparison to building and learning

data-based models. By reducing this data to a single deterministic

line, users fail to make full use of this valuable resource. If operators

are willing to spend money to acquire data, it is only sensible to

build the most expressive model possible.

1.1. Related work

The task of modelling wind turbine power curves has been

explored in the literature previously with review papers being

published in 2011 [4], 2013 [5], and 2014 [6]. Broadly speaking,

approaches to solving this task have been separated into those

which aim to build models based on physical/engineering under-

standing of the behaviour of the turbine and thosewhich rely solely

on learning from data.

A number of models have been built upon polynomial regres-

sion equations; the most common being those based on the cubic

relationship between wind speed and maximum available power,

e.g. Carrillo et al. [5]. However, attempts have been made to fit

higher-order polynomial models, a 6th order in Ref. [7] and a 9th

order in Ref. [8]. However, these works routinely fail to use any

form of regularisation or cross validation, which is required to

ensure that the models will generalise and fit well to unseen data.

Mar�ciukaitis et al. [7] discuss the use of a cross-validation technique

for model assessment; while this demonstrates the consistency of

the model, it does not provide any protection against over-fitting

during the training stage. The problem of over-fitting occurs most

frequently in over-parameterised models, the classic examples

being high-order polynomials; further discussion of this problem

and techniques to alleviate it can be found in (for example) Bishop

[9] or Barber [10]. Taslimi-Renani et al. [11] also discuss the problem

of overfitting in their work where a modified hyperbolic tangent

function is proposed as a parametric model of the power curve. In

these references and in this work, distinction is made between two

subsets of data; training data which is used for learning the model,

and (independent/unseen) testing data which is unused in learning

the model but is used to assess the expected performance of the

model in operation. Results are presented on both the training data

and this unseen test data to demonstrate the ability of the model to

generalise (i.e. continue to make valid predictions for the turbine

into the future).

Other parametric methods have explored fitting functions

which, heuristically, match the shape of the power curve. These

have included variations on logistic and hyperbolic tangent func-

tions, for example see Lydia et al. [6], Mar�ciukaitis et al. [7], Seo

et al. [12]. In a similar manner Villanueva and Feij�oo [13] and Lydia

et al. [14] propose parametric models of the power curve based

upon a logistic function. These functions have the benefit of pos-

sessing many of the properties that appear inherent to the data in a

wind turbine power curve, i.e. boundedness at high and low wind

speeds and nonlinear transition between these bounds.

For modelling power curves, the use of (artificial) neural net-

works has been explored e.g. Refs. [15,16] and more recently this

trend has continued [17,18] in line with the continued popularity of

neural networks across many fields. The use of a support vector

machine (SVM) was also discussed in Ouyang et al. [19], where the

SVM is created based on using the centroids of a k-means algorithm

as training data. Yan et al. [20] consider the combination of a

number of deterministic models with approaches that also attempt

to capture the uncertainty in the power curve, a comparison is

made between these approaches in terms of the error and an

“expectation variance ratio”. Wang et al. [21] propose a probabi-

listic approach to modelling the wind turbine power curve based

spline regression models which are used to generate inputs to a

neural network for power forecasting. The use of Gaussian Process

(GP) regression models for modelling the wind turbine power

curve has, also, previously been discussed. In Papatheou et al. [1],

Antoniadou et al. [22] and Papatheou et al. [23] the use of the

standard GP formulation allows detection of damage in the turbine.

In Manobel et al. [24] the GP is used as a pre-processing step for

filtering data before it is passed to a neural network model. This

Fig. 1. Typical power curve data from a wind turbine SCADA sytem that has been

normalised for anonymity.
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work appears to overcomplicate the problem of modelling the

power curve. The addition of the neural network seems superfluous

since there exist proofs that the GP is a universal approximator [25].

In addition to this, it can be shown that, as the number of neurons

in a single layer MLP (multi-layer perceptron) tends to infinity, a GP

is recovered [26] d the extension of this work to deeper networks

is discussed in Ref. [27]. Additionally, the use of the GP for filtering

forces the data into an approximately Gaussian distribution, which

is homoscedastic. This leads to the exclusion of potentially valid

points as outliers and can distort the true distribution of the data.

Pandit et al. [28] consider the use of a standard GP where the air

density is included as a second input variable along with the wind

speed, this shows improvement in accuracy. In Pandit et al. [29] a

model similar to this one is compared to a support vector machine

and a random forest model, results reveal the GP to score better in

the performancemetrics shown. It can be seen that there have been

numerous approaches to modelling the wind turbine power curve

and that investigation into this problem continues to be an active

research area. However, a number of the models used make no

attempt to model the uncertainty in the power output of the tur-

bine and of those that do a heteroscedastic approach is very rarely

taken. The work contained in this paper aims to provide a meth-

odology that forms and an accurate model of the power output of

the wind turbine while also quantifying this varying uncertainty

across different wind speeds in a manner which is efficient for large

datasets and statistically rigorous.

The layout of the paper is as follows; in section 2 the necessary

theory for Gaussian Process regression is introduced, section 2.1

discusses the efficient modelling of large datasets with GPs; sec-

tion 2.2 extends the GP model to the heteroscedastic noise case;

section 2.3 combines these approaches to form a sparse hetero-

scedastic model, and finally section 2.4 presents a methodology for

distributed computation of these models and combination via a

robust Bayesian committee machine. The use of the model is shown

in section 3where it is applied to datameasured from an operational

wind turbine. The benefit of moving to a heteroscedastic model is

demonstrated by comparison with a homoscedastic GP model, both

quantitatively and qualitatively. Finally, conclusions are made in

section 4 with discussion of possible directions for future work.

2. Gaussian Process regression

Gaussian Process (GP) models provide a flexible Bayesian ma-

chine learning method for solving regression problems [10,30e32].

They exhibit a number of desirable properties for this application:

they are nonparametric, automatically quantify uncertainty in

predictions, require little a priori input, and are capable of model-

ling signals even in the presence of high noise levels on the

measured data. The GP allows a prior distribution to be placed over

an entire function for inference rather than merely learning the

parameters of a model. The GP is developed for modelling functions

of the form,

y¼ f ðxÞþ ε ε � N

�
0; s2n

�
(1)

i.e. it models data as the output of some function f ðxÞ, operating on

a D-dimensional input x. This function is corrupted by some addi-

tive Gaussian noise ε with zero mean and a fixed variance s2n.

The most common d and most intuitive d introduction to the

GP is as a distribution over functions, where a single draw from the

GP is a potential realisation of a function generated by that GP. In

this way the GP can be seen as the prior over f ðxÞ in equation (1). A

GP is defined as in equation (2), where x and x’ are a pair of inputs

to the function of interest,

f ðxÞ � GP ðmðxÞ; kðx; x’ÞÞ (2)

It follows that the GP is characterised completely by its mean,

mðxÞ, and covariance, kðx; x’Þ, functions. To make predictions, the

joint Gaussian distribution between the training and testing data is

assessed,

�
y
y+

�
� N

0

B@
�

mðXÞ

mðx+Þ

�
;

2

4KXX þ s
2
nI KXx+

Kx+X Kx+x+ þ s
2
nI

3

5

1

CA (3)

Here, the notation X is used to denote a set of N, D dimensional,

training inputs where X2R
N�D and y is the corresponding set of N

measured training outputs with y2R
N�1. Whenwanting to predict

with the model, a new input x+ can be considered (trivially this

could also be X+ if predicting at multiple points). This is used to

make a prediction at a new potentially unknown output y+. By the

properties of a multivariate Gaussian, every conditional distribu-

tion is also Gaussian. Using this standard result, it is possible to

write down the predictive distributions over y+,

pðy+jx+;X; yÞ¼N ðE½y+�;V½y+�Þ

E½y+� ¼ mðx+Þ þ Kx+X

�
KXX þ s

2
nI

��1
ðy�mðXÞÞ

V½y+� ¼Kx+x+ �Kx+X

�
KXX þ s

2
nI

��1
KXx+ þ s

2
n (4)

It is possible to assess new test points since the covariance of the

process is fully described by the covariance function. This together

with the mean function mð,Þ allows the GP to be used when pre-

dicting at any new x+. The mean function can be chosen to be any

parametric function of the inputs, although it is commonly set to

zero when the GP is presented in machine learning literature [31].

In order to fully specify the GP model, a covariance (kernel)

function must be chosen which defines the similarity of any two

sets of input points giving rise to the covariancematrix K. A popular

choice for the covariance function is the squared-exponential (SE),

which is defined for two input points x and x’ as,

kSEðx; x’Þ¼ s
2
f exp

(
jjx � x’jj2

2l

)
(5)

The use of the squared-exponential kernel embeds the belief

that the function being modelled is infinitely differentiable.1 It

should be noted that by choosing this covariance function the user

is restricting the functions which can be modelled to those which

conform to these properties.

It can be seen that there exist a small number of hyper-

parameters in the kernel which must be determined in order to

make use of the GP. In the case of the squared-exponential

covariance these are the signal variance s2
f
and the length scale [.

These two hyperparameters control the behaviour of the covari-

ance function; s2
f
can be interpreted as the prior variance of the

signal being modelled and [mediates the region of influence of the

kernel. In other words, the length-scale controls how smooth the

function being modelled is, where increasing the length-scale in-

creases the smoothness of the function.

1 Formally this property is referred to as smoothness, however, to avoid confu-

sion the term smooth is not used in this paper. Instead the word smooth is used to

refer to functions which vary more slowly with relation to the input space, i.e. have

longer length-scales.
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In order to learn these hyperparameters, a Type-II maximum

likelihood approach is taken as in Ref. [31]. The marginal likelihood

of the model, also referred to as the model evidence, is maximised.

This optimisation makes use of the Bayesian Occam’s razor [33e35]

to find theminimally complexmodel given the observed data in the

training setD ¼ fX;yg. This optimisation is normally performed as

a minimisation over the negative log marginal likelihood for con-

venience and numerical stability. Thus, an estimate of the hyper-

parameters bq ¼ fs2
f
; [g is obtained through the following

optimisation,

bq¼ arg min
q

f � log pðy j X; qÞg (6)

with,

�logpðyjX;qÞ¼�logN
�
y
���mðXÞ;KXXþs

2
nI

�

¼
N

2
logð2pÞþ

1

2
log

����KXXþs
2
nI

����þ
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2
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2
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0
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0
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1

A

1

A

3

5

(7)

In this way the hyperparameters of the kernel (and if necessary

the parameters of the mean function) can be learnt and the GP is

fully specified by equations (4) and (7).

2.1. Handling large datasets

In order to either learn the hyperparameters of the GP or to

make predictions, it is necessary to assess the inverse of the

covariance matrix with noise, ðKXX þ s2nIÞ
�1

. This operation is

O ðN3Þ in both computation and memory storage. Practically, this

means that for datasets larger than roughly ten thousand data

points it is not feasible to learn a GP model. This is the case in many

datasets collected from SCADA systems where the number of

datapoints regularly exceeds tens, if not hundreds, of thousands. A

number of methods have been considered to address this problem.

This class of models is referred to as sparse Gaussian Processes. The

most common methodology is to introduce a number of inducing

points, although other methods have been explored [36,37]. Intro-

ducing these inducing points reduces the complexity of the process

from O ðN3Þ, for N datapoints, to O ðNM2Þ, for M inducing points,

giving advantage when M≪N. Broadly speaking, inducing point

methods can be separated into two classes, model approximations

and posterior approximations. Model approximations modify the

prior of the model to achieve sparsity whereas posterior approxi-

mations approximate the posterior directly. In Qui~nonero-Candela

and Rasmussen [38], or more recently in Bui et al. [39], the use of

inducing points (also referred to as pseudo-points) is brought un-

der unifying frameworks. For the sake of brevity, the content of

these papers is not duplicated here.

In general, posterior approximations of the GP will result in

more robust models than model approximations [40]. It is known

that a posterior approximation is not able to overfit the data unlike,

for instance, a Fully Independent Training Conditional (FITC)

approach [40,41]. Therefore, a posterior approximation approach is

adopted in this work, namely the Variational Free Energy (VFE)

approach [42].

A very brief review of the VFE sparse GP is given here, for a full

introduction the reader is referred to Ref. [42]. The inducing points

of the model fZ;ug (where Z contains the locations of the inducing

points and u the values of the latent function at those points) are

used to form a variational approximation of the full posterior of the

model. The model can then be learnt by minimising the Kullback-

Leibler (KL) divergence between this approximate joint posterior

and the full joint GP posterior. The joint variational (approximate)

posterior qðf;uÞ is formed such that,

qðf;uÞ¼pðf;uÞ4ðuÞ (8)

where 4ðuÞ is known as the ‘free’ variational distribution with f

being the latent function values at the measured inputs and u

dependent upon the set of ‘free’ inputs Z. This allows the joint

posterior of the GP pðf; f+Þ to be approximated directly as,

pðf; f+Þz qðf; f+Þ¼

ð
pðf+juÞqðfjuÞpðuÞdu (9)

It is possible to find the optimal choice of 4ðuÞ analytically from

which a lower bound on the marginal likelihood, FðZÞ, can be

established as,

FZ ¼ �
1

2
log
���QXX þ s

2
nI

����
1

2
ðy �mðXÞÞ

T�
QXX þ s

2
nI

��1

� ðy�mðXÞÞ�
N

2
log 2p�

1

2s2n
tr ðKXX �QXXÞ

(10)

where, trð,Þ is the trace operator and the approximate covariance

QXX is defined as,2

QXX ¼KXuK
�1
uuKuX (11)

Now in learning the hyperparameters of the GP the bound in

equation (10) is used in place of the marginal likelihood pðyjX;qÞ in

equation (6). Predictions can then be made through this approxi-

mate posterior in a similar manner to the standard GP. The pre-

dictive distribution of the VFE model is given by,

qðy+jx+;X; y;uÞ ¼ N ðE½y+�;V½y+�Þ

E½y+� ¼ Qx+X

�
QXX þ s

2
nI

�
�1y

V½y+� ¼ Kx+x+ � Qx+X

�
QXX þ s

2
nI

��1
QXx+

(12)

By making use of this sparse approximation, the computational

requirements for a dataset with N datapoints is reduced from

O ðN3Þ to O ðNM2Þ forM inducing points. This nowmakes it feasible

to handle large engineering datasets such as those returned by a

data acquisition system installed on a wind turbine.

2.2. Heteroscedastic noise models

Considering the data shown in Fig. 1, it can be seen that one of

the key assumptions in the GP does not hold when modelling po-

wer curve data. That is the assumption of homoscedastic noise, this

is that the noise on the function f ðxÞ is an additive Gaussian noise

with fixed variance. In fact, it can be seen that the noise variance

changes across the input space, i.e. with changing wind speed there

is a change in noise variance. In a heteroscedastic noise model it is

assumed that the noise model is a function of the inputs to the

system. The regression model introduced in equation (1) would

2 Here notation is established for a general matrix Qab such that Qab ¼

KauK
�1
uuKub .
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then become,

y¼ f ðxÞþ εðxÞ ε � N ð0; rðxÞÞ (13)

It can be seen that the variance of the noise process is now

considered to be a function of the inputs to the model. In the case of

the power curve, this expresses the fact that noise variance is

dependent on wind speed.

In the same way that a GP prior can be used to infer the un-

known function f ðxÞ, such that f ðxÞ � GP ðmðxÞ; kf ðx; x
’ÞÞ. It is

possible to model the function over the noise variance using a GP.

This was first presented in L�azaro-Gredilla and Titsias [43], where,

since the variance of the noise is strictly positive the function rðxÞ is

modelled as the exponential of a Gaussian Process regression. That

is,

rðxÞ¼ expfgðxÞg (14)

where,

gðxÞ � G P
	
m0; kgðx; x

’Þ



(15)

The GP which is used to model gðxÞ is assigned its own covari-

ance function kgðx; x’Þ and is considered to have a constant mean

m0. The addition of the second GP over the log noise variance in-

creases the expressive power of the model, but with that, the

difficultly in learning and inference. The second GP increases the

number of hyperparameters that must be learnt by the number

required to express the constant mean and kernel of the second GP.

The introduction of this heteroscedastic noise model also means

that the marginal likelihood and predictive equations of the model

are no longer available in closed form. To handle this, a variational

approximation is used. Similarly to the VFE sparse method the

approximate distribution over the posterior is used to form a lower

bound on the marginal likelihood of the model which can be found

to be dependent on two sets of parameters m and S. The bound is

found in Ref. [43] to be,

Fðm;SÞ¼ logN
�
yj0;Kf þR

�
�
1

4
trðSÞ � KL

	
N ðgjm;SÞ

� jjN
	
gjm01;Kg




(16)

Here, Kf and Kg are used to denote the covariance matrices of the

two Gaussian Processes over f ðxÞ and gðxÞ respectively.

KLðpðaÞjjpðbÞÞ is the Kullback-Leibler divergence between distri-

bution pðaÞ pofa and pðbÞ; 1 is a vector of ones; m and S are varia-

tional parameters to be determined, and R is a diagonal matrix

whose diagonal elements are given by,

Rii ¼ exp

�
mi �

1

2
Sii

�
i¼1;…;N (17)

It can be seen that, in m and S, there exist N þ NðNþ1Þ= 2 un-

known free variational parameters whichmust be learnt. Following

the approach in L�azaro-Gredilla and Titsias [43], it is possible to

reparameterise m and S in terms of L d a diagonal semi-positive-

definite matrix d reducing the number of parameters to be learnt

to N. This allows m and S to be expressed in the following form,

m¼Kg

�
L�

1

2
I

�
1þm01; S

�1 ¼K�1
g þL (18)

This being the case, the bound on the marginal likelihood can be

computed and the hyperparameters of the model can be learnt. The

overall increase in computational load for the heteroscedastic GP

model means that learning takes roughly twice as long as a ho-

moscedastic GP [43].

One final complication in the heteroscedastic GP model is that

the full predictive distribution is also unavailable in closed form. To

obtain it would require evaluating the integral,

qðy+Þ ¼ ∬ pðy+jg+; f+Þqðf+Þqðg+Þdf+dg+

¼

ð
N

�
y+

���a+; c2+ þ expfg+g
�
N

�
g+

���m+;s2+
�
dg+

(19)

where,

a+¼ kf ðx+;XÞ
�
Kf þ R

��1
y (20a)

c2
+
¼ kf ðx+; x+Þ � kf ðx+;XÞ

�
Kf þ R

��1
kf ðX; x+Þ (20b)

m+¼ kgðx+;XÞ

�
L�

1

2
I

�
1þ m0 (20c)

s
2
+
¼ kgðx+; x+Þ � kgðx+;XÞ

�
Kg þL

�1
��1

kgðX; x+Þ (20d)

Although equation (19) cannot be computed in closed form, it is

possible to calculate the first two moments of the predictive dis-

tribution qðy+Þ; that is, the mean and the variance of this distri-

bution.3 These moments can be found to be,

Eqðy+Þ½y+� ¼ a+ (21a)

Vqðy+Þ½y+� ¼ c2
+
þ exp

�
m+þ

1

2
s
2
+

�
(21b)

Therefore, it is possible to make predictions using a GP under

a heteroscedastic noise assumption. By calculating only the first

two moments of the predictive distribution, the distribution over

an unknown output y+ given a test input x+ can be approxi-

mated. An approximation of this distribution by its first two

moments is to assume that the distribution over the test output

at this point is well represented by its first two moments; the

true distribution may not be Gaussian but by using only the first

two moments is assumed to be close to this. This allows a

probabilistic prediction of the function of interest to be made

while also predicting the variance of the function at any given

input. This additional information regarding the uncertainty on

the process is invaluable if the predictions are to be carried for-

ward into further analysis.

2.3. Sparse heteroscedastic Gaussian Process regression

In possession of both a sparse and a heteroscedastic Gaussian

Process model it is natural to explore the combination of these into

a sparse heteroscedastic GP. This combination has also been shown

in the literature by Liu et al. [44]. In that work, the authors establish

a new variational bound when making a variational approximation

of the posterior under both the heteroscedastic model and a sparse

model akin to the VFE approach, which they term the Variational

Sparse Heteroscedastic Gaussian Process (VSHGP). Taking the het-

eroscedastic model shown in Ref. [43] and presented in section 2.2,

it is possible to form a sparse heteroscedastic GP. Separate sets of

inducing points are introduced to both the function GP modelling

f ðxÞ and the log noise variance GP modelling gðxÞ. The same

3 Please note, the explicit conditioning of the posteriors on the training data, test

input, inducing points, and hyperparameters is dropped for simplicity of notation.
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strategy for achieving sparsity is followed as in section 2.1 (using

the technique of Titsias [42]).

The variational approximation of this complete model again

reduces to determining a lower bound on the marginal likelihood.

This is found to be,

Fðm;SÞ ¼ log N

�
y
���0; Q ðf Þ

XX þ R
�

�
1

4
tr
	
Sg




�
1

2
tr
�
R�1

�
K
ðf Þ
XX � Q

ðf Þ
XX

��

�KL
	
N ðgjmu;SuÞj

��N
	
gjm0;K

ðgÞ
uu





(22)

where,

mg¼U
ðgÞ
Xu ðmu �m01Þ þ m01 (23a)

Sg ¼K
ðgÞ
XX �Q

ðgÞ
XX þ U

ðgÞ
Xu Su U

ðgÞ
uX (23b)

mu ¼K
ðgÞ
uX

�
L�

1

2
I

�
1þ m01 (23c)

S
�1
u ¼



K
ðgÞ
uu

��1
þ U

ðgÞ
uXLU

ðgÞ
Xu (23d)

given,

U
ðgÞ
Xu ¼K

ðgÞ
Xu



K
ðgÞ
uu

��1
U
ðgÞ
uX ¼



K
ðgÞ
uu

��1
K
ðgÞ
uX (24)

and R is a diagonal matrix with elements,

Rii ¼ exp

�

mg
�
i
�
1

2



Sg

�
ii

�
(25)

At this point it is worth clarifying the notation used in this

section. The introduction of a sparse approximation to the two

Gaussian Processes in the heteroscedastic model adds an additional

number of hyperparameters corresponding to the inducing points

used in f ðxÞ and gðxÞ. It should be noted that the inducing points for

f ðxÞ and gðxÞ are two separate sets that can be different sizes. In

light of this, notationally a covariance matrix is indexed by a su-

perscript ðf Þ or ðgÞ to denote which function d and therefore

hyperparameters d are being considered. The subscript is used to

denotewhich sets of points the covariance is taken between, with X

being the full measured set of inputs and u being the set of inducing

points for that function. For example, K
ðgÞ
uX indicates the matrix of

covariances between the inducing points of the process for gðxÞ and

the training data X given those learnt inducing points and the

hyperparameters of the kernel for the log noise process. Although

there is a non-trivial amount of algebra to arrive at this point, the

bound developed in equation (22) can be used in place of the

marginal likelihood of the standard GP pðyjX; qÞ to learn the set of

hyperparameters of the model q. However, the number of hyper-

parameters which must be learnt has now increased to include the

hyperparameters for the kernels kf ðx; x’Þ and kgðx;x’Þ, the constant

mean for the log noise variance m0, the set ofMf inducing points for

f ðxÞ, the set of Mg inducing points for gðxÞ, and the N variational

parameters which form the diagonal matrix L.

Turning attention to making predictions with the VSHGPmodel,

it is necessary to compute the approximate posterior distribution

over y+ d qðy+Þ. As with the non-sparse heteroscedastic GP the

computation of this approximate posterior requires the

computation of an intractable integral,

qðy+Þ ¼ ∬ pðy+jg+; f+Þqðf+Þqðg+Þdf+dg+

¼

ð
N

�
y+

���mðf Þ
+
; expfg+g þ s

2ðf Þ

+

�
N

�
g+

���mðgÞ
+

; s2
ðgÞ

+

�
dg+

(26)

This equation is dependent upon a predictivemean and variance

for f ðxÞ (m
ðf Þ
+

and s2
ðf Þ

+
) as well as the predictive mean and variance

for gðxÞ (m
ðgÞ
+

and s2
ðgÞ

+
). Each of these can be computed in closed

form [44], defining KR as,

KR ¼K
ðf Þ
uXR

�1K
ðf Þ
Xu þ K

ðf Þ
uu (27)

m
ðf Þ
+

¼K
ðf Þ
+uK

�1
R K

ðf Þ
uXR

�1y (28a)

s
2ðf Þ

+
¼K

ðf Þ
++

�K
ðf Þ
+u

h
K
ðf Þ
uu

i�1
K
ðf Þ
u+ þ K

ðf Þ
+uK

�1
R K

ðf Þ
u+ (28b)

m
ðgÞ
+

¼K
ðgÞ
+u



K
ðgÞ
uu

��1
ðmu �m01Þ þ m01 (28c)

s
2ðgÞ

+
¼K

ðgÞ
++

�K
ðgÞ
+u



K
ðgÞ
uu

��1
K
ðgÞ
u+ þ K

ðgÞ
+u

h
K
ðgÞ
uXL

�1K
ðgÞ
Xu þ K

ðgÞ
uu

i�1
K
ðgÞ
u+

(28d)

In an analogous manner to (21), the first two moments of qðy+Þ

under the VSHGP model can we written down as,

Eqðy+Þ½y+� ¼m
ðf Þ
+

(29a)

Vqðy+Þ½y+� ¼ s
2ðf Þ

+
þ exp

�
m
ðgÞ
+

þ
1

2
s
2ðgÞ

+

�
(29b)

These first two moments can then be assumed to well represent

the full predictive distribution, i.e. it is assumed that this distribu-

tion is approximately Gaussian.

2.4. Distributed computation

In Ref. [44] one further extension is made to this model. The

Distributed Variational Sparse Heteroscedastic Gaussian Process, is

presented where the data are divided into a number of subsets.

Each of these subsets is learnt via a separate VSHGP in the manner

described above using the bound established in equation (22). This

creates a mixture of experts type model where the experts each

represent a local approximation of the function. These experts can

then be combined using a variety of tools. The one presented in

Ref. [44] is the Robust Bayesian Committee Machine (RBCM),

developed in Ref. [45] and shown to be effective when used with

Gaussian Process models in Ref. [46].

When modelling the wind turbine power curve this approach

also can be beneficial. It will reduce, further, the computational

complexity of the model which in turn reduces computation time,

also helps account for the first of two types of heteroscedasticity

present in the data. That is, the power curve exhibits three distinct

regimes that it smoothly transitions between; the first is the

behaviour before cut-in, the second as the power output rises with

increasing wind speed, and the third when the turbine is limited to

its maximum output. This allows the data to be separated into a

three component mixture. Unlike the work of Liu et al. [44], the

data relating to each of these components can be and is defined

based on physical prior knowledge. Additionally, around the tran-

sitions between two components data are included in each of the

components to ensure smooth transitions between the GPs.

When making predictions using this model, the predictions
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from each expert must be combinedd here bymeans of the RBCM.

The means and variances which are predicted by each of the ex-

perts are aggregated as a weighted sum over the experts. The ex-

perts are combined separately for the Gaussian Processes over f ðxÞ

and gðxÞ. For a committee model with C experts, each expert has a

calculated predictive mean and variance for f ðxÞ and gðxÞ which

can be indexed according towhich expert made that prediction. For

example s2
ðgÞ

+i indicates the predictive variance of the ith expert for

the GP over gðxÞ, this has an analogous precision s�2ðgÞ

+i ¼ 1= s2
ðgÞ

+i .

The aggregated predictive distribution for f+ has a mean given

by,

m
ðf Þ
+A

¼s
2ðf Þ

+A

XC

i¼1

b
ðf Þ
i
s
�2ðf Þ

+i m
ðf Þ
+i

(30)

and precision,

s
�2ðf Þ

+A
¼
XC

i¼1

b
ðf Þ
i
s
�2ðf Þ

+i þ
�
1�

XC

i¼1

b
ðf Þ
i

�
s
�2ðf Þ

++
(31)

where s�2ðf Þ

++
is the prior precision of the GP over f ðxÞ. Similarly for

the GP over the log noise variance, the aggregatedmean is given by,

m
ðgÞ
+A

¼s
2ðgÞ

+A

hXC

i¼1

b
ðgÞ
i

s
�2ðgÞ

+i m
ðgÞ
+i

þ
�
1�

XC

i¼1

b
ðgÞ
i

�
s
�2ðgÞ

++
m0

i
(32)

and the precision by,

s
�2ðgÞ

+A
¼
XC

i¼1

b
ðgÞ
i

s
�2ðgÞ

+i þ
�
1�

XC

i¼1

b
ðgÞ
i

�
s
�2ðgÞ

++
(33)

with s�2ðgÞ

++
is the prior precision of the GP over gðxÞ. It remains to

decide on the weighting functions between the experts for both

f ðxÞ and gðxÞ. These are the weightings b
ðf Þ
i

and b
ðgÞ
i

respectively.

Since the GP model automatically returns a measure of uncertainty

in the prediction it makes (the VSHGP included), this can be used as

some measure of confidence in the prediction being made at any

point. It is therefore possible to use the variance of the prediction to

weight the experts. The variance for each GP is bounded by its prior

variance, therefore it is possible to establish the weighting of each

expert by comparing its predictive variance to its prior variance.

Given this the weighting function for f ðxÞ is given as,

b
ðf Þ
i

¼
1

2

�
log s

ðf Þ
++

� log s
ðf Þ
+i

�
(34)

and likewise for gðxÞ,

b
ðgÞ
i

¼
1

2

�
log s

ðgÞ
++

� log s
ðgÞ
+i

�
(35)

Finally, once the means and variances for the predictions of each

expert have been aggregated for both f ðxÞ and gðxÞ, the first two

moments of the variational predictive distribution can be written

down as,

Eqðy+Þ½y+� ¼m+A ¼m
ðf Þ
+A

(36a)

Vqðy+Þ½y+� ¼s+A ¼ s
2ðf Þ

+A
þ exp

�
m
ðgÞ
+A

þ
1

2
s
2ðgÞ

+A

�
(36b)

Despite the somewhat circuitous route, the similarity between

these equations and those shown in equation (21) make clear that

this model is merely an extension of the non-sparse

heteroscedastic model. In addition to this, these equations

approximate the probability distribution over the mean and vari-

ance of each output given the previously observed data,D ¼ fX;yg,

in amanner analogous to the standard GP. As such, without needing

to pre-specify a functional form for the data, the input-output

relationship d with a heteroscedastic noise model d can be

learnt in a Bayesian manner, returning a probabilistic output.

3. Modelling wind turbine power curves

With a mathematical framework for learning nonlinear func-

tions with heteroscedastic noise models in place, attention can be

directed towards prediction of wind turbine power curves. This

section will explore the use of the techniques presented previously

for modelling. To demonstrate the usage of these techniques a

sample dataset taken from an operational wind turbine is used. For

confidentiality reasons the measured values of wind speed and

power have been obscured by normalisation of the data. Addi-

tionally, the values stated for the cut-in and nominal speeds of the

turbine are selected to be representative in the normalised space

and bear no relation to the stated values on the data sheet for the

turbine being considered. However, the data collected are 10-min

averages from a functional SCADA system over a period of 125

weeks, and as such, this dataset represents a realistic set of mea-

surement data.

Following their normalisation, the data are separated into three

distinct sets, one for training, one for validation, and one for testing

of any models which are learnt. In the results shown here com-

parisons are made between predictions made on the training data

d that data used to learn themodeld and the test datad data that

remains unseen by the model until predictions are made, the vali-

dation data is unused in this case. Both the training and testing

datasets consist of 16359 pairs of data points where the input is the

measured 10-min average wind speed and the target is the

measured 10-min average power. One key modelling assumption is

that the function is stationary, i.e. the relationship between the

wind speed and power output does not change over time.

Considering the training and test data (collected several months

apart) which are shown overlaid in Fig. 2, this assumption appears

to hold across this dataset.

Although, as has been shown, the addition of a mean function to

the standard GP formulation is trivial, for the heteroscedastic for-

mulations, only the zero-mean versions have been shown.

Observing the characteristic shape of the wind turbine power

curve, it is clear that a constant zero mean assumption is not valid.

In view of this, it is prudent to learn a parametric mean function

which can be removed from the data before learning the GP model

of choice. Two potential mean functions are considered, the first a

piecewise-linear function that could be specified from the known

cut-in and nominal speeds of the turbine, the second a hyperbolic

tangent function the parameters of which must be learnt from the

data. The piecewise-linear function is defined as a three-

component curve, with a constant power output of zero, before

the cut-in speed, and a constant of the rated power output above

the nominal speed. A line then connects these two values between

the cut-in and nominal speed.

Fig. 3 shows a comparison between the piecewise-linear fit and

the hyperbolic tangent fit. The parameters of the hyperbolic

tangent have been learnt by a minimisation of the sum of squares

errors on the training data d i.e. a standard least squares fit d

using a quantum particle swarm population based optimiser [47].

The requirement for a very robust fit is relaxed since the GP is

expressive enough to compensate for any bias introduced by

learning ‘sub-optimal’ parameters of this model.

The models learnt by these parametric fits have been removed
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from the data in order to transform it into a zero-mean space that

can be used with the GP model. In Fig. 4, the data in this trans-

formed space is shown. The piecewise linearmodel is seen to create

a hard corner as it transitions between sections, this leaves the

function to be learnt by the GP as non-smooth and discontinuous.

Remembering that the choice of kernel encodes smoothness beliefs

about the functions, to make use of the piecewise linear mean

would require finding a covariance function that allows for non-

smooth functions. However, using the hyperbolic tangent as a

mean functions leads to a smoother function in the transformed

space. The data, following removal of the hyperbolic tangent mean,

would be more readily learnt using more common covariance

functions encountered when using GP models, e.g. the squared

exponential in equation (5).

Having removed this hyperbolic tangentmean, the task of fitting

a GP model can begin. For comparison, it would be preferential to

have fit a full homoscedastic GP, the VFE sparse GP, the full heter-

oscedastic, and the sparse heteroscedastic. However, due to the size

of the data set, over 16000 training points, it is not possible to fit a

non-sparse GP with any reasonable amount of resources. This will

often be the case when modelling wind turbine power curves as

data acquisition systems typically run for extended periods of time

accumulating very large datasets. It is also beneficial to use

computationally efficient methods when inference needs to be

conducted online, this may include the retraining of these models

to make comparisons as the turbine ages. Therefore, given the

necessity to use a sparse method, comparison is made between the

VFE (a homoscedastic model) and the distributed sparse variational

heteroscedastic GP (DSVHGP). Results are shown for fits to both the

training and testing data with and without the hyperbolic tangent

mean added.

Two quantities are used to assess the model fit, the first is a

normalised mean squared error (NMSE) shown in equation (37);

this measures the goodness-of-fit of point predictions of a modeld

either the output of a deterministic model or the mean of a prob-

abilistic one. The NMSE will return a score of zero in the case of a

perfect fit, a score of 100 corresponds to a prediction which has the

same error as simply taking the mean of the data.

NMSE¼
100

Ns2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � byÞTðy � byÞ

q
(37)

Here, N is the number of datapoints being assessed, s2y the variance

of the measured data, y the measured data, and by the predicted

outputs. In addition to this, the joint likelihood of the probabilistic

models is used to assess model quality. The NMSE metric fails to

capture any quantification of uncertainty in the model. Since one of

the main benefits of the GP approach is this automatic quantifica-

tion of uncertainty, it is sensible to include this as a measure of

goodness-of-fit. The joint likelihood is calculated as the product

over the likelihood of each prediction, given that at each prediction

a univariate Gaussian distribution is returned d in the case of the

heteroscedastic model this is an approximate distribution given the

first two moments of the prediction equation (21).

The predictions made by the VFE model are shown in Fig. 5 and

Fig. 6, in the transformed space and on the original power curve

data respectively. Before stating the quantitative assessment of this

model, it can be seen that the model has failed to capture the un-

certainty present in the data well. There exist many points in the

rising part of the power curve which lie outside of the three sigma

intervals, however, at low and high wind speeds (where the func-

tion is flat) the variance is overestimated. It would appear that, as

expected, the noise variance has been learnt to be an average be-

tween the high variance section as the function rises and the low

variance sections towards the edges. On first inspection it may

appear that the variance has been captured well in the middle

Fig. 2. Normalised training and test wind turbine power curve data.

Fig. 3. Two different parametric models fitted to the power curve, the piecewise linear

model (in blue) from assumed values and the hyperbolic tangent model (in green)

learnt from the training data. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

Fig. 4. The “zero” mean transform space after applying each mean (parametric)

function.
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section of the function and poorly at the end, however, on closer

inspection it is seen that in addition to the overestimation of

variance at high and low wind speeds the variance is actually

underestimated in the middle section of the curve. With reference

to the prediction in the transformed space in Fig. 5, the NMSE of the

process is 56.4 for the training data and 56.2 for the test data. This is

expected as the variance related to noise on the data is large in this

space. Transforming back to the full power curve in Fig. 6, by adding

back the hyperbolic tangent mean function, it can be seen that the

fit that may look unimpressive in the transformed space actually

represents the mean behaviour of the power curve well (despite

poor modelling of the variance), this yields a NMSE of 0.81 for both

the training and testing data. For comparison it is worth stating the

NMSE scores of the two parametric functions considered. The

piecewise-linear function scores 3.93 and 3.94 on the training and

testing data, whereas, the hyperbolic tangent scores 1.49 and 1.50.

From this it can be seen that the use of the GP with the hyperbolic

tangent as a mean function leads to a significant decrease in the

point-wise error. Considering the likelihoods of the models (stated

as log likelihoods), in the transformed space these score 2:26� 104

for both training and testing data. With the mean function added

these scores remain the same, for both training and testing data,

this allows more consistent comparison of the models as it both

incorporates the uncertainty of the prediction and is insensitive to

removing the parametric mean function.

A heteroscedastic model was also learnt and tested on the same

datasets. The distributed sparse variational heteroscedastic GP is

chosen for this task, to allow heteroscedastic inference over this

large dataset. The training data are separated in to three over-

lapping datasets, which are in turn, used to train three experts in

the robust Bayesian committee model framework. Fig. 7 shows the

predictionsmade by these experts when predicting the test dataset.

In the upper three plots the datawhich have been used to train each

expert is also shown. It can be seen that each expert has been

trained on a subset of data which overlaps in the input space, this

ensures a smooth transition between the experts in the committee

model. The locations of these splits and the amount of overlap were

chosen a priori to divide the data into the three broad regions seen

in the power curve:

1. Before and through cut-in speed;

2. Transition from cut-in speed to the upper bound on nominal

speed;

3. Lower bound on the nominal speed to cut-out speed.

The split locations can be chosen based upon the known cut-in

and nominal speeds of the turbine and the amount of overlap is a

matter of user choice, for this example the normalised splits are

listed in Table 1. It was the experience of the authors that a small

overlap region ensured a smooth transition between the experts, in

this case the ranges of wind speed were:

As expected, each expert is most capable of making predictions

close to data which has been used to train that expert and is most

confident of the predictions in those regions. This confidence in the

predictions is the measure used to weight the contribution of that

expert as calculated in equations (34) and (35). The aggregated

predictions of the model (equation (36)) for the test data are shown

below the contribution of each expert in Fig. 7 with the measured

test data superimposed.

The aggregated predictions made by the DSVHGP in the trans-

formed space are shown in Fig. 8 for the training and testing data.

The NMSE scores for these models are 56.5 and 56.2 for the training

and test data respectively. The scores in the NMSE match very

closely with the homoscedastic model fitted. Moving to the full

space, shown in Fig. 9, the NMSE scores are found to be 0.81 for

both the training and testing data. Scores which are identical to the

homoscedastic model d up to this level of accuracy. This is,

perhaps, expected considering that the predictive mean of the

DSVHGP model is given by the mean of the GP over the function

f ðxÞ which is a very similar formulation to the predictive mean

equation of the homoscedastic sparse model. The main difference

between the models (in a predictive sense) enters through the

calculation of the variance of the predictive density.

Since the NMSE score does not depend on the predictive vari-

ance of the model, it is unsurprising that this score is largely un-

affected by the changes in the model. The likelihood score of the

model, however, reveals the improved quantification of the un-

certainty in the prediction. As before, the joint log likelihoods in the

transformed space and over the full power curve are identical up to

the accuracy stated. These are 3:47� 104 for the training data and

3:39� 104 for the testing data. This represents a marked

improvement over the scores calculated for the homoscedastic

model. The increase in likelihood of the predictions would indicate

that the heteroscedastic formulation has been able to better cap-

ture the variance in the data and is capable of making predictions

which better represent that variance.

To visualise the difference in the fits of the two models, they are

shown overlaid in Fig. 10; here, the similarity in predictive mean

can be easily seen and the difference in the predictive variance is

also apparent. The improvedmodelling of the noise on the data as a

Fig. 5. Prediction made by the homoscedastic sparse GP in the transformed space.

Fig. 6. Predictions of the homoscedastic sparse GP of the full power curve.
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result of the heteroscedastic GP is most apparent at the tails of the

power curve where the homoscedastic model overestimates the

variance. Although in certain situations this may not be of major

concern, this overestimation of variance will lead to reduced

sensitivity if the model is used in a damage detection setting such

as in Papatheou et al. [23].

One concern that could be raised with both models, or indeed

any GP fit of the power curve, would be that there is likelihood that

the turbine would exceed its stated maximum power outputd this

would not be observed due to the limits of the turbine. This is most

apparent when considering the output of the homoscedastic model

since the variance of the heteroscedastic model reduces as thewind

speed increases and the turbine consistently produces its

maximum rated power. However, around the nominal speed of the

turbine there is variance in the power output which is captured in

both models. This region is focussed on in Fig. 11, where it can be

seen that the heteroscedastic model captures well the variance in

power output around the nominal speed below the maximum

output but has variance extending above the maximum rated

output. This is an artefact of the approximation of the posterior

distribution as a Gaussian based on its first two moments, although

it is likely that the full distribution would also have probability

mass above this maximum output. Because of the Gaussian nature

of this approximate posterior, the distribution over the outputs

must be symmetric about the mean. Around the nominal speed of

the turbine the distribution over the power output is heavily

skewed, because only the mean and variance of the distribution of

the output are modelled it is not possible to model is asymmetric

distribution. One solution to this is to apply prior physical knowl-

edge to the system and to recognise that it is extremely unlikely

that the turbine would exceed its rated output, therefore, in any

further analysis the predictions could be limited at the maximum

value. Alternative approaches to handling this issue will be dis-

cussed as future work.

Fig. 7. Prediction of each of the experts in the robust Bayesian committee model and the aggregated prediction in the transformed space.

Table 1

Division of input space for mixture of experts.

Expert Normalised Wind Speed

Lower Bound Upper Bound

1 �1 �0.8

2 �0.85 0.1

3 0 1

Fig. 8. Predictions of the distributed SVHGP in the transformed space.

Fig. 9. Predictions of the distributed SVHGP of the full power curve.
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Finally, it is natural to consider the importance of each part of

the modelling process. The use of the mixture of experts model to

separate each region of the prediction allows for some hetero-

scedasticity by assigning a different noise variance to each expert.

By separating the components of the prediction from the DSVHGP it

is possible to inspect the role of the heteroscedastic model. In

Fig. 12 the GP which accounts for the mean prediction of the model

and the GP which models the log noise variance are visualised

separately as well as showing the full prediction. In the top left

frame of the figure it can be seen that the GP over the latent

function of the mean for the power curve has a very low variance.

This indicates a confident prediction of the mean behaviour of the

curve, which is seen to fit well with the data. Considering the top

right frame in the figure the prediction of the GP over the log noise

variance is shown. Here, the role of the heteroscedastic formulation

in the GP is clearly seen. If each member of the mixture of experts

were to exhibit homoscedastic behaviour within its region this plot

would show three horizontal lines, with quick transitions between

them. Instead it can be seen that the log noise variance is itself a

nonlinear function which is evolving with wind speed. This curve

also shows the expected behaviour that the variance of the noise on

the power curve is lower towards the upper and lower bounds on

the wind speed. It can also be seen that the increase in variance

close to the nominal speed of the turbine has beenmodelled by this

GP. Finally, due to the relatively low number of datapoints seen

close to a nominal wind speed of one, the prediction of the variance

in the region becomes less confident (seen by an increase in vari-

ance) and the predicted variance increases to accommodate this.

However, since this is modelling the log noise variance the actual

uncertainty seen in the model remains very low even toward this

uncertain region since the mean remains low. Through the

modelling of this collected data it has been possible to demonstrate

how the proposed methodology based on the DSVHGP can accu-

rately capture the behaviour of a power cure both in terms of its

mean behaviour and through modelling the uncertainty. The use of

the mixture of experts is shown to be a pragmatic approach to

capturing the form of the power curve across three key regimes.

Finally, the use of the heteroscedastic GP model is shown to allow

the change in noise variance, across the wind speed, to be

modelled; giving more reliable predictions of the uncertainty

associated with the prediction across the full power curve.

4. Conclusions

The work contained in this paper has laid down a methodology

for rigorous probabilistic modelling of wind turbine power curves

d extending the work of [1,22,23] to the heteroscedastic case with

sparsity, improving the quantification of uncertainty significantly.

The Gaussian Process has been introduced as a flexible Bayesian

machine learning technique for modelling of nonlinear functions.

The difficultly in use of a GP model with large datasets has been

discussed with the use of a sparse approximation suggested. The

variational free energy approach of Titsias [42] has been presented

as a powerful and robust method in which large numbers of

training data points can be incorporated into the GP framework. In

view of the heteroscedastic noise behaviour seen in power curve

data, the extension of a GP model to include the modelling of this

input dependent noise has been discussed. The method of L�azaro-

Gredilla and Titsias [43] has been to shown to achieve this by

modelling the log noise variance of a process as an additional

Gaussian Process which is learnt in a variational manner.

Combining the theory developed for the VFE sparse approximation

and the heteroscedastic approach led to a sparse variational het-

eroscedastic GP model. This model, introduced in Liu et al. [44]

allows the learning of a heteroscedastic GP over large datasets, such

as those collected by SCADA systems installed on wind turbines.

Finally, the approach of building a mixture of experts model based

on partitioning the input space of the data is shown to lead to

further computational gains and better robustness whenmodelling

Fig. 10. Comparison of power curve predictions made by both the homoscedastic and

heteroscedastic models.

Fig. 11. Highlighting the predictions around the nominal-speed where output is

limited to the rated output.

Fig. 12. Decomposition of the prediction from the mixture of experts into the GP over

the mean of the process (top left) and the GP over the log noise variance of the process

(top right), the combination of these two gives the full prediction shown at the bottom.
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functions with multiple behavioural regimes. As discussed in

Ref. [44] the robust Bayesian committee machine is a useful tool for

doing this within a Bayesian framework.

A measured set of wind speed and power output data collected

via a SCADA system has been used to demonstrate the usage of

these approaches for modelling wind turbine power curves. The

wind turbine power curve is seen to exhibit nonlinear behaviour

and heteroscedastic noise processes. It is shown how the power

curve can be transformed to approach a zero-mean space via a pre-

learnt mean function. The hyperbolic tangent function is used in

this work since it ensures smoothness of the function to be learnt

by the GP in the transformed space. Fitting the data in this space via

either the homoscedastic or heteroscedastic GP leads to nearly

identical NMSE scores indicating that the mean fits of the models

are very similar. The models of the full power curves for both the

homoscedastic and heteroscedastic GPs and for both training and

testing data are found to be 0.81 d heuristically this represents a

“very good” fit as the NMSE can be thought of as similar to a per-

centage error.

The move to heteroscedastic modelling of power curves,

although having little effect on the mean prediction quality of the

model and leads to far better quantification of the variance in the

data. This is reflected in the likelihood scores of the predictions. The

joint log likelihood of the predictions for both the training and

testing data increase by over 50% whenmoving the heteroscedastic

model. It is also seen that visually, the variance in the data is

captured far better (Fig. 10).

In this work, it has been shown that the wind turbine power

curve is well suited to being modelled via a heteroscedastic GP

regression and the distributed sparse variational heteroscedastic

GP is a powerful and expressive model with which to do this. The

use of this model naturally handles the heteroscedastic noise pre-

sent in the data, automatically returns predictions as the (approx-

imate) distribution over possible outputs, and avoids the risk of

overfitting d present in high-order polynomial models. Therefore,

the use of this model represents a good choice should a user wish to

accurately model the power curve of a wind turbine (with quan-

tification of the uncertainty) and becomes more valuable as the

probabilistic outputs are carried into further calculations.

As previously discussed, in possession of this probabilistic

model, it is now possible to refine further analyses. This includes

better quantification of uncertainty in SHM applications leading to

reductions in false alarms and increased sensitivity to damage. It

also provides important information for making macro-level de-

cisions about the turbine or farm. This process could include the

propagation of distributions over wind speed to give a distribution

over expected power which can be used for better financial plan-

ning or for grid-level power management.

4.1. Future work

While the approach adopted in this paper has been seen to be

effective at modelling the behaviour of awind turbine power curve,

it opens up a number of avenues of further investigation. It has been

observed that, despite the mean predictions being consistent with

the physical behaviour of the wind turbine, the predictive variance

of the model places probability mass above the maximum power

output of the turbine. This is a consequence of considering the

variance of the prediction to be symmetric around the mean. While

it would be possible to truncate this distribution above the

maximum rated output, future work into modifications of the

likelihood function could lead tomore statistically robust solutions.

It is also beneficial to consider if the parameters of the mean

function would be better learnt inside the GP framework rather

than applying the transformation into the zero-mean space before

learning the (hyper)-parameters of the GP. Finally, it will be valu-

able in future to demonstrate the propagation of the predictive

variance of the model into further analyses whichmay benefit from

a Bayesian treatment. For example, to predict distributions over

expected income from a particular turbine, or to enhance previ-

ously presented damage detection strategies.

In conclusion, the move towards nonparametric modelling of

wind turbine power curves, allows the use of probabilistic models

which offer robust and accurate mean predictions, as well as

automatic quantification of uncertainty. The use of these models

opens up better understanding of the uncertainty of the power

output, of the turbine and avoids issues in overfitting that may

occur in parametric models. For this reason, the use of hetero-

scedastic Gaussian Process models is a powerful and sensible

approach moving forward.
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