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CD4+ follicular helper T (Tfh) cells have been shown to be critical for the activation of germinal center (GC) B-cell

responses. Similar to other infections, Plasmodium infection activates both GC as well as non-GC B cell responses.

Here, we sought to explore whether Tfh cells and GC B cells are required to eliminate a Plasmodium infection. A

CD4 T cell-targeted deletion of the gene that encodes Bcl6, the master transcription factor for the Tfh program, re-

sulted in complete disruption of the Tfh response to Plasmodium chabaudi in C57BL/6mice and consequent disrup-

tion of GC responses and IgG responses and the inability to eliminate the otherwise self-resolving chronic P.

chabaudi infection. On the other hand, and contrary to previous observations in immunization and viral infection

models, Signaling Lymphocyte Activation Molecule (SLAM)-Associated Protein (SAP)-deficient mice were able to

activate Tfh cells, GC B cells, and IgG responses to the parasite. This study demonstrates the critical role for Tfh

cells in controlling this systemic infection, and highlights differences in the signals required to activate GC B cell re-

sponses to this complex parasite compared with those of protein immunizations and viral infections. Therefore,

these data are highly pertinent for designing malaria vaccines able to activate broadly protective B-cell responses.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Follicular helper T cells (Tfh cells) are a particular subpopulation of

CD4+ T cells that is critically required for the activation of follicular B

cells. Since their identification as a discrete CXCR5+ subset specialized

in collaborating with B cells (Schaerli et al., 2000; Breitfeld et al., 2000;

Kim et al., 2001), and the identification of the repressor Bcl6 as themas-

ter regulator transcription factor of this subset (Johnston et al., 2009;

Nurieva et al., 2009; X. Liu et al., 2009), a large body of research has

helped to understand their activation requirements and the differential

signals underlying their communication with B cells (Crotty, 2014;

Vinuesa et al., 2016). Both soluble factors (i.e. cytokines) and cell surface

molecules have been shown to act in parallel to orchestrate this com-

munication. Moreover, several of these signals have been proposed as

candidate targets for immunotherapeutic interventions to treat diseases

in which B-cell responses are relevant (Hu et al., 2013; Spolski and

Leonard, 2014). However, the relative impact of these different types

of signals on the outcome of infection or disease remains poorly

explored.

The Signaling Lymphocytic Activation Molecule (SLAM)-Associated

Protein (SAP) is a small intracellular adaptor protein, which interacts

with the cytoplasmic tails of the SLAM family of cell surface receptors

and mediates signaling downstream of these receptors (Cannons et al.,

2011). Mutations in SAP were originally associated with most cases of

X-linked lymphoproliferative syndrome (Cannons et al., 2011). One

outstanding function of SAP is to mediate signaling leading to the stable

long-duration contact of T and B cells (Qi et al., 2008). This physical in-

teraction between T and B cells, tightly regulated by SAP, has been

shown to be critical for the activation of germinal center (GC) B-cells

(Qi, 2012), and the activation of Tfh cells in some models (Cannons et

al., 2010; Deenick et al., 2010; Linterman et al., 2011).

The B-cell response to the blood stages of Plasmodium, the protozoan

parasite that causes malaria, is thought to be important for protective

immunity in human infections (Cohen et al., 1961; Conway et al.,

2000; Fowkes et al., 2010; Osier et al., 2008; Sabchareon et al., 1991).

B cells and antibodies are also necessary for the elimination of this

stage of infection in experimental mouse models (Burns et al., 1997;

von der Weid et al., 1996); thus, these models allow an examination

of the relative importance of different Tfh-derived signals in the control

of infection. Dysfunctional Tfh responses have been described in chil-

dren exposed to P. falciparum, which are thought to be responsible for

impaired development of protective B cell-responses (Obeng-Adjei et

al., 2015). P. berghei infection in mice inhibits Tfh differentiation (Ryg-

Cornejo et al., 2015), whereas boosting of Tfh responses inmice by ther-

apeutic interventions has been shown to accelerate the control of

chronic P. chabaudi infection (Butler et al., 2012). The critical signals
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required for Tfh activation to Plasmodium infection have also begun to

emerge. OX40, PD-1 and ICOS cell surfacemoleculeswere shown to reg-

ulate Tfh activation during non-lethal P. yoelii and P. chabaudi infections

(Zander et al., 2015;Wikenheiser et al., 2016).We have recently shown

that IL-21-producing CD4+ T cells, ofwhich a substantial proportion has

a Tfh cell phenotype, are required to activate IgG responses to P.

chabaudi and to control the chronic phase of this infection (Pérez-

Mazliah et al., 2015). Interestingly, acute gamma herpes virus co-infec-

tion leads to loss of control of an otherwise non-lethal P. yoelii infection,

and this is associatedwith a disruption of the Tfh cell response (Matar et

al., 2015).

Despite these important advances in our knowledge of Tfh cell re-

sponses, a direct link between Tfh cell responses and the control of Plas-

modium infection remains to be demonstrated, and the relative impact

of the different Tfh-derived signals (i.e. cell surface molecular interac-

tions vs soluble factors) on the control of the infection has not been ex-

plored in detail. Moreover, despite the substantial differences in

infections initiated by artificial versus natural mosquito transmission

(Spence et al., 2013), our knowledge of T- and B-cell responses during

experimental erythrocytic malaria models has been exclusively gener-

ated using artificial injection of infected blood to initiate the infection,

thus obviating the full life cycle in the mouse. Here, using both blood

transmission as well as a model of natural mosquito transmission, we

compared the relative requirements of Tfh responses overall, together

with the individual requirements of SAP and IL-21R on the control of

Plasmodium chabaudi AS infection, a rodent model which presents

both an acute and chronic phase (Achtman et al., 2007).

We demonstrate a critical role for Tfh cells in the elimination of the

chronic phase of Plasmodium infection initiated by both, blood transmis-

sion, and natural mosquito transmission. In addition, and contrary to

previous observations in immunization studies, and virus and helminth

infections (Crotty et al., 2003; Cannons et al., 2006; Kamperschroer et

al., 2006; Crotty et al., 2006; McCausland et al., 2007; Moyron-Quiroz

et al., 2009; Yusuf et al., 2010;Morra et al., 2005), we show that SAP-de-

ficient mice are able to activate Tfh and GC B cells, and an IgG response

to the parasite. Finally, we demonstrate a hierarchy of immune re-

sponses needed to control the magnitude of the chronic infection,

with IL-21 signaling being the most significant requirement followed

by Tfh cells and SAP. Our data demonstrate the need for a fully function-

ing Tfh response for elimination of blood-stage Plasmodium infection,

and highlights substantial differences in the signals required to activate

Tfh andGC B cell responses to this complex parasite compared to immu-

nizations and other infection models.

2. Materials and Methods

2.1. Ethical Statements

All scientific experiments involving procedures on mice were ap-

proved by the Ethical Review Panel of the MRC National Institute for

Medical Research (NIMR). They were performed accordingly to the UK

National guidelines of the Animals (Scientific Procedures) Act 1986

under the license reference number PPL 70/8326 authorized and

granted by the British Home Office.

2.2. Mice

C57BL/6, Sh2d1a−/− [Sh2d1atm1Cpt (Wu et al., 2001),

RRID:MGI:3576735], CD4-Cre+/− [Tg(Cd4-cre)1Cwi (P. P. Lee et al.,

2001), RRID:MGI:3691126], Bcl6fl/fl [Bcl6tm1.1Mtto (Kaji et al., 2012)],

CD4-Cre+/−Bcl6fl/fl (RRID:MGI:5461330) and Rag2−/− [Rag2tm1Fwa

(Shinkai et al., 1992), RRID:MGI:3617415] mouse strains were bred in

the specific pathogen-free facilities of the Mill Hill Laboratory of the

Francis Crick Institute, and were backcrossed for at least 10 generations

onto NIMR C57BL/6 mice. For experimental use, 6–12 weeks old female

mice were housed in conventional facilities with sterile bedding, food

and water under reversed light conditions (dark: 7.00 h to 19.00 h).

2.3. Infections

Plasmodium chabaudi chabaudi (AS) was originally obtained from

DavidWalliker, University of Edinburgh. Infectionswere initiated by in-

traperitoneal injection of 105 infected red blood cells, or by the bites of

infected A. stephensi mosquitoes as previously described (Spence et al.,

2012). Blood-stage parasitemias were monitored by Giemsa-stained

thin blood smears (Langhorne et al., 1989).

2.4. Flow Cytometry

Spleens were dissected and mashed through 70 μm filter mesh in

Hank's Balanced Salt Solution (HBSS, Gibco, Invitrogen) to generate sin-

gle cell suspensions. Spleens were treated in RBC lysis buffer (Sigma)

and remaining cells resuspended in complete Iscove's Modified

Dulbecco's Medium (IMDM supplemented with 10% fetal bovine

serum (FBS) Serum Gold (PAA Laboratories, GE Healthcare), 2 mM

L-glutamine, 0.5 mM sodium pyruvate, 100 U penicillin, 100 mg strep-

tomycin, 6 mM Hepes buffer, and 50 mM 2-ME (all from Gibco,

Invitrogen). Viable cells were counted based on trypan blue (Sigma) ex-

clusion in a hemocytometer. 2 × 106 viable cells were distributed to

each well of a 96-well plate (Nunc) and incubated in the presence of a

monoclonal anti-mouse CD16/32 antibody (Unkeless and Unkeless,

1979, BioLegend Cat# 101318 RRID:AB_2104156) to block Fc-mediated

binding of antibodies for 20 min at 37 °C, 20 min at 4 °C.

To identify Tfh cells, cells were first incubated with biotin anti-

CXCR5 (BD Biosciences Cat# 551960 RRID:AB_394301) in complete

IMDM (BD Pharmingen), washed twice with a staining buffer (1× PBS

(pH = 7.2–7.4), 2% FBS, 0.01% Sodium azide), resuspended in 1× PBS

and incubated with appropriate dilutions of PE streptavidin, APC-Cy7

anti-CD4 (BioLegend Cat# 100414 RRID:AB_312699), PE-Cy7 anti-PD-

1 (BioLegend Cat# 109110 RRID:AB_572017), Pacific Blue anti-CD3,

PerCP-Cy5.5 or FITC anti-CD44 (BioLegend) for 30–40 min at 4 °C. A

commercial kit (eBioscience) was used for intra-nuclear detection of

Bcl6, following manufacturer's instructions, and using the anti-human

and mouse Bcl-6 antibody conjugated to Alexa Fluor 647 (BD Biosci-

ences Cat# 561525 RRID:AB_10898007).

To identify germinal center Tfh and B cells, spleen cellswere incubat-

ed with appropriate dilutions of PerCP-Cy5.5 anti-CD3 (BioLegend Cat#

100328 RRID:AB_893318), PE anti-CD4 (BioLegend Cat# 100408

RRID:AB_312693), PE-Cy7 anti-CD45R/B220 (BioLegend Cat# 103222

RRID:AB_313005), APC-Cy7 anti-CD19 (BioLegend Cat# 115530

RRID:AB_830707), APC anti-CD38 (BioLegend Cat# 102712 RRID:AB_

312933) FITC anti-GL-7 (BioLegend Cat# 144604 RRID:AB_2561697)

and BV421 anti-IgD (BioLegend Cat# 405725 RRID:AB_2562743) for

30–40 min at 4 °C. Germinal center B cells were identified by combined

expression of CD19 and B220, low expression of IgD and CD38, and high

expression of GL-7. Tfh cells were identified by the combined expres-

sion of CD3, CD4 and GL-7. T-B cell conjugates were studied ex vivo by

flow cytometry as previously described (Reinhardt et al., 2009). Conju-

gates were identified by the combined expression of CD3, CD4, CD19

and B220, and identified as doublets based on FSC-A vs FSC-W.

IL-21 detection by flow cytometrywas done by intracellular staining

as previously described (Pérez-Mazliah et al., 2015).

All cells were fixed with 2% paraformaldehyde for 15 min at 4 °C,

washed and stored in the staining buffer at 4 °C until acquisition. Cells

were acquired on BD FACSVerse, BD LSRII or BD LSRFortessa X-20 (BD

Biosciences) flow cytometers. Dead cells were excluded by staining

with LIVE/DEAD Aqua (Invitrogen) prior fixation. Fluorescence-minus-

one (FMO) controls were used to set the thresholds for positive/nega-

tive events. Analysis was performed with FlowJo software version 9.6

or higher (Tree Star). Doublets based on side scatter light and forward
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scatter light Area vs Width were routinely excluded from the analysis,

with the exemption of the assay to study T-B cell conjugates, in which

doublets were deliberated included in the analysis.

2.5. Histology

Spleens were dissected and fixed for 24 h in 10% neutral buffered

formalin (Sigma), embedded in wax, sectioned (4 μm), and stained by

incubating with rat Anti-mouse CD45R/B220 (BD Biosciences Cat#

550286 RRID:AB_393581), rabbit anti CD3G (Abcam Cat# ab108996

RRID:AB_10862885), biotinylated peanut agglutinin (PNA, Vector Labo-

ratories Cat# B-1075 RRID:AB_2313597), followed by incubation with

goat anti-rat IgG alexa fluor 647 (Molecular Probes Cat# A-21247 also

A21247 RRID:AB_141778), goat anti-rabbit IgG alexa fluor 488 (Molec-

ular Probes Cat# A-11008 also A11008 RRID:AB_143165), streptavidin

alexa fluor 555 (ThermoFisher), and DAPI (ThermoFisher). Stained sec-

tionswere scanned on a ZEISS Axio Scan.Z1with ZEN 2 software (Zeiss).

Area, perimeter and number of PNA+ GC were determined with Fiji

(Schindelin et al., 2012).

2.6. P. chabaudi-specific ELISAs

Serum sampleswere obtained periodically after P. chabaudi infection

by bleeding the mice from the tail vein. Whole parasite lysate was gen-

erated and used in ELISAs to measure specific IgM, IgG and IgG sub-

classes, as previously described (Quin and Langhorne, 2001), with the

SBA Clonotyping System-C57BL/6-HRP (SouthernBiotech Cat# 5300-

05B). A pool of plasma from NIMR C57BL/6 mice challenged at least

six times with P. chabaudi was used as a standard for each isotype, and

defined as 1000 arbitrary units (AU). The amounts of each isotype

were calculated in AU derived from this standard, whichwas run in par-

allel with every experimental sample assayed.

2.7. Statistical Analysis

Statistical analyses were performed using Mann Whitney U test,

Kruskal-Wallis test with Dunn's multiple comparisons test, two-way

ANOVA with Tukey's multiple comparisons test, or Chi-square test on

Prism v7 (GraphPad). P b 0.05 was accepted as a statistically significant

difference.

3. Results

3.1. Bcl6fl/fl and SAP-deficient Mice; Two Different Models to Explore the

Role of Tfh Responses During P. chabaudi Infection

The repressor Bcl6 has been identified as the master transcription

factor regulating the Tfh cell program (Johnston et al., 2009; Nurieva

et al., 2009; X. Liu et al., 2009). In addition, SAP (encoded by the

Sh2d1a gene) has been shown to signal directly in CD4+ T cells and to

regulate Tfh cell activation in some immunization models (Cannons et

al., 2010; Deenick et al., 2010; Linterman et al., 2011). We therefore ex-

plored the effects of inactivation of the Bcl6 gene in T cells [Bcl6fl/flCD4-

cre+/− (Kaji et al., 2012)] or the Sh2d1a gene [Sh2d1a−/− (Wu et al.,

2001), encoding SAP] on the ability to control a chronic P. chabaudi

blood-stage infection.

Bcl6fl/flCD4-cre+/−mice, deficient in Tfh cell responses to immuniza-

tions (Kaji et al., 2012), showed no alteration in the control of the acute

phase of infection up to day 25, compared with infections in Bcl6wt/

wtCD4-cre+/− and Bcl6fl/fl wild-type (wt) control mice (Fig. 1a). Acute

stage parasitemias were reduced to 0.05% or lower in the Bcl6fl/flCD4-

cre+/− as well as in their respective wt control mice. However, Bcl6fl/

flCD4-cre+/−mice failed to control or eradicate the chronic phase of in-

fection, and showed parasitemias variably around 1% iRBC for the dura-

tion of the experiment (parasitemias of individual mice are shown in

right hand graph of Fig. 1a). During this time, wt mice had reduced

parasitemias to b0.001% (i.e. below detection limit, Fig. 1a). Important-

ly, similar patterns of acute and chronic infection were also observed in

Bcl6fl/flCD4-cre+/−mice infected viamosquito bites rather than by direct

injection of iRBC (Fig. 1b).

The lack of SAP had a more moderate, yet detectable, effect on the P.

chabaudi infection. The acute infection in both Sh2d1a−/− andwtC57BL/

6 mice was similarly reduced to b0.1% by day 18 (Fig. 2a). Although

chronic parasitemias were initially higher in all Sh2d1a−/− mice than

in wt mice, parasitemias were very variable between individual mice.

Eventually by 110 days p.i. all wt C57BL/6 mice had undetectable

parasitemias (i.e. b0.001%), and only 2/8 of the Sh2d1a−/−mice showed

detectable parasitemias (Fig. 2a), suggesting clearance of infection in all

wt controls and the majority of Sh2d1a−/−mice. However, a technique

more sensitive to detect parasitemia, i.e. transfer of 100 μl of blood from

Sh2d1a−/− and wt mice at this time into Rag2−/−mice, demonstrated

that 50% of these Sh2d1a−/− mice were still sub-patently infected,

Fig. 1. Bcl6 expression on T cells is required for the control of chronic P. chabaudi infection. Bcl6fl/flCD4-cre+/− and their respectivewt control mice were infected with P. chabaudi via intra

peritoneal injection of 105 iRBC (a), or bites from P. chabaudi-infected mosquitoes (b), and parasitemias were periodically monitored by giemsa-stained thin blood smears. The course of

acute (left column) and chronic (right column) infection is displayed. The acute phase is displayed asmedian+ range,while curves corresponding to individualmice are displayed for the

chronic phase. Data are representative of at least two independent experiments andwere obtained in groups of 5–16mice per time point. Statistical significancewas obtained usingMann

Whitney U test or Kruskal-Wallis test.
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whereas confirming that allwt C57BL/6mice had cleared their infection

(Table 1). Thus, these data demonstrate that although there is signifi-

cant control of the chronic infection, SAP signaling is required for the

complete elimination of the P. chabaudi infection. Importantly, a similar

pattern of chronic infection was observed inmice infected via mosquito

bites rather than by direct injection of iRBC (Fig. 2b).

Altogether, these data demonstrate that the inactivation of the Bcl6

gene in T cells, encoding the Tfh program, has a dramatic effect in the

control of chronic Plasmodium infection, and unexpectedly more pro-

nounced compared to the lack of SAP signaling.

3.2. Bcl6, but not SAP, is Required for the Initial Tfh Cell Response to P.

chabaudi Infection

As both Bcl6 and SAP have been shown to be required for fully func-

tional Tfh responses, we then studied the activation of Tfh cell responses

to P. chabaudi in Bcl6fl/flCD4-cre+/− and Sh2d1a−/−mice.We have previ-

ously shown that the Tfh cell response to P. chabaudi peaks around days

7–9 post-infection in the spleen of wt C57BL/6 mice (Pérez-Mazliah et

al., 2015). Therefore, Tfh cells were enumerated in the spleen at 0, 8

and 14 days post-infection in Bcl6fl/flCD4-cre+/−, Sh2d1a−/− andwt con-

trol mice (Fig. 3).

As expected, targeted deletion of the Bcl6 gene in T cells completely

abrogated Tfh cell activation in response to P. chabaudi; no CD44-
highCXCR5+PD-1high Tfh cells were detected above background levels

in the spleen of Bcl6fl/flCD4-cre+/− mice during P. chabaudi infection

(Fig. 3a–b). Tfh cells can be alternatively identified by the combined ex-

pression of CXCR5 and Bcl6 (Choi et al., 2011). Using this alternative

phenotypic definition of Tfh, we confirmed no expansion of

CXCR5+Bcl6+ Tfh cells in Bcl6fl/flCD4-cre+/−mice during P. chabaudi in-

fection (Fig. 3 c–d). In contrast to Bcl6fl/flCD4-cre+/− mice, Sh2d1a−/−

mice showed nomajor alterations in the activation of Tfh cell responses

to P. chabaudi infection. These mice showed an expansion of CD44-
highCXCR5+PD-1high Tfh cells (Fig. 3 e–f) and CXCR5+Bcl6+ Tfh cells

(Fig. 3 g–h) in response to P. chabaudi infection, comparable to the levels

detected in wt C57BL/6 control mice [we only detected a small, yet sig-

nificant, reduction of the counts of CXCR5+Bcl6+ cells in Sh2d1a−/−

mice at day 8 post infection (Fig. 3H)]. This was independent of the

route of infection, as Sh2d1a−/− mice infected via mosquito bites

also activated a CD44highCXCR5+PD-1high Tfh cell response comparable

to the levels detected in similarly infected wt C57BL/6 control mice

(Fig. S1).

In agreementwith previous publications (Wu et al., 2001; Czar et al.,

2001; Kaji et al., 2012), neither Bcl6fl/flCD4-cre+/−, nor Sh2d1a−/−

mouse strains showed alterations in the counts of CD4+ and CD8+ T

cells, B cells and NK cells in the spleen prior to infection (Fig. S2). In ad-

dition, neither Bcl6fl/flCD4-cre+/−, nor Sh2d1a−/−mouse strains showed

significant alterations in the activation of T-bet+CD4+ Th1 responses

during this strong Th1-biased P. chabaudi infection (Fig. S3).

These data demonstrate that the initial Tfh cell response to P.

chabaudi can be activated even in the absence of SAP signaling, in con-

trast to infected Bcl6fl/flCD4-cre+ mice, in which Tfh cells were lacking.

3.3. The Lack of Tfh Cells and Deficiency of SAP Differentially Impact the Ac-

tivation of GC B-cells in Response to P. chabaudi Infection

We have previously shown that robust GC B-cell responses to P.

chabaudi infection in the spleen of C57BL/6 mice are readily detected

at days 14–40 p.i. (Pérez-Mazliah et al., 2015; Achtman et al., 2003). In

the absence of Tfh-cell responses, Bcl6fl/flCD4-cre+/−mice were unable

to activate a GC B-cell response to P. chabaudi infection, while robust

GC B-cell responses were detected in both Bcl6wt/wtCD4-cre+/− and

Bcl6fl/fl control mice by day 35 p.i, as determined by flow cytometry

(Fig. 4 a–b). It has previously been shown that SAP-deficient mice are

unable to activate GC-B cell responses to protein antigens and Influenza

virus, LCMV and helminth infections (Crotty et al., 2003; Cannons et al.,

2006; Kamperschroer et al., 2006; Crotty et al., 2006; McCausland et al.,

2007;Moyron-Quiroz et al., 2009; Yusuf et al., 2010;Morra et al., 2005).

Fig. 2. Control of chronic P. chabaudi is altered by the absence of SAP signaling. Sh2d1a−/− and C57BL/6wt control mice were infectedwith P. chabaudi via intra peritoneal injection of 105

iRBC (a), or bites from P. chabaudi-infected mosquitoes (b), and parasitemias were periodically monitored by giemsa-stained thin blood smears. The course of acute (left column) and

chronic (right column) infection is displayed. The acute phase is displayed as median + range, while curves corresponding to individual mice are displayed for the chronic phase. Data

are representative of at least two independent experiments and were obtained in groups of 7–8 mice per time point. Statistical significance was obtained using Mann Whitney U test.

Table 1

Number of parasitemic C57BL/6 and Sh2da1−/− blood donors (N100 p.i.), and parasitemic

Rag2−/− blood recipients.

Parasitemic donor (before

blood transference)a
Parasitemic Rag2−/− recipient

(after blood transference)b

C57BL/6 0/8 (0%) 0/8 (0%)

Sh2da1−/− 2/8 (25%) 4/8 (50%)

a χ2, P N 0.05 (ns).
b χ2, P b 0.05.
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Fig. 3.Tfh cell responses in P. chabaudi infection are abrogated in Bcl6fl/flCD4-cre+/− but not in SAP-deficientmice. Bcl6fl/flCD4-cre+/− and Sh2d1a−/−micewere infectedwith P. chabaudi via

intra peritoneal injection of 105 iRBC, and the occurrence of Tfh cells in the spleenwas determined by flow cytometry at days 0, 8 and 14 post-infection. (a) Representative plots of naïve

(top row) and infected (8 days post-infection, bottom row) Bcl6fl/flCD4-cre+/− andwt controlmice. Gates show frequency of CD3+CD4+CD44hi cells expressing CXCR5 and PD-1. (b) Total

numbers of Tfh cells, defined as CD3+CD4+CD44hiCXCR5hiPD-1hi, inBcl6fl/flCD4-cre+/− andwt controlmice. (c) Representative plots of naïve (top row) and infected (8 days post-infection,

bottom row) Bcl6fl/flCD4-cre+/− and wt control mice. Gates show frequency of CD3+CD4+ cells expressing CXCR5 and Bcl6. (d) Total numbers of Tfh cells, defined as

CD3+CD4+CXCR5+Bcl6+, in Bcl6fl/flCD4-cre+/− and wt control mice. (e) Representative plots of naïve and infected Sh2d1a−/− and wt C57BL/6 control mice. (f) Total numbers of Tfh

cells, defined as CD3+CD4+CD44hiCXCR5hiPD-1hi, in Sh2d1a−/− and wt C57BL/6 control mice. (g) Representative plots of naïve and infected Sh2d1a−/− and wt C57BL/6 control mice.

(h) Total numbers of Tfh cells, defined as CD3+CD4+CXCR5+Bcl6+, in Sh2d1a−/− and wt C57BL/6 control mice. Bars represent median values. Data are representative or pooled from

at least two independent experiments and were obtained in groups of 3–8 mice per time point. Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple

comparisons test. ND: Not done.
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Fig. 4.Germinal Center B-cell responses to P. chabaudi infection are abrogated in Bcl6fl/flCD4-cre+/−mice, and reduced in SAP-deficient mice. Bcl6fl/flCD4-cre+/− and Sh2d1a−/−mice were

infectedwith P. chabaudi via intra peritoneal injection of 105 iRBC, and the occurrence of GC B cells in the spleenwas determined byflow cytometry at days 0, 15 and 35 post-infection, and

by histology at days 0 and 35 post-infection. (a) Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) Bcl6fl/flCD4-cre+/− and wt control mice. Gates

show frequency of B220+CD19+ IgDneg B cells expressing low levels of CD38 and high levels of GL-7. (b) Total numbers of GC B cells in Bcl6fl/flCD4-cre+/− and wt control mice. (c)

Representative plots of naïve and infected Sh2d1a−/− and wt C57BL/6 control mice. (d) Total numbers of GC B cells in Sh2d1a−/− and wt C57BL/6 control mice. Bars represent median

values. (e) Representative spleen sections of infected (d35) Sh2d1a−/− and wt C57BL/6 control mice; the white arrows point at individual examples of PNA+ GC structures. (f)

Cumulative data displaying area, perimeter and number of GC structures determined by histology in spleen sections of infected (d35) Sh2d1a−/− and wt C57BL/6 control mice. Data

are representative or pooled from at least two independent experiments and were obtained in groups of 3–8 mice per time point. Statistical significance was obtained using Student's

t-test or Two-Way ANOVA with Tukey's multiple comparisons test. ND: Not done.
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Surprisingly, although the number of GC B-cells activated in the spleen

of infected SAP-deficient mice was reduced compared withwt C57BL/6

controls, these mice were still able to activate a distinctive GC B-cell re-

sponse to P. chabaudi infection, readily detectable by flow cytometry by

day 35 p.i. (Fig. 4 c–d). In accordance, GC structureswere readily detect-

ed in spleen sections of SAP-deficient mice by day 35 p.i. (Fig. 4 E),

although at reduced numbers and size compared withwt C57BL/6 con-

trols (Fig. 4 F).

These data show that GC B-cell responses take place in the absence

of SAP, and highlight substantial differences in the signaling network

leading to GC activation in response to Plasmodium compared with GC

responses after immunizations or in other infection models.

Fig. 5.Germinal center Tfh-cell responses to P. chabaudi infection are abrogated in Bcl6fl/flCD4-cre+/−mice, and reduced in SAP-deficientmice. Bcl6fl/flCD4-cre+/− and Sh2d1a−/−micewere

infectedwith P. chabaudi via intra peritoneal injection of 105 iRBC, and the occurrence of GC Tfh cells in the spleen defined as CD3+CD4+GL-7+was determined by flow cytometry at days

15 and 35 post-infection. (a) Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) Bcl6fl/flCD4-cre+/− and wt control mice. Gates show frequency of

CD3+CD4+ T cells expressing GL-7. (b) Total numbers of GC B cells in Bcl6fl/flCD4-cre+/− and wt control mice. (c) Representative plots of naïve and infected Sh2d1a−/− and wt C57BL/6

control mice. (d) Total numbers of Tfh cells in Sh2d1a−/− and wt C57BL/6 control mice. Bars represent median values. (e) Representative spleen sections of infected (d35) Sh2d1a−/−

and wt C57BL/6 control mice; the white arrows point at individual examples of CD3+ T cells within PNA+ GC structures. Data are representative or pooled from at least two

independent experiments and were obtained in groups of 3–8 mice per time point. Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple comparisons

test. ND: Not done.
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3.4. The GC Tfh Cell Responses to P. chabaudi are Affected, but not Entirely

Abrogated, in the Absence of SAP Signaling

The activation of a particular subset of CD4+ Tfh cells which homes

into germinal centers (GC Tfh), has been shown to follow the initial ac-

tivation of Tfh-cell responses, to express the germinal centermarker GL-

7, to be critical for GC B-cell activation, and to require SAP signaling for

its activation (Yusuf et al., 2010).We therefore examined the activation

of GC Tfh cells in the spleen during P. chabaudi infection.

As anticipated by the absence of early Tfh responses to P. chabaudi

infection in Bcl6fl/flCD4-cre+/− mice, no GC Tfh cells were detected

above background level at any time point post P. chabaudi infection in

these mice (Fig. 5 a–b). On the other hand, although reduced compared

towt C57BL/6 controls, a GC Tfh cell response to P. chabaudiwas readily

detected by flow cytometry by day 35 p.i. in Sh2d1a−/−mice (Fig. 5 c–d).

The occurrence of GC Tfh cells in the absence of SAP was further con-

firmed by the detection of T cells inside the GC structures in the spleen,

as determined by histology (Fig. 5 e–f).

These data demonstrate that, although the initial activation of Tfh-

cell responses to P. chabaudi showed no major alterations in SAP-defi-

cientmice, this signal is indeed required later in the infection for full ac-

tivation of a GC Tfh-cell response, and further support a requirement for

fully functional Tfh-dependent B-cell activation to eradicate Plasmodium

infection.

3.5. The B-T Cell Interactions in the Spleen are Affected, but not Entirely

Abrogated, in the Absence of SAP Signaling During P. chabaudi Infection

SAP signaling is required for stable B-Tfh cell interactions, which are

thought to be necessary for activation of GC B-cell responses (Qi, 2012).

Given the unexpected presence of GC Tfh and GC B cells in the absence

of SAP signaling in the P. chabaudi infection, we askedwhether stable B-

T cell conjugates could form in the spleen during P. chabaudi infection.

To study this, we used a method previously described (Reinhardt et

al., 2009) to detect ex vivo stable B-T cell conjugates by flow cytometry

using CD3, CD4, CD19 and B220 markers. CD3+CD4+CD19+B220+

conjugates were approximately twice the size of single CD3+CD4+

or CD19+B220+ cells based on FSC detected by flow cytometry during

P. chabaudi infection (Fig. 6a). The numbers of B cell-CD4+ T cell

conjugates were not significantly altered in Sh2d1a−/−mice compared

with wt C57BL/6 controls either at day 15 or 35 p.i. (Fig. 6 b–c).

However, the number of conjugates containing GC B cells (CD3+CD4+

CD19+B220+CD38+GL-7+), at day 35 p.i., were significantly lower

in Sh2d1a−/− mice compared with wt C57BL/6 controls at this time

(Fig. 6 d–e). Albeit reduced, these interactions were still able to occur in

SAP-deficient mice, as the number of GC B-CD4+ T cell conjugates in

these mice was significantly higher at day 35 p.i. compared with back-

ground level (Fig. 6 d–e).

As expected, Bcl6fl/flCD4-cre+/−mice showed a significantly reduced

number of B-T cell conjugates comparedwith Bcl6fl/fl controlmice at day

35 p.i. (Fig. 6 f–g), and no GC B-CD4+ T cell conjugates above back-

ground level at any time point studied (Fig. 6 h–i).

Thus, the lack of Tfh-cell responses render mice unable to sustain

stable GC B-CD4+ T cell interactions, while the lack of SAP signaling im-

pairs, but does not entirely abrogate, these important interactions.

3.6. The Lack of Tfh Cells and Deficiency of SAP Differentially Impact the

Activation of P. chabaudi-specific IgG Responses

The GC response is a major source of antibody class switching.

Therefore, we hypothesized that the differential impact in GC responses

to P. chabaudi due to absence of SAP signaling or Tfh responses altogeth-

ermight be translated in a differential impact on the IgG response to the

parasite. This, in turn, could explain the differential capacity of Bcl6fl/

flCD4-cre+/− and Sh2d1a−/−mice to control the infection. In previous

works, we have extensively characterized the kinetics and isotypes of

P. chabaudi-specific antibody responses in C57BL/6 mice (Pérez-

Mazliah et al., 2015; Achtman et al., 2007; Quin and Langhorne, 2001;

Ndungu et al., 2009). The P. chabaudi-specific IgM response is not de-

tected in circulation in C57BL/6 mice above background level before

the first two weeks post-infection, whereas the P. chabaudi-specific

IgG response in circulation, as well as MSP1-specific IgG antibody se-

creting cells in the spleen, are not detected above background level be-

fore the first three weeks post-infection. Therefore, we studied the P.

chabaudi-specific IgM and IgG responses in Bcl6fl/flCD4-cre+/− and

Sh2d1a−/−mice from day 35 p.i. onwards.

In the absence of Tfh cells and GC B-cells, Bcl6fl/flCD4-cre+/− mice

were unable to produce all subtypes of P. chabaudi-specific IgG antibod-

ies (Fig. 7 a, c, e and g), whereas P. chabaudi-specific IgM responseswere

not altered up to day 35 p.i., and still detectable at day 126 p.i., in these

mice (Fig. 7i). P. chabaudi-specific IgG responses were more variable in

Sh2d1a−/− mice; IgG2c antibodies were the most affected, while P.

chabaudi-specific IgG1 and IgG3, as well as IgM, showed delayed kinet-

ics in Sh2d1a−/− mice compared with the antibody response of wt

C57BL/6 control mice (Fig. 7 b, d, f, h and j). Therefore, both IgG and

IgM responses were affected, but not completely abrogated by the lack

of SAP signaling.

These data demonstrate that P. chabaudi-specific IgM responses can

still be activated in the absence of Tfh responses, and that even partial

alterations in P. chabaudi-specific IgG responses, as seen in SAP-defi-

cient mice, are associated with reduced capacity to control this

infection.

3.7. What Contributes to the Control of P. chabaudi Infection in the Absence

of Tfh Cells?

Although theBcl6fl/flCD4-cre+/−mice, completely deficient in Tfh cell

andGC B-cell responses, failed to eradicate chronic P. chabaudi infection,

thesemice did not succumb to the infection, similar tomicewith a com-

plete deficiency of B cells do not succumb to P. chabaudi infection (von

derWeid et al., 1996). These data strongly suggest that there is an addi-

tional immune component that, although not being able to eradicate the

infection, is capable of controlling P. chabaudi to some extent.

Wehave previously shown that μMTmice, deficient in B cells, under-

go a dramatic expansion of the number of γδT cells in the spleen in

Fig. 6.Ex vivoflow cytometry analysis of T-B cell conjugates in Bcl6fl/flCD4-cre+/− and SAP-deficientmice during P. chabaudi infection.Bcl6fl/flCD4-cre+/− and Sh2d1a−/−micewere infected

with P. chabaudi via intra peritoneal injection of 105 iRBC, and the occurrence of T-B cell conjugate in the spleenwas analyzed ex vivo byflow cytometry at days 0, 15 and 35 post-infection.

(a) Representative overlay histograms showing FSC-A for CD3+CD4+ T cell singlets, B220+CD19+ B cell singlets, and CD3+CD4+B220+CD19+ T-B cell conjugates, obtained from the

spleen of a wt C57BL/6 control mouse. (b) Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) of Sh2d1a−/− and wt C57BL/6 control mice. Gates

show frequency of CD3+B220+ cells positive for CD19 and CD4. (c) Total numbers of CD3+CD4+B220+CD19+ T-B cell conjugates in Sh2d1a−/− and wt C57BL/6 control mice. (d)

Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) of Sh2d1a−/− and wt C57BL/6 control mice. Gates show frequency of

CD3+CD4+B220+CD19+ T-B cell conjugates expressing low CD38 and high GL-7. (e) Total numbers of CD3+CD4+B220+CD19+CD38loGL-7+ T-B cell conjugates in Sh2d1a−/− and

wt C57BL/6 control mice. (f) Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) of Bcl6fl/flCD4-cre+/− and wt control mice. Gates show

frequency of CD3+B220+ cells positive for CD19 and CD4. (g) Total numbers of CD3+CD4+B220+CD19+ T-B cell conjugates in Bcl6fl/flCD4-cre+/− and wt control mice. (h)

Representative plots of naïve (top row) and infected (35 days post-infection, bottom row) of Bcl6fl/flCD4-cre+/− and wt control mice. Gates show frequency of

CD3+CD4+B220+CD19+ T-B cell conjugates expressing low CD38 and high GL-7. (i) Total numbers of CD3+CD4+B220+CD19+CD38loGL-7+ T-B cell conjugates in Sh2d1a−/− and wt

C57BL/6 control mice. Bars represent median values. Data are representative or pooled from at least two independent experiments and were obtained in groups of 3–8 mice per time

point. Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple comparisons test. ND: Not done.
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response to P. chabaudi infection (von der Weid et al., 1996). Similarly,

Bcl6fl/flCD4-cre+/− mice showed increased number of γδT cells in the

spleen during the chronic phase of infection (Fig. 8 a–b). However,

this was not the case for Sh2d1a−/−mice (Fig. 8 c–d), probably due to

the better control these mice have of the infection compared to Bcl6fl/

flCD4-cre+/−mice.

We have recently shown that IL-21 is critical to activate protective B-

cell responses to Plasmodium infection (Pérez-Mazliah et al., 2015). Sim-

ilar to Bcl6fl/flCD4-cre+/− and Sh2d1a−/−mice, Il21r−/−mice had an ini-

tial course of acute P. chabaudi infection with peak parasitemias at days

8–9 (Fig. 9 a–b). Also, similar to Bcl6fl/flCD4-cre+/− and Sh2d1a−/−mice

and unlike wt C57BL/6 controls, Il21r−/− mice failed to reduce

Fig. 7. Plasmodium chabaudi-specific IgG responses are abrogated in Bcl6fl/flCD4-cre+/−mice, and partially altered in SAP-deficient mice. Bcl6fl/flCD4-cre+/− (left column) and Sh2d1a−/−

(right column) and respective wt control mice were infected with P. chabaudi via intra peritoneal injection of 105 iRBC, and the levels of P. chabaudi-specific IgG1 (a–b), IgG2b (c–d),

IgG2c (e–f), IgG3 (g–h) and IgM (i–j) were determined in serum samples by ELISA. Bars represent median values. Data are pooled from two independent experiments and were

obtained in groups of 3–5 mice per time point. Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple comparisons test.
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parasitemia during the chronic phase, and the infection remained at

levels between 10 and 50% from day 15 p.i. up to the 110 days of the ex-

periment, without mortality [Fig. 9 a–b and (Pérez-Mazliah et al.,

2015)]. These chronic parasitemiaswere notably higher than the chron-

ic parasitemias observed in either Bcl6fl/flCD4-cre+/− and Sh2d1a−/−

mice (Fig. 9 c–d). Thus, intriguingly, it appears that IL-21 has a role

in controlling P. chabaudi infection beyond Tfh-dependent B-cell ac-

tivation. In accordance with this hypothesis, we have previously

shown that the CD4+ T cell compartment producing IL-21 in re-

sponse to P. chabaudi was approximately equally composed of Tfh

and non-Tfh CD4+ T cells, and exclusively detected during acute in-

fection (Pérez-Mazliah et al., 2015). In agreement, despite complete

absence of Tfh cell activation, IL-21-producing CD4+ T cells were still

activated in P. chabaudi-infected Bcl6fl/flCD4-cre+/− mice (Fig. 10).

Moreover, as predicted, the number of IL-21-producing CD4+ T

cells detected at the peak of infection in Bcl6fl/flCD4-cre+/− mice

was reduced to approximately half the amount of these cells in wt

controls, thus showing that the Tfh response represents an impor-

tant, but not the only, source of IL-21 during P. chabaudi infection

(Fig. 10).

In summary, we show that different signals previously implicated in

B-T cell communication differentially impact the control of chronic P.

chabaudi infection, following a gradient: IL-21 deficiency N Tfh deficien-

cy N SAP deficiency.

4. Discussion

Our study formally demonstrates an essential requirement of Tfh

cells to eradicate a chronic systemic Plasmodium infection initiated by

natural vector transmission. In addition, we highlight substantial differ-

ences in the signaling network leading to GC activation in response to

Plasmodium compared to immunizations or other infection models.

The effects of natural transmission by the mosquito in experimental

models have generally been overlooked in studies of immune mecha-

nisms elicited to blood-stage Plasmodium infection. However, immune

responses, in particular B-cell responses, elicited to the less physiologi-

cal injection of Plasmodium-infected red blood cells can differ from

those elicited by natural transmission (Spence et al., 2013). Therefore,

the natural vector route is an important component of the experimental

system for host responses to Plasmodium parasites. Here, we validated

all the responses observed using models of natural mosquito

transmission.

Previous studies both in human and mouse models have shown the

importance of B cell-responses to control Plasmodium infection (Cohen

et al., 1961; Conway et al., 2000; Fowkes et al., 2010; Osier et al.,

2008; Sabchareon et al., 1991; Burns et al., 1997; von der Weid et al.,

1996). The signals required to activate protective B-cell responses to

this infection have recently started to emerge. Tfh cells have been iden-

tified as the critical CD4+ T helper subset required for activation of

Fig. 8.Bcl6fl/flCD4-cre+/−mice have increasednumbers ofγδT cells in the spleen during chronic P. chabaudi infection.Bcl6fl/flCD4-cre+/− and Sh2d1a−/−micewere infectedwith P. chabaudi

via intra peritoneal injection of 105 iRBC, and the number of γδT cells in the spleen was determined by flow cytometry at days 0, 8, 14 and 120 post-infection. (a) Representative plots of

naïve (top row) and infected (14 days post-infection, bottom row) Bcl6fl/flCD4-cre+/− andwt controlmice. Upper right quadrants show frequency of CD3+γδ+ T cells. (b) Total numbers of

γδT cells in Bcl6fl/flCD4-cre+/− andwt control mice. (c) Representative plots of naïve and infected Sh2d1a−/− andwt C57BL/6 control mice. (d) Total numbers ofγδT cells in Sh2d1a−/− and

wt C57BL/6 control mice. Bars represent median values. Data are representative or pooled from at least two independent experiments and were obtained in groups of 3–5 mice per time

point. Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple comparisons test.
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follicular B-cell responses (Schaerli et al., 2000; Breitfeld et al., 2000;

Kim et al., 2001). Recent evidence has suggested that Plasmodium infec-

tion has the capacity to bias the CD4+ T cell response toward a predom-

inantly IFN-γ-producing Th1 response and consequently impair Tfh cell

differentiation resulting in poor B-cell responses to theparasite (Hansen

et al., 2017). Nonetheless, both Tfh cell and GC B-cell responses are

strongly activated in a number of Plasmodium models (Zander et al.,

2015; Matar et al., 2015; Achtman et al., 2003; Pérez-Mazliah et al.,

Fig. 9. IL-21, Bcl6 and SAP are differentially required for the control of chronic P. chabaudi infection. Il21r−/−, Bcl6fl/flCD4-cre+/−, Sh2d1a−/−mice, and their respectivewt controlmice,were

infected with P. chabaudi via intra peritoneal injection of 105 iRBC or bites from P. chabaudi-infected mosquitoes and parasitemias were periodically monitored by giemsa-stained thin

blood smears. The course of acute (left column) and chronic (right column) infection for Il21r−/− mice following iRBC infection (a) and mosquito infection (b). The acute phase is

displayed as median ± range, while curves corresponding to individual mice are displayed for the chronic phase. Cumulative data showing side-by-side the parasitemias during

chronic P. chabaudi infection in Il21r−/−, Bcl6fl/flCD4-cre+/− and Sh2d1a−/− mice, following iRBC infection (c) and mosquito infection (d). Data are representative of at least two

independent experiments and were obtained in groups of 5–10 mice per time point. Statistical significance was obtained using Mann Whitney U test or Two-Way ANOVA with

Tukey's multiple comparisons test.
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2015; Wikenheiser et al., 2016), and in P. chabaudi infections these are

not impaired by the activation of a strong Th1 response (Pérez-

Mazliah et al., 2015; Wikenheiser et al., 2016). Herein, we investigated

the requirement of Tfh cells to control Plasmodium infection in the P.

chabaudi model. We focused on the transcription repressor Bcl6, the

master regulator of the Tfh program (Johnston et al., 2009; Nurieva et

al., 2009; X. Liu et al., 2009), and on the SAP molecule, previously

shown to be required for B-Tfh cell interactions (Qi et al., 2008), and

the activation of GC B-cells (Crotty et al., 2003; Cannons et al., 2006;

Kamperschroer et al., 2006; Crotty et al., 2006; McCausland et al.,

2007; Moyron-Quiroz et al., 2009; Yusuf et al., 2010; Morra et al.,

2005) and Tfh cells in some models (Cannons et al., 2010; Deenick et

al., 2010; Linterman et al., 2011). A targeted deletion of the Bcl6 gene re-

stricted to the T-cell lineage [Bcl6fl/flCD4-cre+/− (Kaji et al., 2012)] ren-

dered mice unable to make Tfh cell responses to P. chabaudi infection

and consequently unable to activate protective B-cell responses and

eliminate the otherwise self-resolving blood stage of P. chabaudi infec-

tion. Of note, the Tfh cell response observed during the acute phase of

P. chabaudi infection was critical to control the chronic, but not the

acute, phase of P. chabaudi infection, as Bcl6fl/flCD4-cre+/−mice with a

complete absence of Tfh cell responses were able to control the acute

phase of infection without showing significant differences from the wt

controls.

It is intriguing that there is a complete absence of all P. chabaudi-spe-

cific IgG subtypes in Bcl6fl/flCD4-cre+/−mice, including those associated

with extra-follicular B cell responses. It is generally accepted that Bcl6

expression in T cells is required for extrafollicular IgG production (S. K.

Lee et al., 2011). However, it is still a matter of debate as to how this

happens, as Tfh cells by definition and functional capacity, preferentially

home to the B-cell follicles (Qi, 2016). Nonetheless, a P. chabaudi-specif-

ic IgM response was readily detected even in complete absence of Tfh

cell responses in Bcl6fl/flCD4-cre+/−mice. This demonstrates the activa-

tion of extra-follicular B cell responses to P. chabaudi in the absence of

Tfh cells, and shows that an extra-follicular P. chabaudi-specific IgM re-

sponse is not sufficient to eradicate P. chabaudi infection.

Sh2d1a1−/−mice (lacking the gene that encodes SAP) were able to

control the acute phase of P. chabaudi infection, but showed variable ca-

pacity to control the chronic phase of infection, and to completely erad-

icate the infection. Parasitemias determined by analysis of thin blood

films at late time points post-infection (i.e. over 100 days post-infec-

tion) suggested clearance of parasites. However, more sensitive tech-

niques to detect positive parasitemias [adoptive transfer of blood into

Rag2−/− mice (Achtman et al., 2007)] demonstrated the presence of

sub-patent parasitemias in half of the Sh2d1a1−/−mice studied.

Interestingly, the lack of SAP signaling did not alter the initial activa-

tion of Tfh cell responses to P. chabaudi, as demonstrated by the occur-

rence of normal levels of CD44hiCXCR5+PD1+ as well as

CXCR5+Bcl6+ CD4+ T cells in the spleen of P. chabaudi-infected

Sh2d1a1−/− mice compared with C57BL/6 controls. The fact that the

lack of SAP signaling did not disrupt the initial Tfh cell response to P.

chabaudi seems to contradict some observations (Cannons et al., 2010;

Deenick et al., 2010; Linterman et al., 2011). However, other works re-

ported activation of Tfh cells in the absence of SAP, using both immuni-

zations (Qi et al., 2008) and LCMV infection (Yusuf et al., 2010).

Moreover, Deenick et al. demonstrated that the defect on Tfh activation

in the absence of SAP occurs when the availability of antigen is limited,

and can be rescued by boosting with antigen (Deenick et al., 2010).

Therefore, the requirement of SAP for Tfh activation seems to be con-

text-dependent, and the consensus in the field is now that SAP is not re-

quired for the initial activation of the Tfh program, but rather for the

maintenance of this program and the relocalization of the Tfh cells

into the germinal center (Crotty, 2014; Qi, 2012). This agrees with our

observation of reduced, yet detectable, CD4+GL7+ GC Tfh cells in the

spleenof P. chabaudi-infected Sh2d1a1−/−mice. Our observations of un-

altered CD4+ T-B cell conjugates yet altered CD4+ T-GC B cell conju-

gates in Sh2d1a1−/− mice compared with wt C57BL/6 controls, is in

linewith the long-lasting T-B cell interactions in the T-cell zone and fol-

licle border and progressively shorter contact durations (and, therefore,

more sensitive to mechanical disruption) inside the follicles and germi-

nal centers observed in immunizations (T. Okada et al., 2005; Qi et al.,

2008; Allen et al., 2007; Kerfoot et al., 2011; Shulman et al., 2014; D.

Liu et al., 2015). On the other hand, SAP-deficient mice fail to activate

GC B-cell responses to immunizations with T-dependent antigens,

viral infections, and helminth infections (Crotty et al., 2003; Cannons

et al., 2006; Kamperschroer et al., 2006; Crotty et al., 2006;

McCausland et al., 2007; Moyron-Quiroz et al., 2009; Yusuf et al.,

2010; Morra et al., 2005). Therefore, it is indeed surprising that SAP-de-

ficientmice can activate, albeit significantly reduced, a distinctive GC re-

sponse to P. chabaudi. This is demonstrated by the occurrence of a)

CD38lowGL7+ GC B cells, b) GC structures as determined by histology

c)GL7+ CGTfh cells, d) T cellswithin theGC as determined byhistology,

e) stable T-GC B cell conjugates and f) P. chabaudi-specific IgG responses

in Sh2d1a1−/−mice. The deficient T-B cell interaction driven by the ab-

sence of SAP can be partially compensated by other signals, i.e. strong

cognate interactions in the context of high antigen availability on B

cells (Qi, 2012; Qi et al., 2008). Thus, these mechanisms might be in

place during P. chabaudi infection and able to partially compensate for

Fig. 10. IL-21+CD4+ T cells are activated in response to P. chabaudi infection even in

complete absence of Tfh cells. Bcl6fl/flCD4-cre+/−mice were infected with P. chabaudi via

intra peritoneal injection of 105 iRBC, and the number of IL-21-producing CD4+ T cells

in the spleen was determined by intracellular flow cytometry staining at days 0, 8, 14

and 120 post-infection. (a) Representative plots of naïve (top row) and infected (8 days

post-infection, bottom row) Bcl6fl/flCD4-cre+/− and wt control mice. Gates show

frequency of CD3+CD4+ T cells expressing IL-21. (b) Total numbers of IL-21-producing

CD4+ T cells in Bcl6fl/flCD4-cre+/− and wt control mice. Data are representative of two

independent experiments and were obtained in groups of 3–5 mice per time point.

Statistical significance was obtained using Two-Way ANOVA with Tukey's multiple

comparisons test. ND: Not done.
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the lack of SAP signaling. P. chabaudi infection is the only infection

model identified to date in which GC B cells can be activated in the ab-

sence of SAP. A recent report by Wikenheiser et al. shows that ICOS is

dispensable during early Tfh cell differentiation in response to P.

chabaudi infection, but it is required for sustaining the Tfh cell response

over time (Wikenheiser et al., 2016). Interestingly, both P. chabaudi-

specific B-cell responses and the course of P. chabaudi infection in

ICOS-deficient mice resemble our observations in SAP-deficient mice

more closely than in Bcl6fl/flCD4-cre+/−mice (i.e. partial, but not com-

plete, abrogation of the GC B cell response and P. chabaudi-specific IgG

responses, and highly variable control of the parasitemia late during

chronic infection) (Wikenheiser et al., 2016). ICOS engagement pro-

motes persistent T-cell migration at the border between the T-cell

zone and the B-cell follicle, and controls follicular recruitment of activat-

ed T-helper cells independently from the ICOSL-mediated co-stimula-

tion provided by cognate B cells, thus acting as a molecular linkage

between T–B cells (Xu et al., 2013; D. Liu et al., 2015; Qi, 2016). There-

fore, it is possible that SAP and ICOS act via a similar mechanism during

P. chabaudi infection, i.e. via regulating T helper cell positioning in the

follicle and favoring T-B cell interactions, and can partially compensate

for each other. Notably, the deficiency of ICOS signaling reduced GC B-

T cell interactions during P. chabaudi infection, similarly to SAP deficien-

cy (Wikenheiser et al., 2016). This inefficient, yet distinctive, GC activa-

tion in Sh2d1a1−/−mice can explain the better control of the infection

by these mice compared with the complete absence of Tfh cell re-

sponses in Bcl6fl/flCD4-cre+/− mice, and strongly supports a model in

which the quality of the T-dependent B cell response reflects the capac-

ity to control the blood stages of P. chabaudi infection.

In conclusion, here we provide evidence of the major role of Tfh cell

responses in controlling and clearing the chronic phase of Plasmodium

infection. In addition, we delineate a hierarchical requirement of signals

previously associated with T-B cell interactions in the control of this in-

fection, following the order IL-21 N Tfh cells N SAP. This proved to be true

for both, blood and natural mosquito transmission of P. chabaudi infec-

tion. Intriguingly, these data suggest a role for IL-21 beyond B cell acti-

vation driven by Tfh cells. In agreement with this, c-Maf, but not Bcl6,

is known to control IL-21 expression (Bauquet et al., 2009; Hiramatsu

et al., 2010; Kroenke et al., 2012), and non-Tfh IL-21-producing CD4+

T cells are detected during P. chabaudi infection (Pérez-Mazliah et al.,

2015; Carpio et al., 2015) and P. berghei ANKA infection (Ryg-Cornejo

et al., 2015). Therefore, further research is needed to determine the

full role of this pleiotropic cytokine in the control of this infection. Mon-

itoring of both IL-21 and Tfh responses have generally not been included

in studies aimed at generating protective vaccines to Plasmodium infec-

tion. In the light of data presented herein, monitoring of both of these

critical immune signals should be considered when evaluating the effi-

cacy of novel immune therapies designed to prevent or eliminate Plas-

modium infection.

Our data complete the study of a battery of fundamental signals im-

plicated in T-B cell interactions in the context of blood-stage Plasmodi-

um infection, i.e. PD-1 (Butler et al., 2012; Zander et al., 2015), IL-21

(Pérez-Mazliah et al., 2015), OX40 (Zander et al., 2015) and ICOS

(Wikenheiser et al., 2016). Altogether, these data provide a framework

to weigh the relevance of different signals regulating T-B cell interac-

tions for the control of this complex parasite, which is critical to reach

the goal of generating protective immunotherapies to control the

spread of malaria.

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.ebiom.2017.08.030.
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