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Abstract

Let 𝑋 be a smooth projective complex variety and let

𝐷 = 𝐷1 + ⋯ + 𝐷𝑙 be a reduced normal crossing divisor

on 𝑋 with each component 𝐷𝑗 smooth, irreducible and

numerically effective. The log–local principle put for-

ward in van Garrel et al. (Adv. Math. 350 (2019) 860–

876) conjectures that the genus 0 log Gromov–Witten

theory of maximal tangency of (𝑋, 𝐷) is equivalent to

the genus 0 local Gromov–Witten theory of 𝑋 twisted by⨁𝑙
𝑗=1 (−𝐷𝑗). We prove that an extension of the log–

local principle holds for 𝑋 a (not necessarily smooth)

ℚ-factorial projective toric variety, 𝐷 the toric boundary,

and descendant point insertions.

MSC ( 2020 )

14N35 (primary), 14M25, 14J33, 14T90 (secondary)

1 INTRODUCTION

Let𝑋 be a smooth projective complex variety of dimension 𝑛 and let𝐷 = 𝐷1 + ⋯ + 𝐷𝑙 be an effec-

tive reduced normal crossing divisor with each component 𝐷𝑗 smooth, irreducible and numeri-

cally effective. We can then consider two, a priori very different, geometries associated to the pair

(𝑋, 𝐷):

– the 𝑛-dimensional log geometry of the pair (𝑋, 𝐷),

– the (𝑛 + 𝑙)-dimensional local geometry of the total space Tot(
⨁𝑙

𝑗=1 𝑋(−𝐷𝑗)).

The genus 0 log Gromov–Witten invariants of (𝑋, 𝐷) virtually count rational curves

𝑓 ∶ ℙ1 → 𝑋
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of a fixed degree 𝑓∗[ℙ1] ∈ H2(𝑋, ℤ), with insertions, such as passing through a number of general

points, and with prescribed intersections with 𝐷. Such an 𝑓 is said to be of maximal tangency if

𝑓(ℙ1) meets each 𝐷𝑗 in only one point of full tangency. On the other hand, the local Gromov–

Witten theory of Tot(
⨁𝑙

𝑗=1 𝑋(−𝐷𝑗)) is a way to study the local contribution of 𝑋 to the enu-

merative geometry of a compact (𝑛 + 𝑙)-dimensional variety 𝑌 containing 𝑋 with normal bundle⨁𝑙
𝑗=1 𝑋(−𝐷𝑗).

The existence of a relation between the log and the local theory of (𝑋, 𝐷)was introduced by the

log–local principle of [17, Conjecture 1.4].

Conjecture 1. Let 𝖽 be an effective curve class such that 𝖽 ⋅ 𝐷𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑙. After dividing by∏𝑙
𝑗=1(−1)𝖽⋅𝐷𝑗+1 𝖽 ⋅ 𝐷𝑗 , the genus 0 log Gromov–Witten invariants of maximal tangency and class 𝖽

of (𝑋, 𝐷) equal the genus 0 local Gromov–Witten invariants of class 𝖽 of Tot(
⨁𝑙

𝑗=1 𝑋(−𝐷𝑗)) (with

the same insertions).

Theorem 1.1 [17]. The log–local principle holds if 𝑋 is a smooth projective variety and 𝐷 is smooth

and numerically effective.

There are two natural directions to generalise the log–local principle further. The first is to

investigate extensions to correspondences with other invariants. At the level of BPS invariants

[12–14, 19, 29], this is proven for the pair of ℙ2 and smooth cubic in [5, 6] and in higher genus

in [9]. In [7, 8], we extend the correspondences to the non-toric and higher genus/refined setting

and include open Gromov–Witten invariants, their underlying open BPS counts, as well as quiver

Donaldson–Thomas invariants to the set of correspondences. Another direction is the relationship

between local and orbifold invariants [3, 30].

The second natural question is to what extent the log–local principle generalises to the case

when 𝑋 and 𝐷 are not smooth: log Gromov–Witten theory is indeed well-defined for any pair

(𝑋, 𝐷) which is log smooth, but it is unclear how to define a local geometry in such generality.

In the present paper, we consider a situation that goes beyond the smoothness assumptions of

Conjecture 1 and where both log and local sides can be defined: we take for 𝑋 a ℚ-factorial pro-

jective toric variety and for 𝐷 the toric boundary divisor of 𝑋. As 𝑋 is ℚ-factorial, it makes sense

to require that the components 𝐷𝑗 of 𝐷 are numerically effective. We show in Proposition 2.1 that

requiring each 𝐷𝑗 to be numerically effective forces 𝑋 to be a product of fake weighted projective

spaces. While such an 𝑋 is not necessarily smooth, and 𝐷 is typically not normal crossing, (𝑋, 𝐷)

can naturally be viewed as a log smooth variety, and so log Gromov-Witten invariants of (𝑋, 𝐷)

are well-defined. On the other hand, 𝑋 can be naturally viewed as a smooth Deligne–Mumford

stack, and the local geometry Tot(
⨁𝑙

𝑗=1 𝑋(−𝐷𝑗)) makes sense in the category of orbifolds. The

local Gromov–Witten invariants can be defined using orbifold Gromov–Witten theory [2], and it

thus makes sense to ask if the genus 0 log invariants of maximal tangency of such a pair (𝑋, 𝐷)

are related in the sense of Conjecture 1 to the corresponding local invariants. Our main result is

Theorem 1.2; we refer to Theorems 3.1–3.4 for precise statements.

Theorem 1.2. Let𝑋 be aℚ-factorial projective toric variety and let𝐷 be the toric boundary divisor of

𝑋. Assume that all the components 𝐷𝑗 of 𝐷 are numerically effective. Then the genus 0 log Gromov–

Witten invariants of maximal tangency of (𝑋, 𝐷), and the genus 0 local Gromov–Witten invariants

of (𝑋, 𝐷), both with descendant point insertions, can be computed in closed form for all degrees. As

a corollary, the log–local principle holds for the resulting invariants.
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Except for the well-studied case when 𝑋 = ℙ1, the log and local Gromov–Witten invariants

of (𝑋, 𝐷) are non-zero only for one, two or, provided 𝑋 = (ℙ1)𝑛, three point insertions. For 𝑋 =

(ℙ1)𝑛 we prove an equality of virtual fundamental classes and refer to well-known techniques to

compute the invariants. For the other cases, our proof proceeds by calculating both sides to obtain

explicit closed formulae for these invariants for all (𝑋, 𝐷) (Theorems 3.2 and 3.3). To compute the

log invariants we use the tropical correspondence result [24] and an algorithm of [23] for the

tropical multiplicity. The log–local principle of Conjecture 1 then predicts an explicit formula in

all degrees for the local invariants, which we verify using local mirror symmetry techniques and

a reconstruction result from small to big quantum cohomology.

Relation to [26] and [7, 8]

After this paperwas finished,we received themanuscript [26]where the log–local principle is con-

sidered for simple normal crossings divisors. The respective strategies have different flavours in

the proof and complementary virtues in the outcome: [26] consider the log/local correspondence

for𝑋 smooth and𝐷𝑗 a hyperplane section, with a beautiful geometric argument reducing the sim-

ple normal crossings case to the case of smooth pairs, andwith no restrictions on𝑋. The combina-

torial pathway we pursued in the toric setting allows on the other hand to relax the hypotheses on

the smoothness of𝑋, the normal crossings nature of𝐷, and the very ampleness of𝐷𝑗 , and it lends

itself to a wider application to the case when 𝐷 is not the toric boundary and the refinement to

include all-genus invariants. We consider this specifically in the follow-up papers [7, 8], where we

prove the log–local principle for log Calabi–Yau surfaces with the components of the anticanon-

ical divisor smooth and numerically effective and suitably reformulate it to, and verify it for, the

higher genus theory in these cases. In addition, we extend the correspondences to include open

Gromov–Witten invariants, the various underlying BPS counts, and quiver Donaldson–Thomas

invariants.

Remark 1. In its most recent version, [26] gives a counter-example in principle to Conjecture 1.

It is proven that there is a choice of (unspecified) insertion leading to a counter-example. The

geometry however is not log Calabi–Yau and the insertion is not formed of point insertions. It

remains open whether the conjecture holds in the more restrictive setting of a log Calabi–Yau

variety with only point insertions. The present paper as well as [7, 8] provide evidence for it.

2 SET-UP

2.1 Notation

Let 𝑋 be a ℚ-factorial projective toric variety of dimension 𝑛𝑋 and let 𝐷 = 𝐷1 + ⋯ + 𝐷𝑙𝐷
be the

toric boundary divisor of 𝑋. In the foregoing discussion, we write 𝑟𝑋 ∶= rank Pic(𝑋) for the

rank of the Picard group of 𝑋, so that 𝑙𝐷 = 𝑛𝑋 + 𝑟𝑋 , and 𝜒𝑋 = 𝜒(𝑋) ∶= dimℂ 𝐻(𝑋, ℂ) for the

dimension of the cohomology of 𝑋. The variety 𝑋 has a natural presentation as a GIT quotient

ℂ𝑛𝑋+𝑟𝑋 ∕∕𝑡 ((ℂ⋆)𝑟𝑋 × 𝐺𝑋) for𝐺𝑋 a finite abelian group; for every 1 ⩽ 𝑗 ⩽ 𝑙𝐷 , wewrite𝐷𝑗 for the divi-

sor corresponding to the (ℂ⋆)𝑟𝑋 × 𝐺𝑋 reduction to 𝑋 of the 𝑗th coordinate hyperplane in ℂ𝑛𝑋+𝑟𝑋 .

Note in particular that
∑𝑙𝐷

𝑗=1
𝐷𝑗 = −𝐾𝑋 .



4 BOUSSEAU et al.

We also fix a further piece of notation, which will turn out to be convenient when dealing

with the book-keeping of indices for products of fake weighted projective spaces. Let 𝑚 ∈ ℕ0.

If 𝗏 = (𝑣1, … , 𝑣𝑚) ∈ ℕ𝑚 is a lattice point in the non-negative 𝑚-orthant, we write |𝗏| =
∑𝑚

𝑖=1 𝑣𝑖

for its 1-norm; in the following we will consistently use serif fonts for orthant points and italic

fonts for their Cartesian coordinates. For 𝑅 a finitely generated commutative monoid with gen-

erators 𝛼1, … , 𝛼𝑚, 𝑥 = 𝛼
𝑗1
1

… 𝛼
𝑗𝑚
𝑚 ∈ 𝑅 a reduced word in 𝛼𝑖 , and 𝗏 ∈ ℕ𝑚, we write 𝑥𝗏 for the prod-

uct
∏

𝑖 𝛼
𝑗𝑖𝑣𝑖

𝑖
∈ 𝑅. We introduce partial orders on the 𝑚-orthant by saying that 𝗏 ≺ 𝗐 (respectively,

𝗏 ⪯ 𝗐) if 𝑣𝑖 < 𝑤𝑖 (respectively, 𝑣𝑖 ⩽ 𝑤𝑖) for all 𝑖 = 1, … , 𝑚. Also, wewill write𝑄𝑋
𝑖𝑗

∈ ℤ, 𝑖 = 1, … , 𝑟𝑋 ,

𝑗 = 1, … , 𝑛𝑋 + 𝑟𝑋 , for the weight of the 𝑖th factor of the (ℂ⋆)𝑟𝑋 torus action on the 𝑗th affine factor

of ℂ𝑛𝑋+𝑟𝑋 .

Definition 1. A numerically effective toric pair (𝑋, 𝐷) is a pair given by 𝑋 a ℚ-factorial complex

projective toric variety with toric boundary divisor 𝐷 = 𝐷1 + ⋯ + 𝐷𝑙𝐷
, such that all the compo-

nents 𝐷𝑗 are numerically effective.

Numerical effectiveness of all the components 𝐷𝑗 of the toric bundary divisor imposes strong

conditions on 𝑋, as the Proposition 2.1 shows.

Definition 2. Let 𝑋 be aℚ-factorial projective toric variety, and let ℂ𝑛𝑋+𝑟𝑋 ∕∕𝑡 ((ℂ⋆)𝑟𝑋 × 𝐺𝑋) be its

natural GIT description. We say that 𝑋 is a fake weighted projective space if ℂ𝑛𝑋+𝑟𝑋 ∕∕𝑡 (ℂ⋆)𝑟𝑋 is a

weighted projective space.

Proposition 2.1. Let 𝑋 be a ℚ-factorial projective variety such that every effective divisor on 𝑋 is

numerically effective. Then 𝑋 is a product of fake weighted projective spaces.

Proof. By [16, Proposition 5.3], 𝑋 admits a finite surjective toric morphism
∏

ℙ𝑛𝑖 → 𝑋. Let Σ ⊂

𝑁 ⊗ ℝ be the fan of
∏

ℙ𝑛𝑖 and Σ′ ⊂ 𝑁′ ⊗ ℝ the fan of 𝑋. Then we have an injective morphism of

lattices 𝑁 → 𝑁′ of finite index. Identifying 𝑁 with its image in 𝑁′, Σ = Σ′. It follows that 𝑋 is the

quotient of
∏

ℙ𝑛𝑖 by 𝑁′∕𝑁. Hence, 𝑋 is a product of fake weighted projective spaces. □

By Proposition 2.1, there is 𝗇𝑋 ∈ ℕ𝑟𝑋 such that 𝑛𝑋 = |𝗇𝑋| and 𝑋 is a product of 𝑟𝑋 , 𝑛𝑖 ∶= (𝗇𝑋)𝑖-

dimensional fake weighted projective spaces,

𝑋 =

𝑟𝑋∏
𝑖=1

ℙ𝐺𝑖

(
𝗐(𝑖)

𝑋

)
,

with𝗐(𝑖)
𝑋

= ((𝗐𝑋)(𝑖)
1

, … , (𝗐𝑋)(𝑖)
𝑛𝑖+1

) ∈ ℕ𝑛𝑖+1, whichwemay assumenot to have any common factors,

and

ℙ𝐺𝑖

(
𝗐(𝑖)

𝑋

)
∶= ℙ

(
𝗐(𝑖)

𝑋

)
∕∕𝑡 𝐺𝑖 ,

for 𝐺𝑖 a finite abelian group. Note that, for fixed 𝑖 and defining 𝜀𝑖 ∶=
∑𝑖−1

𝑘=1(𝑛𝑘 + 1), we have

𝑄𝑋
𝑖,𝑗+𝜀𝑖

=

{
(𝗐𝑋)(𝑖)

𝑗
1 ⩽ 𝑗 ⩽ 𝑛𝑖 + 1,

0 else,
(2.1)
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independent of the𝐺𝑖 . Let𝐻𝑖 ∶= pr∗
𝑖
𝑐1(ℙ𝐺𝑖 (𝗐(𝑖))(1)) denote the pullback to𝑋 of the (orbi-) hyper-

plane class of the 𝑖th factor of 𝑋 and let𝐻 ∶= 𝐻1 … 𝐻𝑟𝑋
. These generate the classical cohomology

ring,

H∙(𝑋, ℂ) =
ℂ[𝐻1, … , 𝐻𝑟𝑋

]
⟨{

𝐻
𝑛𝑖+1

𝑖

}𝑟𝑋

𝑖=1

⟩ , (2.2)

which is independent of the 𝐺𝑖 , and we can take a homogeneous linear basis for 𝐻∙(𝑋, ℂ) in the

form {𝐻𝗅}𝗅𝑖⩽𝑛𝑖
. Note, in particular, that

[pt] =

𝑟𝑋∏
𝑖=1

||𝐺𝑖
||
∏
𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

𝐻𝗇𝑋 .

Indeed, if 𝐺𝑖 is trivial, this follows from applying [22, Theorem 1] to each component in the

product; and if 𝐺𝑖 is non-trivial, then the extra factor comes from the component-wise identifi-

cation 𝐻∙(ℙ𝐺𝑖 (𝗐(𝑖)), ℂ) = 𝐻∙(ℙ(𝗐(𝑖)), ℂ)𝐺𝑖 . We will also write 𝖽 = (𝑑1, … , 𝑑𝑟𝑋
) for the curve class

𝑑1𝐻1 + ⋯ + 𝑑𝑟𝐻𝑟 and

𝖽𝗇𝑋 ∶=

𝑟𝑋∏
𝑖=1

𝑑
𝑛𝑖

𝑖
. (2.3)

We order the toric divisors 𝐷𝑗 of 𝑋, 𝑗 = 1, … , |𝗇𝑋| + 𝑟𝑋 , in such a way that

𝑄𝑋
𝑖𝑗 =

𝑖th

(0, … , 0, 1, 0, … , 0) ⋅𝐷𝑗 ,

where the 1 is in the 𝑖th position. Finally, we define

𝑒𝑋
𝑗 (𝖽) ∶=

∑
𝑖

𝑄𝑋
𝑖𝑗𝑑𝑖 = 𝖽 ⋅ 𝐷𝑗 , 𝑒𝑋(𝖽) ∶=

|𝗇𝑋 |+𝑟𝑋∑
𝑗=1

𝑒𝑋
𝑗 (𝖽) = −𝖽 ⋅ 𝐾𝑋 . (2.4)

2.2 Log Gromov–Witten invariants

Let (𝑋, 𝐷) be a numerically effective toric pair and let 𝖽 be an effective curve class on 𝑋.† For the

definition of log Gromov–Witten invariants, we endow‡𝑋 with the divisorial log structure coming

from𝐷, and view (𝑋, 𝐷) as a log smooth variety. The log structure is used to impose tangency con-

ditions along the components𝐷𝑗 of𝐷: in this paperwe consider genus 0 stablemaps into𝑋 of class

𝖽 that meet each component 𝐷𝑗 in one point of maximal tangency 𝖽 ⋅ 𝐷𝑗 . The appropriate moduli

spaceM
log

0,𝑚(𝑋, 𝐷, 𝖽) of genus 0𝑚-marked maximally tangent stable log maps was constructed (in

all generality) in [1, 10, 20]. In this description, we have 𝑚 marked points that have tangency 0

†Note that unlike in Conjecture 1 we do not require that 𝖽 ⋅ 𝐷𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑙𝐷 .

‡We refer to [18] for an introduction to log geometry.
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with the boundary (interior marked points), and 𝑙𝐷 marked points with maximal tangency with

each 𝐷𝑗 , respectively. In case 𝖽 ⋅ 𝐷𝑗 = 0 for some 𝑗, this means that the corresponding maximal

tangency marked point is an interior marked point. There is a virtual fundamental class

[M
log

0,𝑚(𝑋, 𝐷, 𝖽)]vir ∈ H
2𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)

log

(M
log

0,𝑚(𝑋, 𝐷, 𝖽)),

where

𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)
log

= −𝖽 ⋅ 𝐾𝑋 + dim 𝑋 − 3 + 𝑚 −

𝑙𝐷∑
𝑗=1

(𝖽 ⋅ 𝐷𝑗 − 1)

= 𝑛𝑋 + 𝑚 + 𝑙𝐷 − 3 = 2𝑛𝑋 + 𝑟𝑋 + 𝑚 − 3.

Evaluating at the marked points 𝑝𝑖 yields the evaluation maps

ev𝑖 ∶ M
log

0,𝑚(𝑋, 𝐷, 𝖽) ⟶ 𝑋.

For 𝐿𝑖 the 𝑖th tautological line bundle on M
log

0,𝑚(𝑋, 𝐷, 𝖽), whose fiber at [𝑓 ∶ (𝐶, 𝑝1, … , 𝑝𝑚) → 𝑋]

is the cotangent line of 𝐶 at 𝑝𝑖 , there are tautological classes 𝜓𝑖 ∶= 𝑐1(𝐿𝑖). We are interested in the

calculation of the genus 0 log Gromov–Witten invariants of maximal tangency of (𝑋, 𝐷)with one,

two or three point insertions and 𝜓-class insertions at one point, defined as follows:

𝑅𝔭𝑋
𝖽 ∶= ∫[M

log

0,1(𝑋,𝐷,𝖽)]vir
ev∗

1([pt]) ∪ 𝜓
𝑛𝑋+𝑟𝑋−2
1

, (2.5)

𝑅𝔮𝑋
𝖽 ∶= ∫[M

log

0,2(𝑋,𝐷,𝖽)]vir
ev∗

1([pt]) ∪ ev∗
2([pt]) ∪ 𝜓

𝑟𝑋−1
2

. (2.6)

The invariant 𝑅𝔭𝑋
𝖽
(respectively, 𝑅𝔮𝑋

𝖽
) is a virtual count of rational curves in 𝑋 of degree

𝖽 = (𝑑1, … , 𝑑𝑟𝑋
) that meet each toric divisor 𝐷𝑗 in one point of maximal tangency 𝖽 ⋅ 𝐷𝑗 =∑𝑟

𝑖=1 𝑑𝑖𝑄
𝑋
𝑖𝑗

= 𝑒𝑋
𝑗

(𝖽) and that pass through one point in the interior with 𝜓𝑛𝑋+𝑟𝑋−2 condition

(respectively, two points in the interior, one of which with a 𝜓𝑟𝑋−1 condition).

Remark 1. Having a point condition on 𝑋 cuts down the dimension of the moduli space by 𝑛𝑋 .

Thus, (2.5) and (2.6) cover all possible invariants with descendant point insertions except for two

families of cases. For the first, one distributes the descendant insertions along both points in (2.6).

Adapting the log calculations of Section 5 to that case is left as an exercise to the reader, see also

Remark 3 for the local side. The second family of cases concerns the invariants of (ℙ1)𝑛 with any

number ofmarked points if 𝑛 = 1 and up to threemarked points if 𝑛 ⩾ 2.We treat (ℙ1)𝑛 separately

in Theorem 3.1.

2.3 Local Gromov–Witten invariants

Let (𝑋, 𝐷) be a numerically effective toric pair as in Definition 1 and write 𝑋loc
𝐷

∶=

Tot(
⨁

𝑖 𝑋(−𝐷𝑖)) for the target space of the local theory. By Proposition 2.1, we can view 𝑋 and
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𝑋loc
𝐷

as the coarsemoduli schemes of smooth Deligne–Mumford stacks and loc
𝐷

overℂ, where

 ∶=

𝑟𝑋⨉
𝑖=1

[(
ℂ(𝑛𝑋)𝑖 ⧵ {0}

)
∕(ℂ⋆ × 𝐺𝑖)

]
,

 loc
𝐷 ∶=

𝑟𝑋⨉
𝑖=1

[((
ℂ(𝑛𝑋)𝑖 ⧵ {0}

)
× ℂ(𝑛𝑋)𝑖+1

)
∕(ℂ⋆ × 𝐺𝑖)

]
. (2.7)

Even though 𝑋loc
𝐷

is not proper and may be singular, the locution ‘Gromov–Witten theory of 𝑋loc
𝐷
’

receives ameaning in terms of the orbifoldGromov–Witten theory of twisted by
⨁

𝑖  (−𝐷𝑖) [2,

11] and restricted over its non-stacky part, and we refer the reader in particular to [2] for the rele-

vant background on theGromov–Witten theory ofDeligne–Mumford stacks. LetM0,𝑚( , 𝖽) be the

moduli stack of twisted genus 0𝑚-marked stablemaps [𝑓 ∶  → ]with𝑓∗([]) = 𝖽 ∈ 𝐻2( , ℚ),

where  is an 𝑚-pointed twisted curve† [2], and write M0,𝑚(𝑋, 𝖽) for the substack of twisted sta-

ble maps such that the image of all evaluation maps is contained in the zero-age component of

the (rigidified, cyclotomic) inertia stack of . The stackM0,𝑚( , 𝖽) can be equipped with a virtual

fundamental class [2, Section 4.5], which induces a virtual fundamental class of pure homological

degree over the stack M0,𝑚(𝑋, 𝖽) of stable maps to the coarse moduli space,

[
M0,𝑚(𝑋, 𝖽)

]vir
∈ H

2𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)(M0,𝑚(𝑋, 𝖽), ℚ),

where

𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽) ∶= −𝐾𝑋 ⋅ 𝖽 + dim 𝑋 + 𝑚 − 3 = 𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)
log

+ 𝑒𝑋(𝖽) − 𝑙𝐷 .

Let now 𝖽 be such that 𝖽 ⋅ 𝐷𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑙𝐷 . Then H0(, 𝑓∗ ⨁𝑙𝐷
𝑗=1

𝑋(−𝐷𝑗)) = 0 for

every twisted stable map [𝑓 ∶  → ] with 𝑓∗([]) = 𝖽, and so Ob𝐷 ∶= 𝑅1𝜋∗𝑓∗(
⨁𝑙𝐷

𝑗=1
𝑋(−𝐷𝑗))

is a vector bundle on M0,𝑚( , 𝖽), which is of rank
∑𝑙𝐷

𝑗=1
(𝖽 ⋅ 𝐷𝑗 − 1) and has fibre

H1(𝐶, 𝑓∗ ⨁𝑙𝐷
𝑗=1

𝑋(−𝐷𝑗)) at a stable map [𝑓 ∶  → ]. Restricting to the zero-age compo-

nent defines the virtual fundamental class

[M0,𝑚(𝑋loc
𝐷 , 𝖽)]vir ∶= [M0,𝑚(𝑋, 𝖽)]vir ∩ 𝑐top(Ob𝐷) ∈ H

2(𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)+𝑙𝐷−𝑒𝑋(𝖽))
(M0,𝑚(𝑋, 𝖽), ℚ), (2.8)

and we have

vdim M0,𝑚(𝑋loc
𝐷 , 𝖽) = 𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽) − 𝑒𝑋(𝖽) + 𝑙𝐷 = 𝔳𝔡𝔦𝔪(𝑋,𝐷,𝖽)

log
.

The restriction to the untwisted sector gives well-defined evaluationmaps ev𝑖 ∶ M0,𝑚(𝑋, 𝖽) ⟶

𝑋, and there are tautological classes𝜓𝑖 ∶= 𝑐1(𝐿𝑖), where the fibre of 𝐿𝑖 at a stablemap [𝑓 ∶  → ]

is given by the cotangent line to the coarse moduli space of  at the 𝑖th point. The (untwisted)

† This means that the coarse moduli space of  is a pre-stable curve in the ordinary sense, with cyclic-quotient stacki-

ness allowed at special points, and satisfying kissing (balancing) conditions for the stacky structures at the nodes. See [2,

Section 4] for more details.
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local Gromov–Witten invariants of (𝑋, 𝐷) are then caps of pullbacks of classes in𝐻∙(𝑋, ℂ) via the

evaluation maps against the virtual fundamental class (2.8). In particular, the local counterparts

of (2.5) and (2.6) are defined by

𝔭𝑋
𝖽 ∶= ∫[M0,1(𝑋loc

𝐷
,𝖽)]vir

ev∗
1([pt]) ∪ 𝜓

𝑛𝑋+𝑟𝑋−2
1

, (2.9)

𝔮𝑋
𝖽 ∶= ∫[M0,2(𝑋loc

𝐷
,𝖽)]vir

ev∗
1([pt]) ∪ ev∗

2([pt]) ∪ 𝜓
𝑟𝑋−1
2

. (2.10)

3 MAIN RESULTS

We first consider the case of (ℙ1)𝑛 and treat the general case thereafter.

Theorem 3.1. Conjecture 1 holds for 𝑋 = (ℙ1)𝑛 with its toric boundary.

Proof. For 𝑋 = ℙ1, the log–local principle (at the level of the virtual fundamental classes) is a

direct consequence of [17] since the toric divisors are disjoint. For 𝑋 = (ℙ1)𝑛 with 𝑛 ⩾ 2, we apply

the log product formula [21, 28] on the log side and the product formula [4] on the local side to

obtain an equality of virtual fundamental classes. □

Note that computational techniques to compute the invariants of 𝑋 = (ℙ1)𝑛 (with arbitrary

numbers of point insertions if 𝑛 = 1) are well-developed. For example, using tropical correspon-

dence results one may show that the maximal tangency three-pointed invariants of (ℙ1)𝑛 are∏2𝑛
𝑗=1 𝖽 ⋅ 𝐷𝑗 =

∏𝑛
𝑖=1 𝑑2

𝑖
.

Theorems 3.2 and 3.3 compute the log and local Gromov–Witten invariants defined in Sec-

tions 2.2 and 2.3 in all degrees for a numerically effective toric pair (𝑋, 𝐷).

Theorem 3.2. Let (𝑋, 𝐷) be a numerically effective toric pair and let 𝖽 be an effective curve class

on 𝑋. If there is 𝑗 such that 𝖽 ⋅ 𝐷𝑗 = 0, then 𝑅𝔭𝑋
𝖽

= 𝑅𝔮𝑋
𝖽

= 0. If 𝖽 ⋅ 𝐷𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑙𝐷 , then we

have

𝑅𝔭𝑋
𝖽 = 1, (3.1)

𝑅𝔮𝑋
𝖽 =

𝑟𝑋∏
𝑖=1

||𝐺𝑖
||
(∏

𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

)
𝖽𝗇𝑋 . (3.2)

We write
◦∏

𝑗𝑒𝑋
𝑗

(𝖽) to mean the product of 𝑒𝑋
𝑗

(𝖽) over 𝑗 ∈ {1, … , |𝗇𝑋| + 𝑟𝑋 | 𝑒𝑋
𝑗

(𝖽) ≠ 0}.

Theorem 3.3. Let (𝑋, 𝐷) be a numerically effective toric pair and let 𝖽 be an effective curve class on

𝑋. Then

𝔭𝑋
𝖽 =

(−1)𝑒𝑋(𝖽)−𝑛𝑋−𝑟𝑋

◦∏
𝑗𝑒𝑋

𝑗
(𝖽)

, (3.3)
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𝔮𝑋
𝖽 =

𝑟𝑋∏
𝑖=1

||𝐺𝑖
||
(∏

𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

)
𝖽𝗇𝑋 𝔭𝑋

𝖽

=

𝑟𝑋∏
𝑖=1

||𝐺𝑖
||
(∏

𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

)
𝖽𝗇𝑋

(−1)𝑒𝑋(𝖽)−𝑛𝑋−𝑟𝑋

◦∏
𝑗𝑒𝑋

𝑗
(𝖽)

. (3.4)

We deduce from these the log–local principle proved in the present paper.

Theorem 3.4. The log–local principle holds for numerically effective toric pairs (𝑋, 𝐷)with descen-

dant point insertions and with no assumptions on 𝖽 ⋅ 𝐷𝑗 . That is, for every effective curve class 𝖽, the

log and local invariants are equal up to the factor

𝑙𝐷∏
𝑗=1

(−1)𝖽⋅𝐷𝑗+1 𝖽 ⋅ 𝐷𝑗 = (−1)𝑒𝑋(𝖽)−|𝗇𝑋 |−𝑟𝑋

|𝗇𝑋 |+𝑟𝑋∏
𝑗=1

𝑒𝑋
𝑗 (𝖽) .

Theorem 3.4 is a direct corollary of the combination of Theorems 3.1–3.3. We will prove Theo-

rem 3.2 using a tropical correspondence principle, and Theorem 3.3 using an equivariant mirror

theorem.We review these technical tools in Section 4, and explain how to apply them to the proofs

of Theorems 3.2 and 3.3 in Sections 5 and 6, respectively.

4 COMPUTATIONALMETHODS

4.1 The log side: Tropical curve counts

Let 𝑋 =
∏𝑟𝑋

𝑖=1
ℙ𝐺𝑖 (𝗐(𝑖)) as in Section 2.1 and let Σ ⊂ 𝑁ℝ be the fan of 𝑋 = 𝑋Σ; here 𝑁 ≃ ℤ|𝗇𝑋 | and

𝑁ℝ ∶= 𝑁 ⊗ℤ ℝ. Define furthermore 𝑁ℚ ∶= 𝑁 ⊗ℤ ℚ and let 𝑀 ∶= Hom(𝑁, ℤ) be the dual of 𝑁.

Denote by [𝐷1], … , [𝐷|𝗇𝑋 |+𝑟𝑋
] the rays of Σ corresponding to the irreducible effective toric divisors

of 𝑋. We use correspondence results with tropical curve counts as developed in [24, 25, 27] (see

[18] for an introduction) and state them in the generality needed for our purposes.

Denote by Γ the topological realisation of a finite connected graph and by Γ the complement

of a subset of 1-valent vertices. We require that Γ has no univalent and no bivalent vertices. The

set of its vertices, edges, non-compact edges and compact edges is denoted by Γ[0], Γ[1], Γ[1]
∞ and

Γ[1]
𝑐 , respectively. Γ comes with a weight function 𝑤 ∶ Γ[1] → ℤ⩾0. The non-compact edges come

with markings. Weight 0, respectively, positive weight, non-compact edges are interior, respec-

tively, exterior, markings. There will be one or two interior point markings, which we denote by

𝑃1 and 𝑃2, and |𝗇𝑋| + 𝑟𝑋 exterior markings corresponding to the toric divisors, which we denote

by [𝐷1], … , [𝐷|𝗇𝑋 |+𝑟𝑋
] as well.

Definition 3. A genus 0 degree 𝖽 maximally tangent parametrised marked tropical curve in 𝑋

consists of Γ as above and a continuous map ℎ ∶ Γ → 𝑁ℝ satisfying the following.

(i) For 𝐸 ∈ Γ[1], ℎ|𝐸 is constant if and only if 𝑤(𝐸) = 0. Otherwise, ℎ|𝐸 is a proper embedding

into an affine line with rational slope.
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(ii) Let 𝑉 ∈ Γ[0] with ℎ(𝑉) ∈ 𝑁ℚ. For edges 𝐸 ∋ 𝑉, denote by 𝑢(𝑉,𝐸) the primitive integral vec-

tor at ℎ(𝑉) into the direction ℎ(𝐸) (and set 𝑢(𝑉,𝐸) = 0 if 𝑤(𝐸) = 0). The balancing condition

holds:

∑
𝐸∋𝑉

𝑤(𝐸) 𝑢(𝑉,𝐸) = 0.

(iii) For each exterior marking 𝐷𝑗 , ℎ|𝐷𝑗
is parallel to the ray [𝐷𝑗] and 𝑤(𝐷𝑗) = 𝖽 ⋅ 𝐷𝑗 .

(iv) The first Betti number 𝑏1(Γ) = 0.

If (Γ′, ℎ′) is another such parametrised tropical curve, then an isomorphism between the two is

given by a homeomorphism Φ ∶ Γ → Γ′ respecting the discrete data and such that ℎ = ℎ′◦Φ. A

genus 0 degree 𝖽 maximally tangent marked tropical curve then is an isomorphism class of such.

Moreover, we say that an interiormarking𝐸 satisfies a𝜓𝑘-condition if ℎ(𝐸) is a 𝑘 + 2-valent ver-

tex.

Denote by T(𝔭)𝑋
𝖽
the (moduli) space of genus 0 degree 𝖽maximally tangent tropical curves in𝑋

with the interior marking equipped with a 𝜓|𝗇𝑋 |+𝑟𝑋−2-condition passing through a fixed general

point in ℝ|𝗇𝑋 |+𝑟𝑋 . Denote by T(𝔮)𝑋
𝖽
the moduli space of genus 0 degree 𝖽 maximally tangent trop-

ical curves in 𝑋 with the two interior markings 𝑃1 and 𝑃2 mapping to two fixed general points in

ℝ|𝗇𝑋 |+𝑟𝑋 and such that 𝑃2 has a 𝜓𝑟𝑋−1-condition. We will see in Theorems 5.1 and 5.4 that each of

T(𝔭)𝑋
𝖽
and T(𝔮)𝑋

𝖽
consist of one element. Since T(𝔭)𝑋

𝖽
and T(𝔮)𝑋

𝖽
are finite hence, their elements

are rigid [23, Definition 2.5].

Counts of tropical curves are weighted with appropriate multiplicities. There are a number of

ways of defining the multiplicityMult(Γ) of Γ. The version we use was formulated (for𝑋 smooth)

in [23, Theorem 1.2]. We state it for our setting. Set𝐴 ∶= ℤ[𝑁] ⊗ℤ Λ∙𝑀. For 𝑛 ∈ 𝑁 and 𝛼 ∈ Λ∙𝑀,

write 𝑧𝑛𝛼 for 𝑧𝑛 ⊗ 𝛼 and 𝜄𝑛𝛼 for the contraction of 𝛼 by 𝑛. Recall that if 𝛼 ∈ Λ𝑠𝑀, then 𝜄𝑛𝛼 ∈

Λ𝑠−1𝑀. For 𝑘 ⩾ 1, define 𝓁𝑘 ∶ 𝐴⊗𝑘 → 𝐴 via

𝓁𝑘(𝑧𝑛1𝛼1 ⊗ ⋯ ⊗ 𝑧𝑛𝑘 𝛼𝑘) ∶= 𝑧𝑛1+⋯+𝑛𝑘 𝜄𝑛1+⋯+𝑛𝑘
(𝛼1 ∧ ⋯ ∧ 𝛼𝑘).

Let now ℎ ∶ Γ → 𝑁ℝ be in T(𝔭)𝑋
𝖽
or T(𝔮)𝑋

𝖽
and choose a vertex 𝑉∞ of Γ. Consider the flow on Γ

with sink vertex 𝑉∞. To each edge 𝐸 of Γ, we inductively associate an element 𝜁𝐸 = 𝑧𝑛𝐸 𝛼𝐸 ∈ 𝐴,

well-defined up to sign:

– for the exterior markings, set 𝜁𝐷𝑗
= 𝑧𝑤(𝐷𝑗)Δ(𝑗), where Δ(𝑗) is the primitive generator of [𝐷𝑗];

– for an interior marking 𝑃, set 𝜁𝑃 to be one of the two generators of Λ|𝗇𝑋 |𝑀;

– if 𝐸1, … , 𝐸𝑘 are the edges flowing into a vertex 𝑉 ≠ 𝑉∞ and 𝐸out is the edge flowing out, set

𝜁𝐸out
= 𝓁𝑘(𝜁𝐸1

⊗ ⋯ ⊗ 𝜁𝐸𝑘
).

By [23, Theorem 1.2], 𝜁Γ ∶=
∏

𝐸∋𝑉∞
𝜁𝐸 ∈ 𝑧0 ⊗ Λ|𝗇𝑋 |𝑀 andMult(Γ) is the index of 𝜁Γ inΛ|𝗇𝑋 |𝑀. It

then follows from [24, Theorem 1.1] that𝑅𝔭𝑋
𝖽
is the number ofΓ in T(𝔭)𝑋

𝖽
countedwithmultiplicity

Mult(Γ), and 𝑅𝔮𝑋
𝖽
is the weighted cardinality of {Γ ∈ T(𝔮)𝑋

𝖽
}, each weighted by Mult(Γ).

Remark 2. Note that a priori [24, Theorem 1.1] is stated for smooth varieties; in the cases of

interest to us, however, the curves never meet the deeper toric strata and the arguments of [24]

carry through.
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4.2 The local side: Mirror symmetry for toric stacks

The second technical result we will use for the calculation of local Gromov–Witten invariants

is Theorem 4.1. Consider a torus 𝑇 ≃ ℂ⋆ acting on 𝑋loc
𝐷 ∶= Tot(

⨁
𝑖 𝑋(−𝐷𝑖)) transitively on

the fibres and covering the trivial action on the image of the zero section. We will denote by

𝜆 ∶= 𝑐1(ℙ∞(1)) the polynomial generator of the 𝑇-equivariant cohomology of a point, H𝑇(pt) =

H(𝐵𝑇) ≃ ℂ[𝜆]. The basis elements 𝐻𝗅 of Section 2.1 for the cohomology of 𝑋 have canonical 𝑇-

equivariant lifts, which by a slight abuse of notationwe denote with the same symbol, to cohomol-

ogy classes in𝑋loc
𝐷

forming a ℂ(𝜆) basis ofH𝑇(𝑋loc
𝐷

), where as usual ℂ(𝜆) is the field of fractions of

H𝑇(pt). The 𝑇-equivariant cohomologyH𝑇(𝑋loc
𝐷

) is furthermore endowed with a non-degenerate,

symmetric bilinear form given by the restriction of the 𝑇-equivariant Chen–Ruan [15, Section 2.1]

pairing on the untwisted component of the inertia stack of  loc
𝐷
,

𝜂𝗅𝗆 ∶= (𝐻𝗅, 𝐻𝗆)𝑋loc
𝐷

∶= ∫𝑋

𝐻𝗅 ∪ 𝐻𝗆

∪𝑖e𝑇(𝑋(−𝐷𝑖))
, (4.1)

where e𝑇 denotes the 𝑇-equivariant Euler class.

Let now 𝜏 ∈ H𝑇(𝑋loc
𝐷

). The equivariant big 𝐽-function of 𝑋loc
𝐷

is the formal power series

𝐽
𝑋loc

𝐷

big
(𝜏, 𝑧) ∶= 𝑧 + 𝜏 +

∑
𝖽∈NE(𝑋)

∑
𝑛∈ℤ+

∑
𝗅,𝗆⪯𝗇𝑋

1

𝑛!

⟨
𝜏, … , 𝜏,

𝐻𝗅

𝑧 − 𝜓

⟩𝑋loc
𝐷

0,𝑛+1,𝖽

𝐻𝗆𝜂𝗅𝗆, (4.2)

where we employed the usual correlator notation for Gromov–Witten invariants,

⟨
𝜏1𝜓

𝑘1
1

, … , 𝜏𝑛𝜓
𝑘𝑛
𝑛

⟩𝑋loc

0,𝑛,𝖽
∶= ∫[M0,𝑚(𝑋loc

𝐷
,𝖽)]vir

∏
𝑖

ev∗
𝑖 (𝜏𝑖)𝜓

𝑘𝑖

𝑖
, (4.3)

and 𝜂𝗅𝗆 ∶= (𝜂−1)𝗅𝗆. Restriction to 𝑡 = 𝑡0𝟏𝐻(𝑋) +
∑𝑟𝑋

𝑖=1
𝑡𝑖𝐻𝑖 and use of the Divisor Axiom leads to

the equivariant small 𝐽-function of 𝑋loc
𝐷
,

𝐽
𝑋loc

𝐷

small
(𝑡, 𝑧) ∶= 𝑧e

∑
𝑡𝑖𝜙𝑖∕𝑧

(
1 +

∑
𝖽∈NE(𝑋)

∑
𝗅,𝗆⪯𝗇𝑋

e
∑

𝑡𝑖𝑑𝑖

⟨
𝐻𝗅

𝑧(𝑧 − 𝜓1)

⟩𝑋loc
𝐷

0,1,𝖽

𝐻𝗆𝜂𝗅𝗆

)
. (4.4)

The 𝑛-pointed genus 0 Gromov–Witten invariants with onemarked descendant insertion (respec-

tively, the one-pointed genus 0 descendant invariants) of𝑋loc
𝐷
, and no twisted insertions, can thus

be read off from the formal Taylor series expansion of 𝐽big (respectively, 𝐽small) at 𝑧 = ∞.

The following theorem provides an explicit hypergeometric presentation of 𝐽
𝑋loc

𝐷

small
(𝑡, 𝑧). Let

𝜅𝑗 ∶= 𝑐1((−𝐷𝑗)) be the 𝑇-equivariant first Chern class of(𝐷𝑗) and 𝑦𝑖 ∈ Specℂ[[𝑡]], 𝑖 = 1, … , 𝑟𝑋

be variables in a formal disk around the origin. Writing (𝑥)𝑛 ∶= Γ(𝑥 + 𝑛)∕Γ(𝑥) for the Pochham-

mer symbol of (𝑥, 𝑛) with 𝑛 ∈ ℤ, the 𝑇-equivariant 𝐼-functions of 𝑋 and 𝑋loc
𝐷

are defined as the

H𝑇(𝑋) and H𝑇(𝑋loc
𝐷

) valued Laurent series

𝐼𝑋(𝑦, 𝑧) ∶= 𝑧𝟏𝐻(𝑋) +
∏

𝑖

𝑦
𝐻𝑖∕𝑧

𝑖

∑
𝖽∈NE(𝑋)

∏
𝑖

𝑦
𝑑𝑖

𝑖
𝑧𝖽⋅𝐾𝑋

1
∏

𝑗

(
𝜅𝑗

𝑧
+ 1

)
𝖽⋅𝐷𝑗

, (4.5)
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𝐼𝑋loc
𝐷 (𝑦, 𝑧) ∶= 𝑧𝟏𝐻(𝑋) +

∏
𝑖

𝑦
𝐻𝑖∕𝑧

𝑖

∑
𝖽∈NE(𝑋)

∏
𝑖

𝑦
𝑑𝑖

𝑖
𝑧𝖽⋅(𝐾𝑋+𝐷)−𝑙𝐷

∏
𝑗 𝜅𝑗

(
𝜅𝑗

𝑧
+ 1

)
𝖽⋅𝐷𝑗−1

∏
𝑗

(
𝜅𝑗

𝑧
+ 1

)
𝖽⋅𝐷𝑗

(4.6)

and theirmirror maps as their formal (𝑧0) coefficient,

𝑡𝑖
𝑋(𝑦) ∶=

[
𝑧0𝐻𝑖

]
𝐼𝑋(𝑦, 𝑧),

𝑡𝑖

𝑋loc
𝐷

(𝑦) ∶=
[
𝑧0𝐻𝑖

]
𝐼𝑋loc

𝐷 (𝑦, 𝑧). (4.7)

Note that  and  loc
𝐷

are smooth toric Deligne–Mumford stacks with coarse moduli schemes

𝑋 and 𝑋loc
𝐷

that are projective over their affinisation, and at this level of generality a result of [15]

can be applied to provide a Givental-style equivariant mirror statement for them, as follows. In

the language of [15], the 𝐼-functions (4.5) and (4.6) are the stacky 𝐼-functions of [15, Definitions 28

and 29] for  and  loc
𝐷
, respectively, restricted to insertions in the zero-age sector of their inertia

stack. The main result of [15] identifies the small 𝐽-function of a semi-projective toric Deligne–

Mumford stack to its stacky 𝐼-function, up to a change-of-variables given by its (𝑧0) term as in

(4.7). In particular, the following statement is a projection to the untwisted sector of  and  loc
𝐷

of [15, Theorem 31 and Corollary 32].

Theorem 4.1 [15].We have

𝐽𝑋
small

(𝑡𝑋(𝑦), 𝑧) = 𝐼𝑋(𝑦, 𝑧),

𝐽
𝑋loc

𝐷

small

(
𝑡𝑋(𝑦) + 𝑡𝑋loc

𝐷
(𝑦) − log 𝑦, 𝑧

)
= 𝐼𝑋loc

𝐷 (𝑦, 𝑧). (4.8)

5 THE LOG SIDE: PROOF OF THEOREM 3.2

Assume first that there is 𝑗 such that 𝖽 ⋅ 𝐷𝑗 = 0. Given that

𝑋 =

𝑟𝑋∏
𝑖=1

ℙ𝐺𝑖

(
𝗐(𝑖)

𝑋

)

is given its toric boundary, each 𝐷𝑗 is of the form (up to reordering of the factors)

𝐷𝑗 ×
∏
𝑖≠𝑘

ℙ𝐺𝑖

(
𝗐(𝑖)

𝑋

)

for some𝑘 andwith𝐷𝑗 a prime toric divisor inℙ𝐺𝑘 (𝗐(𝑘)
𝑋

). As𝑑 = (𝑑𝑖)𝑖 ,𝑑 ⋅ 𝐷𝑗 = 0 implies by ample-

ness of 𝐷𝑗 that 𝑑𝑘 ⋅ 𝐷𝑗 = 0 and thus 𝑑𝑘 = 0. This means that each genus 0 degree 𝖽 maximally

tangent stable log map factors through

ℙ𝐺𝑘

(
𝗐(𝑘)

𝑋

)
×
∏
𝑖≠𝑘

ℙ𝐺𝑖

(
𝗐(𝑖)

𝑋

)
,
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and is trivial on the first component. By the log product formula [21, 28], the invariant reduces to

the corresponding invariant of
∏

𝑖≠𝑘 ℙ𝐺𝑖 (𝗐(𝑖)
𝑋

). This moduli problem however is in positive virtual

dimension and thus 𝑅𝔭𝑋
𝖽

= 𝑅𝔮𝑋
𝖽

= 0. For the remainder of this section, we therefore assume that

𝖽 ⋅ 𝐷𝑗 > 0 for all 1 ⩽ 𝑗 ⩽ 𝑙𝐷 .

Moving to the general case with one or two point insertions, recall that 𝑋 =
∏𝑟𝑋

𝑖=1
ℙ𝐺𝑖 (𝗐(𝑖))

is given by the fan Σ ⊂ 𝑁ℝ where 𝑁 ≃ ℤ|𝗇𝑋 | and 𝑁ℝ = 𝑁 ⊗ℤ ℝ. Then Σ is the product fan

of the fans Σ𝑖 ⊂ (𝑁𝑖)ℝ of ℙ𝐺𝑖 (𝗐(𝑖)), where 𝑁𝑖 ≃ ℤ𝗇𝑖 . Writing 𝜀𝑖 ∶=
∑𝑖−1

𝑘=1(𝑛𝑘 + 1), the rays of

Σ𝑖 are [𝐷𝜀𝑖+1], … , [𝐷𝜀𝑖+𝑛𝑖+1] and have primitive generators Δ(𝜀𝑖 + 1), … , Δ(𝜀𝑖 + 𝑛𝑖 + 1), which

satisfy

𝗐(𝑖)
𝜀𝑖+1

Δ(𝜀𝑖 + 1) + ⋯ + 𝗐(𝑖)
𝜀𝑖+𝑛𝑖+1

Δ(𝜀𝑖 + 𝑛𝑖 + 1) = 0.

Write 𝐿𝑖 for the sublattice of 𝑁𝑖 generated by the [Δ(𝜀𝑖 + 𝑗)] and write 𝐵𝑖 for the change of basis

matrix from a ℤ-basis of 𝑁𝑖 to a ℤ-basis of 𝐿𝑖 . Then

| det 𝐵𝑖| = ||𝑁𝑖∕𝐿𝑖
|| = ||𝐺𝑖

||.

Let 𝐿 be the sublattice of 𝑁 generated by the 𝐿𝑖 and let 𝐵 be the change of basis matrix from 𝑁 to

𝐿 given by the 𝐵𝑖 . We have that | det 𝐵| =
∏𝑟𝑋

𝑖=1
| det 𝐵𝑖| =

∏𝑟𝑋

𝑖=1
|𝐺𝑖|.

Proposition 5.1. The set T(𝔭)𝑋
𝖽
has an unique element Γ of multiplicity 1.

Proof. Each element Γ of T(𝔭)𝑋
𝖽
has |𝗇𝑋| + 𝑟𝑋 exterior markings (=rays) parallel to the rays

[𝐷1], … , [𝐷|𝗇𝑋 |+𝑟𝑋
] and 1 vertex (=unique interior marking) with valency |𝑛| + 𝑟𝑋 . Thus, the only

possibility is that Γ is the translate of the rays of the fan of𝑋. Write 𝜁 for one of the two generators

of Λ|𝗇𝑋 |𝑀. Then Mult(Γ) is given by the index of

|𝗇𝑋 |+𝑟𝑋∏
𝑗=1

𝑧
𝑒𝑋
𝑗

(𝖽)Δ(𝑗)
= 𝜁 ∈ Λ|𝗇𝑋 |𝑀

in Λ|𝗇𝑋 |𝑀, which equals 1. □

It follows from Proposition 5.1 and the correspondence result of [24] that

𝑅𝔭𝑋
𝖽 = 1.

We calculate the multiplicity of the element of 𝑇(𝔮)𝑋
𝖽
in three steps of increasing generality.

Proposition 5.2. Assume that 𝑋 is the fake weighted projective plane ℙ𝐺(𝗐1, 𝗐2, 𝗐3), where we

assumed that gcd(𝗐1, 𝗐2, 𝗐3) = 1. Then T(𝔮)𝑋
𝖽
has an unique element of multiplicity |𝐺|𝗐1𝗐2𝗐3𝑑2.

Proof. From𝗐1Δ(1) + 𝗐2Δ(2) + 𝗐3Δ(3) = 0, it follows that |Δ(1) ∧ Δ(2)| = 𝗐3| det 𝐵|. Choose the
basis {Δ(1), Δ(2)} of 𝑁ℝ. In this basis, choose 𝑃1 to be (1,0) and 𝑃2 to be (0,1). Then the unique

genus 0 degree 𝑑 maximally tangent tropical curve passing through 𝑃1 and 𝑃2 consists of the rays

[𝐷1], [𝐷2], [𝐷3], meeting at 0 = (0, 0), and with weights 𝗐𝑗𝑑 on [𝐷𝑗].
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Choose 0 to be the sink vertex and let 𝐸1, respectively, 𝐸2, be the edge connecting 0 with 𝑃1,

respectively, 𝑃2. Choose moreover {𝑒1, 𝑒2} to be a ℤ-basis of 𝑀 with dual basis {𝑒∗
1
, 𝑒∗

2
}. Then

𝜁𝐸1
= 𝓁2(𝜁𝐷1

⊗ 𝜁𝑃1
) = 𝓁2(𝑧𝗐1𝑑Δ(1) ⊗ (𝑒∗

1 ∧ 𝑒∗
2)) = 𝑧𝗐1𝑑Δ(1)𝜄𝗐1𝑑Δ(1)(𝑒

∗
1 ∧ 𝑒∗

2)

= 𝑧𝗐1𝑑Δ(1)
(
(𝜄𝗐1𝑑Δ(1)𝑒

∗
1) ∧ 𝑒∗

2 − 𝑒∗
1 ∧ 𝜄𝗐1𝑑Δ(1)(𝑒

∗
2)
)

= 𝑧𝗐1𝑑Δ(1)
(
𝑒∗

1(𝗐1𝑑Δ(1)) 𝑒∗
2 − 𝑒∗

2(𝗐1𝑑Δ(1)) 𝑒∗
1

)
.

Similarly,

𝜁𝐸2
= 𝑧𝗐2𝑑Δ(2)

(
𝑒∗

1(𝗐2𝑑Δ(2)) 𝑒∗
2 − 𝑒∗

2(𝗐2𝑑Δ(2)) 𝑒∗
1

)

and

𝜁Γ = 𝜁𝐷3
𝜁𝐸1

𝜁𝐸2
= −𝑒∗

1(𝗐1𝑑Δ(1)) 𝑒∗
2(𝗐2𝑑Δ(2)) 𝑒∗

2 ∧ 𝑒∗
1 − 𝑒∗

2(𝗐1𝑑Δ(1)) 𝑒∗
1(𝗐2𝑑Δ(2)) 𝑒∗

1 ∧ 𝑒∗
2

= 𝗐1𝗐2𝑑2
(
𝑒∗

1(Δ(1))𝑒∗
2(Δ(2)) − 𝑒∗

2(Δ(1))𝑒∗
1(Δ(2))

)
𝑒∗

1 ∧ 𝑒∗
2

= 𝗐1𝗐2𝑑2 |Δ(1) ∧ Δ(2)| 𝑒∗
1 ∧ 𝑒∗

2 = 𝗐1𝗐2𝗐3𝑑2 | det 𝐵| 𝑒∗
1 ∧ 𝑒∗

2 ,

which is indeed of index |𝐺|𝗐1𝗐2𝗐3𝑑2 in Λ2𝑀. □

Proposition 5.3. Assume that 𝑟𝑋 = 1, that is, 𝑋 = ℙ𝐺(𝗐1, … , 𝗐𝑛+1) and that 𝑛 ⩾ 3. Then, for an

appropriate choice of marked points 𝑃1 and 𝑃2, the set T(𝔮)𝑋
𝖽
has a unique element Γ of multiplicity

|𝐺| ∏𝑛+1
𝑗=1 𝗐𝑗 𝑑𝑛.

Proof. We choose as basis of 𝑁ℝ the basis {Δ(1), … , Δ(𝑛)}. We choose our second point (interior

marking) 𝑃2 to have coordinate (𝑎1, … , 𝑎𝑛) for 𝑎𝑖 < 0 and general. We choose our first marked

point 𝑃1 to have coordinate (𝑏, 0, … , 0) for 𝑏 > 0 large enough so that restricted to the half-space

{(𝑥1, … , 𝑥𝑛)|𝑥1 > 𝑏}, any ℎ ∈ T(𝔮)𝑋
𝖽
is affine linear with image (𝑏, 0, … , 0) + ℝ>0 Δ(1) and weight

𝑒1(𝖽).

For 1 < 𝑗 ⩽ 𝑛, write 𝗐1𝑗Δ(1𝑗) ∶= −𝗐1Δ(1) − 𝗐𝑗Δ(𝑗) with Δ(1𝑗) primitive and 𝗐1𝑗 ∈ ℕ. Con-

sider the finite abelian group

𝐺𝑗 ∶= (⟨Δ(1), Δ(2)⟩ℝ ∩ 𝑁)∕⟨Δ(1), Δ(2), Δ(1𝑗)⟩.

Given Γ ∈ T(𝔮)𝑋
𝖽
, projecting to the plane ⟨Δ(1), Δ(2)⟩ℝ leads to a genus 0 maximally tangent trop-

ical curve in ℙ𝐺𝑗
(𝗐1, 𝗐𝑗 , 𝗐1𝑗) passing through two general points. By Proposition 5.2, there is only

one such curve (and it has multiplicity |𝐺𝑗|𝗐1𝗐𝑗𝗐1𝑗𝑑2). These curves lift to a unique maximally

tangent curve ℎ ∶ Γ → 𝑁ℝ.

Choose 𝑃2 to be the sink vertex and consider the associated flow. Since the 𝑎𝑖 are chosen to be

general, on the set {(𝑥𝑖)|𝑥𝑖 < 𝑎𝑖}, ℎ is affine linear with slope parallel to Δ(𝑛 + 1). We reorder the

Δ(𝑗) such that following the flow from 𝑃2, the rays that are added to Γ are successively translates

of [𝐷𝑛], [𝐷𝑛−1], … , [𝐷2]. Note that all vertices are 3-valent since 𝑃1 and 𝑃2 are in general position.

Starting at 𝑃1 and following the flow, we label the compact edges successively 𝐸1, … , 𝐸𝑛. Choose

a ℤ-basis 𝑒1, … , 𝑒𝑛 of 𝑁. Then

𝜁𝐸1
= 𝓁2(𝑧𝗐1𝑑Δ(1) ⊗ 𝑒∗

1 ∧ ⋯ ∧ 𝑒∗
𝑛) = 𝑧𝗐1𝑑Δ(1)𝜄𝗐1𝑑Δ(1)(𝑒

∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛).
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At the next step,

𝜁𝐸2
= 𝑧𝗐1𝑑Δ(1)+𝗐2𝑑Δ(2)𝜄𝗐1𝑑Δ(1)+𝗐2𝑑Δ(2)◦𝜄𝗐1𝑑Δ(1)(𝑒

∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛)

= 𝑧𝗐1𝑑Δ(1)+𝗐2𝑑Δ(2)𝜄(𝗐1𝑑Δ(1)+𝗐2𝑑Δ(2))∧𝗐1𝑑Δ(1)(𝑒
∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛)

= 𝑧𝗐1𝑑Δ(1)+𝗐2𝑑Δ(2)𝜄(𝗐1𝗐2𝑑2Δ(1)∧Δ(2))(𝑒
∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛).

Iterating this process, we obtain

𝜁𝐸𝑛
= 𝑧𝗐1𝑑Δ(1)+⋯+𝗐𝑛𝑑Δ(𝑛)𝜄(𝗐1⋯𝗐𝑛𝑑𝑛Δ(1)∧⋯∧Δ(𝑛))(𝑒

∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛).

Since 𝗐1Δ(1) + ⋯ + 𝗐𝑛+1Δ(𝑛 + 1) = 0, |Δ(1) ∧ ⋯ ∧ Δ(𝑛)| = 𝗐𝑛+1| det 𝐵| and hence

𝜁Γ = 𝜄(𝗐1⋯𝗐𝑛𝑑𝑛Δ(1)∧⋯∧Δ(𝑛))(𝑒
∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛) 𝑒∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛

= 𝗐1 ⋯𝗐𝑛𝑑𝑛 |Δ(1) ∧ ⋯ ∧ Δ(𝑛)| 𝑒∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛

= 𝗐1 ⋯𝗐𝑛𝗐𝑛+1𝑑𝑛 | det 𝐵| 𝑒∗
1 ∧ ⋯ ∧ 𝑒∗

𝑛,

which is indeed of index |𝐺|𝗐1 ⋯𝗐𝑛𝗐𝑛+1𝑑𝑛 in Λ𝑛𝑀. □

Proposition 5.4. Let𝑋 =
∏𝑟𝑋

𝑖=1
ℙ𝐺𝑖 (𝗐(𝑖)) be the product of fake weighted projective spaces. Then the

set T(𝔮)𝑋
𝖽
has a unique element Γ of multiplicity

∏𝑟𝑋

𝑖=1
|𝐺𝑖| (∏𝑖,𝑗(𝗐𝑋)(𝑖)

𝑗
)𝖽𝗇𝑋 .

Proof. Label the last 𝑟𝑋 divisors 𝐷|𝗇𝑋 |+1, … , 𝐷|𝗇𝑋 |+𝑟𝑋
to be coming from distinct components of

𝑋. Then [𝐷1], … , [𝐷|𝗇𝑋 |] ∈ Σ[1] form a ℝ-basis of 𝑁ℝ. To calculate 𝑅𝔮𝑋
𝖽
, we choose the mark-

ing 𝑃2 with the 𝜓𝑟𝑋−1 condition to be the origin 0. We choose the marking 𝑃1 a general point

that has positive coordinates with respect to the above basis. Then the 𝑟𝑋 + 1 incoming rays

at 𝑃2 are necessarily 𝐷|𝗇𝑋 |+1, … , 𝐷|𝗇𝑋 |+𝑟𝑋
with weights 𝑒𝑋

𝑗
(𝖽) and a primitive vector in direction

−𝑒|𝗇𝑋 |+1(𝖽)𝐷|𝗇𝑋 |+1 − ⋯ − 𝑒|𝗇𝑋 |+𝑟𝑋
(𝖽)𝐷|𝗇𝑋 |+𝑟𝑋

with appropriate weight.

There is only one way to make a maximally tangent tropical curve Γ passing through 𝑃1 out of

it. To see this, for each 𝑖, consider themap of fansΣ → Σ𝑖 corresponding to the projection to the 𝑖th

component. In Σ𝑖 the tropical curve becomes straight at 0 and hence we are looking at maximally

tangent curves of degree 𝑑𝑖 passing through two general points. By Proposition 5.3, there is only

one such tropical curve. Moreover, the curve in 𝑁ℝ is uniquely determined by these projections.

Choose 𝑃2 to be the sink vertex. Then the multiplicity of Γ is calculated as in Proposition 5.3 to

be
∏𝑟𝑋

𝑖=1
|𝐺𝑖| (∏𝑖,𝑗(𝗐𝑋)(𝑖)

𝑗
)𝖽𝗇𝑋 . □

The correspondence principle of [24] then entails that

𝑅𝔮𝑋
𝖽 =

𝑟𝑋∏
𝑖=1

||𝐺𝑖
||
(∏

𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

)
𝖽𝗇𝑋 ,

concluding the calculations of the logarithmic invariants of Theorem 3.2.
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6 THE LOCAL SIDE: PROOF OF THEOREM 3.3

6.1 The Poincaré pairing

As in Section 4.2, we consider the scalar 𝑇 ≃ ℂ⋆ action on 𝑋loc
𝐷

that covers the trivial action on

the base 𝑋, and denote 𝜆 = 𝑐1(𝐵ℂ⋆(1)) for the corresponding equivariant parameter. Note that

for any 𝗅 ⪯ 𝗇𝑋 , the Grammatrix 𝜂𝗅𝗆 for the restriction to the untwisted sector of the 𝑇-equivariant

Chen–Ruan pairing (4.1) of 𝑋loc
𝐷

satisfies

𝜂𝗅𝗇𝑋
= ∫[𝑋]

𝐻𝗅+𝗇𝑋

e𝑇(𝑁𝑋∕𝑋loc
𝐷

)
= ∫[𝑋]

𝐻𝗅+𝗇𝑋

(e𝑇(𝑁𝑋∕𝑋loc
𝐷

))[0]
= ∫[𝑋]

𝐻𝗅+𝗇𝑋

∏|𝗇𝑋 |+𝑟𝑋

𝑖=1
𝜆

=

⎧
⎪⎨⎪⎩

∏
𝑖 |𝐺𝑖| ∏𝑖,𝑗(𝗐𝑋)(𝑖)

𝑗

𝜆|𝗇𝑋 |+𝑟𝑋
𝗅 = 0,

0 else,

(6.1)

for degree reasons.Also, 𝜂𝗅𝗆 = 0 if |𝗅| + |𝗆| > |𝗇𝑋| for the same reason: thismeans that 𝜂𝗅𝗆 is upper

anti-triangular, and 𝜂𝗅𝗆 ∶= (𝜂−1)𝗅𝗆 is lower anti-triangular with anti-diagonal elements 𝜂𝗅,𝗇𝑋−𝗅 =

1∕𝜂𝗅,𝗇𝑋−𝗅.

6.2 One pointed descendants

In the following, let 𝑦 = 𝑦1 … 𝑦𝑟𝑋
and 𝑄 = e𝑡1+⋯+𝑡𝑟𝑋 . From (4.4), we have

𝐽
𝑋loc

𝐷

small
(𝑡, 𝑧) ∶= 𝑧

𝑟𝑋∏
𝑖=1

e𝑡𝑖𝐻𝑖∕𝑧

[
1 +

∑
𝖽,𝑎,𝗅,𝗆

𝑄𝖽𝑧−𝑎−2
⟨

𝐻𝗅𝜓𝑎
⟩𝑋loc

𝐷

0,1,𝖽
𝜂𝗅𝗆𝐻𝗆

]
=∶

∑
𝗆

(𝐽
𝑋loc

𝐷

small
)[𝗆]𝐻𝗆. (6.2)

Using (6.1), we get that the component of the small, twisted 𝐽-function along the identity class is

(𝐽
𝑋loc

𝐷
sm )[0] ∶= 𝑧

[
1 +

∑
𝖽,𝑎,𝗅

𝑄𝖽𝑧−𝑎−2
⟨

𝐻𝗅𝜓𝑎
⟩𝑋loc

𝐷

0,1,𝖽
𝜂𝗅0

]
,

= 𝑧
⎡
⎢⎢⎣
1 +

𝜆|𝗇𝑋 |+𝑟𝑋

∏
𝑖 |𝐺𝑖| ∏𝑖,𝑗(𝗐𝑋)(𝑖)

𝑗

∑
𝖽,𝑎

𝑄𝖽𝑧−𝑎−2
⟨

𝐻𝗇𝑋 𝜓𝑎
⟩𝑋loc

𝐷

0,1,𝖽

⎤
⎥⎥⎦
,

= 𝑧

[
1 + 𝜆|𝗇𝑋 |+𝑟𝑋

∑
𝖽,𝑎

𝑄𝖽𝑧−𝑎−2⟨[pt]𝜓𝑎⟩𝑋loc
𝐷

0,1,𝖽

]
. (6.3)

Therefore, our first set of invariants (2.9) can be computed from (6.3) as

𝔭𝑋
𝖽 ∶=

⟨
[pt]𝜓|𝗇𝑋 |+𝑟𝑋−2

⟩
0,1,𝖽

=
1

𝜆|𝗇𝑋 |+𝑟𝑋

[
𝑧−|𝗇𝑋 |−𝑟𝑋 e𝑡⋅𝖽

]
(𝐽

𝑋loc
𝐷

small
)[0]. (6.4)

To compute the right-hand side, we use Theorem 4.1. For quantities 𝑎(𝑗) depending on 𝑒𝑋
𝑗

(𝖽), the

notation
◦∏

𝑗𝑎(𝑗) refers to the product of 𝑎(𝑗) over 𝑗 ∈ {1, … , |𝗇𝑋| + 𝑟𝑋 | 𝑒𝑋
𝑗

(𝖽) ≠ 0}. From (4.5) and
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(4.6), the 𝐼-functions of 𝑋 and 𝑋loc
𝐷

are

𝐼𝑋(𝑦, 𝑧) ∶= 𝑧
∑

𝖽

𝑟𝑋∏
𝑖=1

𝑦
𝐻𝑖∕𝑧+𝑑𝑖

𝑖

◦∏
𝑗

1
∏𝑒𝑋(𝖽)

𝑚𝑗=1

(
𝑚𝑗𝑧 +

∑
𝑖 𝑄𝑋

𝑖𝑗
𝐻𝑖

) =∶
∑
𝗆

(𝐼𝑋loc)[𝗆]𝐻𝗆, (6.5)

𝐼𝑋loc
𝐷 (𝑦, 𝑧) ∶= 𝑧

∑
𝖽

𝑟𝑋∏
𝑖=1

𝑦
𝐻𝑖∕𝑧+𝑑𝑖

𝑖

◦∏
𝑗

∏𝑒𝑋
𝑗

(𝖽)−1

𝑚𝑗=0

(
𝜆 − 𝑚𝑗𝑧 −

∑
𝑖 𝑄𝑋

𝑖𝑗
𝐻𝑖

)

∏𝑒𝑋(𝖽)
𝑚𝑗=1

(
𝑚𝑗𝑧 +

∑
𝑖 𝑄𝑋

𝑖𝑗
𝐻𝑖

) =∶
∑
𝗆

(𝐼𝑋loc)[𝗆]𝐻𝗆.

(6.6)

Lemma 6.1. The mirror maps of 𝑋 and 𝑋loc
𝐷

are trivial,

𝑡𝑋
𝑖 (𝑦) = 𝑡

𝑋loc
𝐷

𝑖
(𝑦) = log 𝑦𝑖 . (6.7)

Proof. This is a straightforward calculation from (6.5) and (6.6). Keeping track of the powers of 𝑧 in

the general summands entails that 𝐼𝑋(𝑦, 𝑧) = 𝑧 +
∑

𝑖 log 𝑦𝑖𝐻𝑖 + (1∕𝑧) = 𝐼𝑋loc
𝐷 (𝑦, 𝑧), from which

the claim follows. □

By the previous lemma and (6.4), to compute 𝔭𝑋
𝖽
we just need to evaluate the component of the

𝐼-function of 𝑋loc
𝐷

along the identity, divide by 𝜆|𝗇𝑋 |+𝑟𝑋 , and isolate the coefficient of(𝑧−|𝗇𝑋 |−𝑟𝑋 ).

We have

(𝐼𝑋loc
𝐷 )[0] = 𝑧

∑
𝖽

𝑦𝖽

◦∏
𝑗

∏𝑒𝑋
𝑗

(𝖽)−1

𝑚𝑗=0

(
𝜆 − 𝑚𝑗𝑧

)

◦∏
𝑗

∏𝑒𝑋
𝑗

(𝖽)

𝑚𝑗=1

(
𝑚𝑗𝑧

)

= 𝑧
∑

𝖽

𝑦𝖽

◦∏
𝑗

∏𝑒𝑋
𝑗

(𝖽)−1

𝑚𝑗=0

(
𝜆 − 𝑚𝑗𝑧

)

𝑧𝑒𝑋(𝖽)
◦∏

𝑗(𝑒𝑋
𝑗

(𝖽))!

. (6.8)

The numerator in the general summand of (6.8) is divisible by 𝜆|𝗇𝑋 |+𝑟𝑋 (corresponding to setting

all 𝑚𝑗 = 0 in the product):

◦∏
𝑗

𝑒𝑋
𝑗

(𝖽)−1∏
𝑚𝑗=0

(
𝜆 − 𝑚𝑗𝑧

)
= 𝜆|𝗇𝑋 |+𝑟𝑋

◦∏
𝑗

𝑒𝑋
𝑗

(𝖽)−1∏
𝑚𝑗=1

(
𝜆 − 𝑚𝑗𝑧

)
, (6.9)

hence dividing by 𝜆|𝗇𝑋 |+𝑟𝑋 we get

◦∏
𝑗

𝑒𝑋
𝑗

(𝖽)−1∏
𝑚𝑗=1

(
𝜆 − 𝑚𝑗𝑧

)
= (−𝑧)𝑒𝑋(𝖽)−|𝗇𝑋 |−𝑟𝑋

(
◦∏

𝑗
(𝑒𝑋

𝑗 (𝖽) − 1)! + (1∕𝑧)

)
. (6.10)
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In particular, this implies that

𝔭𝑋
𝖽 =

⟨
[pt]𝜓|𝗇𝑋 |+𝑟𝑋−2

⟩
0,1,𝖽

=
1

𝜆|𝗇𝑋 |+𝑟𝑋

[
𝑧−|𝗇𝑋 |−𝑟𝑋 𝑦𝖽

]
(𝐼𝑋loc)[0] =

(−1)𝑒𝑋(𝖽)−|𝗇𝑋 |−𝑟𝑋

◦∏
𝑒𝑋

𝑗
(𝖽)

, (6.11)

proving the first part of Theorem 3.4.

6.2.1 Two pointed descendants

Let us now turn to the computation of 𝔮𝑋
𝖽
. We start with the following observation: from (6.6), we

have

𝐼𝑋loc
𝐷 (𝑦, 𝑧) ∶= 𝑧 +

∑
𝗅⪯𝗇𝑋

1

𝑧|𝗅|−1

⎡⎢⎢⎣

𝑟𝑋∏
𝑖=1

log𝑙𝑖 𝑦𝑖 𝐻
𝑙𝑖
𝑖

𝑙𝑖!
+ (1

𝑧

)⎤⎥⎥⎦
. (6.12)

This follows immediately from the fact that

∏|𝗇𝑋 |+𝑟𝑋

𝑗=1

∏𝑒𝑋
𝑗

(𝖽)−1

𝑚𝑗=0

(
𝜆 − 𝑚𝑗𝑧 −

∑
𝑖 𝑄𝑋

𝑖𝑗
𝐻𝑖

)

∏|𝗇𝑋 |+𝑟𝑋

𝑗=1

∏𝑒𝑋
𝑗

(𝖽)

𝑚𝑗=1

(
𝑚𝑗𝑧 +

∑
𝑖 𝑄𝑋

𝑖𝑗
𝐻𝑖

) = (𝑧
−
∑

𝑗 𝜃(𝑒𝑋
𝑗

(𝖽))
)

, (6.13)

where 𝜃(𝑥) = 0 (respectively, 𝜃(𝑥) = 1) for 𝑥 = 0 (respectively, 𝑥 > 0).

From this, we deduce the following lemma. For 𝑡 ∈ H𝑇(𝑋loc
𝐷

), let ⋆̂𝑡 denote the big quantum

cohomology product,

𝐻𝗅⋆̂𝑡𝐻
𝗆 ∶=

∑
𝖽∈NE(𝑋)

∑
𝑛∈ℕ

∑
𝗂,𝗄⪯𝗇

⟨
𝐻𝗅, 𝐻𝗆, 𝐻𝗂, 𝑡, … , 𝑡

⟩𝑋loc
𝐷

0,3+𝑛,𝖽
𝜂𝗂𝗄𝐻𝗄 (6.14)

and ⋆𝑦 its restriction to small quantum cohomology at 𝑡 =
∑

𝑖 log 𝑦𝑖𝐻𝑖 ,

𝐻𝗅 ⋆𝑦 𝐻𝗆 ∶=
∑

𝗄

𝑐𝗄
𝗅𝗆(𝑦)𝐻𝗄 ∶=

∑
𝖽∈NE(𝑋)

∑
𝗂,𝗄

⟨
𝐻𝗅, 𝐻𝗆, 𝐻𝗂

⟩𝑋loc
𝐷

0,3,𝖽
𝑦𝖽𝜂𝗂𝗄𝐻𝗄. (6.15)

Write 𝑡 =
∑

𝗅⪯𝗇𝑋
𝑡𝗅𝐻

𝗅. In the following, we denote∇𝐻𝗅 ∶= 𝜕𝑡𝗅 and, for any function 𝑓 ∶ H𝑇(𝑋loc
𝐷

) →

ℂ(𝜆), 𝑓|sqc indicates its restriction to small quantum cohomology, 𝑡 →
∑𝑟𝑋

𝑖=1
𝑡𝑖𝐻𝑖 .

Lemma 6.2. For 𝗅 ≺ 𝗇𝑋 , we have

(⋆𝑦)
𝑟𝑋

𝑖=1
𝐻

⋆𝑦 𝑙𝑖
𝑖

= ∪
𝑟𝑋

𝑖=1
𝐻

∪𝑙𝑖
𝑖

=∶ 𝐻𝗅. (6.16)

Moreover,

𝑧∇𝐻𝗅𝐽
𝑋loc

𝐷

big
(𝑡, 𝑧)||sqc =

∏
𝑖

(
𝑧𝑦𝑖𝜕𝑦𝑖

)𝑙𝑖
𝐼𝑋loc

𝐷 (𝑦, 𝑧). (6.17)
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Remark 2. This proposition is a variation of the well-known statement that for ℙ𝑛 the small quan-

tum product is the same as the cup product for all degrees up to and excluding 𝑛.

Proof. Recall that the components of 𝐽
𝑋loc

𝐷

big
(𝑡, 𝑧) are a set of flat coordinates for the Dubrovin con-

nection in big quantum cohomology,

𝑧∇𝐻𝗅∇𝐻𝗆𝐽
𝑋loc

𝐷

big
(𝑡, 𝑧) = ∇𝐻𝗅⋆̂𝑡𝐻

𝗆𝐽
𝑋loc

𝐷

big
(𝑡, 𝑧). (6.18)

Write now ()[𝑘] ∶= [𝑧−𝑘] for any Laurent series  ∈ ℂ((𝑧)) and suppose |𝗅| = |𝗆| = 1. We have

that

∇𝐻𝗅∇𝐻𝗆

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠]

||||sqc
= ∇𝐻𝗅⋆𝑦𝐻𝗆(𝐽

𝑋loc
𝐷

big
(𝑡))[𝑠−1] =

∑
𝗄

𝑐𝗄
𝗅𝗆(𝑦)∇𝗄

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−1]

||||sqc
. (6.19)

Now,

𝑐𝗄
𝗅𝗆(𝑦) = (𝑦𝑙𝜕𝑦𝑙

)(𝑦𝑚𝜕𝑦𝑚
)(𝐽

𝑋loc
𝐷

sm (𝑦))[𝗄]
[1]

= 𝛿𝗄
𝗅+𝗆 = 𝑐𝗄

𝗅𝗆(0) (6.20)

from (6.12) and the fact that (𝐽
𝑋loc

𝐷

big
)[𝗄] is the [𝗄]-component of the gradient of the genus 0 Gromov–

Witten potential. Then

(𝑦𝑙𝜕𝑦𝑙
)(𝑦𝑚𝜕𝑦𝑚

)𝐼
𝑋loc

𝐷

[𝑠]
(𝑦) = ∇𝐻𝗅∇𝐻𝗆

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠]

||||sqc
=
∑

𝗄

𝑐𝗄
𝗅𝗆(0)∇𝗄

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−1]

||||sqc

= ∇𝐻𝗅+𝗆

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−1]

||||sqc
. (6.21)

Now, for |𝗆| = 1 and by induction on 1 ⩽ |𝗅| < |𝗇𝑋| we have, from (6.12), that

𝑐𝗄
𝗅𝗆(𝑦) = ∇𝐻𝗅∇𝐻𝗆

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)[𝗄]

[1]

||||sqc
=

(∏
𝑖

𝑦𝑙𝑖
𝜕𝑦𝑙𝑖

)
(𝑦𝑚𝜕𝑦𝑚

)
(

𝐼𝑋loc
𝐷 (𝑦)

)[𝗄]

|𝗅| = 𝛿𝗄
𝗅+𝗆 = 𝑐𝗄

𝗅𝗆(0), (6.22)

and for 𝑠 ⩾ |𝗅|,
(∏

𝑖

𝑦𝑙𝑖
𝜕𝑦𝑙𝑖

)
(𝑦𝑚𝜕𝑦𝑚

)
(

𝐼𝑋loc
𝐷 (𝑦)

)
[𝑠]

= ∇𝐻l∇𝐻m

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−|l|+1]

|sqc

=
∑

k

𝑐k
lm

(0)∇k

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−|l|]
|sqc

= ∇𝐻l+m

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠−|l|]
|sqc. (6.23)

□
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Corollary 6.3. We have

𝔮𝑋
𝖽 =

∏
𝑖

||𝐺𝑖
||
(∏

𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

)
𝖽𝗇𝑋 𝔭𝑋

𝖽 . (6.24)

Proof. From the previous lemma we have, in particular,

∇𝐻𝗇𝑋

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)

[𝑠]

||||sqc
=

(∏
𝑖

(
𝑦𝑖𝜕𝑦𝑖

)𝑛𝑖

)(
𝐼𝑋loc

𝐷 (𝑦)
)

[𝑠+|𝗇𝑋 |−1]
. (6.25)

From (2.10) and (6.25), we have

𝔮𝑋
𝖽 = [𝑦𝖽]𝜂𝗇𝑋0∇𝐻𝗇𝑋

(
𝐽

𝑋loc
𝐷

big
(𝑡)

)[0]

[𝑟𝑋+1]

||||sqc

=

∏
𝑖 |𝐺𝑖| ∏𝑖,𝑗 (𝗐𝑋)

(𝑖)
𝑗

𝜆|𝗇𝑥|+𝑟𝑋
[𝑦𝖽]

∏
𝑖

(
𝑦𝑖𝜕𝑦𝑖

)𝑛𝑖
(

𝐼𝑋loc
𝐷 (𝑦)

)[0]

[|𝗇𝑋 |+𝑟𝑋]

=
∏

𝑖

|𝐺𝑖|
∏
𝑖,𝑗

(𝗐𝑋)
(𝑖)
𝑗

∏
𝑖

𝑑
𝑛𝑖

𝑖
𝔭𝑋

𝖽 , (6.26)

concluding the proof. □

Remark 3. The statement of Lemma 6.2 also immediately reconstructs explicitly two-point descen-

dant invariants where the powers of 𝜓-classes are distributed among the two marked points by

standard structure results about g = 0Gromov–Witten theory (namely the symplecticity of the  -

matrix, which is a consequence of WDVV and the string equation: this is [23, Lemma 17]). Their

agreement with the corresponding log invariants is an easy exercise left to the reader.
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