
This is a repository copy of Genome‐wide association study of INDELs identified four 
novel susceptibility loci associated with lung cancer risk.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/152155/

Version: Accepted Version

Article:

Dai, J., Huang, M., Amos, C.I. et al. (36 more authors) (2020) Genome‐wide association 
study of INDELs identified four novel susceptibility loci associated with lung cancer risk. 
International Journal of Cancer, 146 (10). pp. 2855-2864. ISSN 0020-7136 

https://doi.org/10.1002/ijc.32698

This is the peer reviewed version of the following article: Dai, J. , Huang, M. , Amos, C. I., 
Hung, R. J., Tardon, A. , Andrew, A. , Chen, C. , Christiani, D. C., Albanes, D. , Rennert, G.
, Fan, J. , Goodman, G. , Liu, G. , Field, J. K., Grankvist, K. , Kiemeney, L. A., Le 
Marchand, L. , Schabath, M. B., Johansson, M. , Aldrich, M. C., Johansson, M. , Caporaso,
N. , Lazarus, P. , Lam, S. , Bojesen, S. E., Arnold, S. , Landi, M. T., Risch, A. , Wichmann, 
H. , Bickeboller, H. , Brennan, P. , Shete, S. , Melander, O. , Brunnstrom, H. , Zienolddiny, 
S. , Woll, P. , Stevens, V. , Hu, Z. and Shen, H. (2019), Genome‐wide association study of 
INDELs identified four novel susceptibility loci associated with lung cancer risk. Int. J. 
Cancer. Accepted Author Manuscript., which has been published in final form at 
https://doi.org/10.1002/ijc.32698. This article may be used for non-commercial purposes in
accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

Genome-wide association study of INDELs identified four novel 

susceptibility loci associated with lung cancer risk 

Juncheng Dai,1,2 † Mingtao Huang,1 † Christopher I. Amos,3 Rayjean J. Hung,4 

Adonina Tardon,5 Angeline Andrew,6 Chu Chen,7 David C. Christiani,8 Demetrius 

Albanes,9 Gadi Rennert,10 Jingyi Fan,1 Gary Goodman,11 Geoffrey Liu,12 John K. 

Field,13 Kjell Grankvist,14 Lambertus A. Kiemeney,15 Loic Le Marchand,16 Matthew B. 

Schabath,17 Mattias Johansson,18 Melinda C. Aldrich,19 Mikael Johansson,20 Neil 

Caporaso,9 Philip Lazarus,21 Stephan Lam,22 Stig E. Bojesen,23,24 Susanne Arnold,25 

Maria Teresa Landi,9 Angela Risch,26 H-Erich Wichmann,27 Heike Bickeboller,28 Paul 

Brennan,29 Sanjay Shete,30 Olle Melander,31 Hans Brunnstrom,31 Shan Zienolddiny,32 

Penella Woll,33 Victoria Stevens,34 Zhibin Hu,1,2 Hongbing Shen,1,2 * 

1 Department of Epidemiology, Center for Global Health, School of Public Health, 

Nanjing Medical University, Nanjing 211166, China 

2 Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative 

Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 

211166, China 

3 Department of Medicine, Epidemiology Section, Institute for Clinical and 

Translational Research, Baylor Medical College, Houston, Texas, 77030, USA 

4 Epidemiology Division, Lunenfeld-Tanenbuaum Research Institute, Sinai Health 

System, Toronto, Ontario, M5T 3L9, Canada 

5 Faculty of Medicine, University of Oviedo and CIBERESP, Oviedo, 33006, Spain 

6 Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New 

Hampshire, 3756, USA 

7 Department of Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, 

Washington, 98109-1024, USA 

8 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, 

Massachusetts, 2115, USA 

9 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, 

Maryland, 20892-7150, USA 

10 Technion Faculty of Medicine, Carmel Medical Center, Israel Institute of 

Technology, Haifa, Israel 

11 Public Health Sciences Division, Swedish Cancer Institute, Seattle, Washington, 

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.

This article has been accepted for publication and undergone full peer review but has 

not been through the copyediting, typesetting, pagination and proofreading process 

which may lead to differences between this version and the Version of Record. Please 

cite this article as doi: 10.1002/ijc.32698 



2 

 

98109, USA 

12 Epidemiology Division, Princess Margaret Cancer Center, Toronto, Ontario, M5G 

2M9, Canada 

13 Roy Castle Lung Cancer Research Programme, Department of Molecular & 

Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 3BX, UK 

14 Unit of Clinical Chemistry, Department of Medical Biosciences, Umeå University, 

Umeå, 901 85, Sweden 

15 Department of Health Evidence, Radboud university medical center, Nijmegen, 

Germany 

16 Department of Epidemiology, University of Hawaii Cancer Center, Honolulu, 

Hawai'I, 96813, USA 

17 Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research 

Institute, Tampa, Florida, 33612-9497, USA 

18 Genetic Epidemology Group, International Agency for Research on Cancer, Lyon, 

69372 CEDEX 08, France 

19 Department of Thoracic Surgery, Division of Epidemiology, Vanderbilt University 

Medical Center, Nashville, Tennessee, 37232, USA 

20 Department of Radiation Sciences, Umeå University, Umeå, 901 85, Sweden 

21 Washington State University College of Pharmacy, Spokane, Washington, 

99210-1495, USA 

22 Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, 

British Columbia, V5Z 1L3, Canada 

23 Department of Clinical Biochemistry, Copenhagen University Hospital, 

Copenhagen, 2200, Denmark 

24 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 

2200, Denmark 

25 Markey Cancer Center, University of Kentucky, Lexington, Kentucky, 40508, 

USA 

26 Cancer Center Cluster Salzburg at PLUS, Department of Molecular Biology, 

University of Salzburg, Heidelberg, 5020, Austria 

27 Institute of Medical Informatics, Biometry and Epidemiology, Chair of 

Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany 

28 Department of Genetic Epidemiology, University Medical Center Goettingen, 

Goettingen, 37073, Germany 

A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.



3 

 

29 Genetic Epidemology Group, International Agency for Research on Cancer, Lyon, 

69372 CEDEX 08, France 

30 Department of Epidemiology, University of Texas, MD Anderson Cancer Center, 

Houston, Texas, 77030, USA 

31 Clinical Sciences, Lund University, Lund, 22100, Sweden 

32 National Institute of Occupational Health (STAMI), Oslo, Norway 

33 Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, S10 25J, 

UK 

34 Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, 

30303, USA 

 

† These authors contributed equally to this work. 

* Correspondence to: Department of Epidemiology, Center for Global Health, School 

of Public Health, Nanjing Medical University, Nanjing 211166, China  

Tel (fax): +86-25-868-68439, E-mail: hbshen@njmu.edu.cn 

 

Conflict of interest: The authors have no conflict of interest to declare. 

 

WHAT’S NEW 

INDELs, known as short insertions and deletions, play an important role in lung 

carcinogenesis and have not been studied systematically. We performed a large-scale 

meta-analysis to evaluate INDELs and their risk for lung cancer. Four new risk loci 

were identified in genome-wide INDEL analysis. Functional annotation suggested 

that INDELs might affect lung cancer susceptibility by regulating the expression of 

target genes. INDELs could be potentially functional genetic variants for lung cancer 

risk. 
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ABBREVIATIONS 

GWAS - Genome-wide association studies 

INDEL - small insertion and deletion 

OR - odds ratio 

CI - confidence interval 

SNP - single nucleotide polymorphism 

HLA - human leukocyte antigen 

HGMD - the Human Gene Mutation Database 

NGS - Next-generation sequencing  

IBD - identity-by-descent 

MAF - minor allele frequency  

HWE - Hardy-Weinberg equilibrium  

GTEx - Genotype-Tissue Expression Project 

eQTL - expression quantitative trait locus 

TCGA - The Cancer Genome Atlas project 

TFBS - transcription factor binding sites (TFBS) 

ENCODE - the Encyclopedia of DNA Elements Project 

LD - linkage disequilibrium
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Abstract 

Genome-wide association studies (GWAS) have identified 45 susceptibility loci 

associated with lung cancer. Only less than SNPs, small insertions and deletions 

(INDELs) are the second most abundant genetic polymorphisms in the human 

genome. INDELs are highly associated with multiple human diseases, including lung 

cancer. However, limited studies with large-scale samples have been available to 

systematically evaluate the effects of INDELs on lung cancer risk. Here, we 

performed a large-scale meta-analysis to evaluate INDELs and their risk for lung 

cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to 

further explore the potential function of lung cancer risk INDELs. Conditional 

analysis was used to clarify the relationship between INDELs and SNPs. Four new 

risk loci were identified in genome-wide INDEL analysis (1p13.2: rs5777156, 

Insertion, OR = 0.92, P = 9.10×10-8; 4q28.2: rs58404727, Deletion, OR = 1.19, P = 

5.25×10-7; 12p13.31: rs71450133, Deletion, OR = 1.09, P = 8.83×10-7; and 14q22.3: 

rs34057993, Deletion, OR = 0.90, P = 7.64×10-8). The eQTL analysis and functional 

annotation suggested that INDELs might affect lung cancer susceptibility by 

regulating the expression of target genes. After conducting conditional analysis on 

potential causal SNPs, the INDELs in the new loci were still nominally significant. 

Our findings indicate that INDELs could be potentially functional genetic variants for 

lung cancer risk. Further functional experiments are needed to better understand 

INDEL mechanisms in carcinogenesis. 
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Introduction 

Lung cancer is one of the most frequently diagnosed cancers and the leading 

cause of cancer mortality worldwide [1]. It is estimated that nearly 2.1 million new 

lung cancer cases occurred in 2018, accounting for approximately 11.6% of total 

cancer diagnoses [2]. Although tobacco smoking is a major lung cancer risk factor, 

genetic factors also play an important role in lung carcinogenesis. According to 

previous studies, common SNPs can explain approximately 12% ~ 21% heritability 

in lung cancer in Asian and European populations [3,4]. Genome-wide association 

studies (GWAS) have previously identified 45 susceptibility loci associated with 

lung cancer [5], and single nucleotide polymorphisms (SNPs) in the CHRNA3, 

CHRNA5, TERT and human leukocyte antigen (HLA) regions showed consistent and 

robust associations in different studies.  

To date, the vast majority of studies have focused on the relationship between 

SNPs and lung cancer. Small insertions and deletions (INDELs), which are another 

type of variations, also play an important role in lung carcinogenesis. INDELs are 

defined as short insertions and deletions (ranging from 1 to 10,000 bp) in the human 

genome [6,7]. As important genetic variations, INDELs are the second most 

abundant genetic polymorphisms in the human genome, only less than SNPs [8]. The 

final phase of the 1000 Genomes Project has characterized more than 3.4 million 

INDELs in 88 million variant sites in the human genome, and compared with phase I, 

the number of INDELs increased by 70% [8]. This provides a comprehensive panel 

to explore the effects of INDELs. INDELs in the genome are highly associated with 

multiple human diseases; nearly 24% of Mendelian diseases are caused by INDELs 

based on the Human Gene Mutation Database (HGMD) [9]. Over the past decade, 

the development of high-throughput sequencing has made it possible to detect 

INDELs in individual genomes. Next-generation sequencing (NGS) analyses have 

identified INDELs across multiple cancer types [10,11]; however, these INDELs 

were at the somatic level with low frequency. At the germline level, INDELs have 

been described as associated with cancers in case-control studies by genotyping or 

genomic imputation. For example, a single INDEL in the 6q25.3 locus, which is 
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related to the SLC22A1 and SLC22A2 genes, increased the risk of prostate cancer in 

a multi-ethnic GWAS [12]. Another study in a Chinese population found that a 5-bp 

INDEL in the GAS5 gene increased hepatocellular carcinoma risk [13]. For lung 

cancer risk, Sun T et al. reported a six-nucleotide deletion variant in the CASP8 

promoter was related with reduced risk of multiple cancers, including lung cancer 

[14]. In addition, Liu G et al. found two insertion variants in BRM promoter region 

were also associated with the increased risk of lung cancer [15]. However, limited 

studies with large-scale samples have been available to systematically evaluate the 

effects of INDELs on lung cancer risk. In this study, we aimed to investigate the 

relationship between INDELs and lung cancer risk at a genome-wide level. To 

accomplish this, we conducted a large-scale case-control study with 23,202 lung 

cancer cases and 19,048 controls to dissect the associations between INDELs and 

lung cancer risk among European and Asian populations. 

 

Material and Methods 

Study population 

In this study, we integrated three published lung cancer GWAS, including the 

TRICL-ILCCO OncoArray European data (The OncoArray Consortium lung cancer 

GWAS: 43,398 participants in total, European population) [16], the DCEG Lung 

Cancer Study (the National Cancer Institute lung cancer GWAS: 5,716 cases and 

5,821 controls, European population) [17], and our published NJMU GWAS data 

(Nanjing Medical University lung cancer GWAS from Nanjing and Beijing: 2,331 

cases and 3,077 controls, Chinese population) [18]. Briefly, for the TRICL-ILCCO 

OncoArray data, we used the same quality control strategies in the previous paper 

[16]. The DCEG Lung Cancer Study was applied from the Genotypes and 

Phenotypes (dbGAP) database [17]. Considering the duplication of samples within 

the TRICL-ILCCO OncoArray data, 3,251 samples were removed when IBD 

(identity-by-descent) > 0.45. Consequently, 2,427 cases and 1,944 controls in the 

DCEG Lung Cancer Study were kept for further analysis. For the NJMU GWAS data, 

standard sample quality control strategies were also performed according to the 

original paper [18]. Finally, a total of 23,202 cases and 19,048 controls were 
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included for further analysis (Table S1). Each study was approved by the local 

institutional review board. 

 

Genotype quality control and imputation 

The details of the imputation procedures used in the TRICL-ILCCO OncoArray 

project have been described previously [16,19]. Briefly, SHAPETIT V2 and 

IMPUTE2 were used for phasing and imputation, respectively. The 1000 Genomes 

Project Phase III database (released at October, 2014) was used as a reference dataset. 

After imputation, there were 1,857,403 INDELs in the TRICL-ILCCO OncoArray 

data. Then, we performed standard quality control on the imputed INDELs data by 

excluding the data with the following characteristics: (1) imputation quality INFO < 

0.9; (2) genotyping call rate < 95%; (3) minor allele frequency (MAF) in controls < 

0.01; or (4) Hardy-Weinberg equilibrium (HWE) <1×10-12 in cases or <1×10-7 in 

controls. We also excluded 17,812 INDELs located in genome segmental duplication 

regions [20], which may lead to inaccuracy during imputation. Thus, the total 

number of TRICL-ILCCO OncoArray INDELs was 694,395. For the DCEG GWAS 

and NJMU GWAS data, the imputation procedures have been previously described 

[21,22]. We conducted the same quality control criteria on the DCEG GWAS and 

NJMU GWAS imputation data. Finally, we obtained 484,196 overlapped INDELs 

for the subsequent analysis (Figure S1). 

 

eQTL and differential expression analysis  

We used the Genotype-Tissue Expression (GTEx) Project expression 

quantitative trait locus (eQTL) database (V7 release) for identified INDELs. We 

searched each INDEL-gene pair eQTL analysis result in lung tissue. Due to lack of 

information of INDEL rs71450133 in GTEx database, we use SNP rs28435996 

which showed high linkage disequilibrium (LD) (r2 = 0.94) with rs71450133 as a 

tagging SNP. Differential expression analyses were performed using data from The 

Cancer Genome Atlas (TCGA) project [23,24]. A total of 106 paired lung tumor 

tissues and adjacent tissues from the TCGA database were used to performed 

differential expression analyses using Wilcoxon paired test.  
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In silico functional annotation and rank scoring system development 

We combined multiple sources of public functional annotation databases to 

explore the potential function of the INDELs, similar strategy was also applied in the 

recent largest breast cancer GWAS study with the INQUISIT algorithm [25]. 

Genomic regulatory region and functional score were used to evaluate INDELs and 

SNP showed high LD with them. Regulatory elements, including promoter, enhancer, 

and transcription factor binding sites (TFBS) data were based on the Encyclopedia of 

DNA Elements (ENCODE) Project A549 human lung cancer cell line data [26]. Four 

annotation database, including 3DSNP [27], Combined Annotation-Dependent 

Depletion (CADD) [28], Phenotype-Informed Noncoding Element Scoring (PINES) 

[29] and RegulomeDB [30] were also used to identify the potential pathogenicity 

and function of the INDELs. We developed a rank scoring system to integrate all 

these data together and INDELs identified in this study, as well as SNPs which 

showed a high LD (r2 > 0.6) relationship with INDELs were all annotated by this 

rank scoring system.  

We generated binary variables, feature rank, to represent importance of each 

variant in each database, 1 defined as more important and 0 defined as less important. 

For chromatin biofeatures data, as mentioned above, promoter, enhancer and TFBS, 

if INDELs or SNPs located in the regulatory region, the feature rank were defined as 

1, else as 0. For four annotation databases (3DSNP, CADD, PINES and 

RegulomeDB) with scores, if a variant’s score in the top 10% of corresponding 

INDEL LD block, the feature rank was defined as 1 (more important), otherwise it 

was defined as 0 (less important). Finally, all feature ranks of seven annotations were 

accumulated as a final score for each INDEL and SNP, ranging from 0 to 7. The 

variant with the highest score was considered as a potentially causal variant. 

 

Statistical analysis 

For the three GWAS studies, the association testing for each INDEL was 

performed using the SNPTEST (v2.5.4) software, which is based on a probabilistic 

dosage model adjusting for age, gender, and the first three principal components in 
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the TRICL-ILCCO OncoArray; age, gender, and the first principal component in the 

DCEG GWAS; and age, gender, pack-years, and the first principal component in the 

NJMU GWAS. Meta-analysis (fixed-effect model) was conducted to combine 

individual association estimates from the three GWAS datasets. Testing for 

differences in the genetic effects across the three studies was assessed by using the I2 

and P values calculated from Cochran’s Q statistic. Meta-analysis was conducted 

using the GWAMA software. Subgroup analysis was performed for baseline 

characteristics, including age, gender, histology, smoking status and ethnicity. For 

the conditional analysis, a multivariate logistic regression model adjusting for age, 

gender, the first three principal components and known lung cancer risk variants was 

used with the TRICL-ILCCO OncoArray.  

General analyses were performed using the R software (version 3.3.1). P ≤ 0.05 

was used as the threshold of statistical significance and all statistical tests were 

two-sided. A suggestive threshold of 1.0×10-6 was used to present significant 

INDELs [31,32], and bonferroni correction was also applied to account for multiple 

comparisons (threshold: 0.05/484,196 = 1.03×10-7).  

 

Data availability 

The INDEL data sets used during the current study are available at the database 

of Genotypes and Phenotypes (dbGaP) under accession phs001273.v1.p1 

(TRICL-ILCCO OncoArray European data) and phs000336.v1.p1 (DCEG Lung 

Cancer Study). 

 

Results 

Study overview 

In this study, we imputed a total of 484,196 INDELs based on 23,202 lung 

cancer cases and 19,048 controls. Nineteen INDELs along with 11 loci were 

identified as being significantly associated with lung cancer risk at a suggestive 

threshold of 1.0×10-6 (Figure 1; Table 1; Table 2). Among them, four loci (1p13.2, 

4q28.2, 12p13.31 and 14q22.3) were novel risk loci for lung cancer, while seven of 

them have been previously reported as lung cancer risk loci as indicated by SNPs 

(5p15.33, 6p21.32, 6p21.33, 6p22.1, 6p22.2, 11q23.3 and 15q25.1). The results of 
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INDELs in three studies were listed in Table S2. 

Four new risk loci were identified in our genome-wide INDEL analysis (Table 

1), including rs5777156 in 1p13.2 (Insertion, OR = 0.92, 95%CI = 0.89-0.95, P = 

9.10×10-8); rs58404727 in 4q28.2 (Deletion, OR = 1.19, 95%CI = 1.11-1.28, P = 

5.25×10-7); rs71450133 in 12p13.31 (Deletion, OR = 1.09, 95%CI = 1.05-1.13, P = 

8.83×10-7); and rs34057993 in 14q22.3 (Deletion, OR = 0.90, 95%CI = 0.87-0.94, P 

= 7.64×10-8). INDELs rs5777156 and rs34057993 were still significant after 

Bonferroni correction (P < 1.03×10-7). There was no evidence of heterogeneity 

among the studies for the new risk loci. Subgroup analyses on the four new INDELs 

from the OncoArray data are summarized in Table S3. No evidence of heterogeneity 

was observed for the new risk loci among age, gender, smoking status, histology 

type and ethnicity, which implied the effects of the new risk loci were robust. 

 

INDELs in known lung cancer risk loci  

The results for 15 INDELs in known lung cancer risk loci are presented in Table 

2. At 15q25.1, a well-known lung cancer susceptibility locus related to nicotine 

addiction, INDELs harbored the lowest P value (rs577626090, Deletion, OR = 1.29, 

95%CI = 1.25-1.33, P = 9.91×10-64). INDELs also reached the significance threshold 

in 5p15.33 and HLA region. We validated the recently reported Oncoarray risk locus, 

which correlated with 11q23.3 in our analysis (rs139157129, Deletion, OR = 0.93, 

95%CI =0.90-0.95, P = 1.90×10-7). INDELs in the known loci showed strong effects, 

and 10 of the 15 INDELs were still significant after Bonferroni correction (P 

threshold = 1.03×10-7).  

 

Functional annotations of new regions 

Because the underlying mechanisms of known regions have been well illustrated, 

we performed functional annotations on the four new loci in this study. To explore 

the potential functions of the INDELs, we performed eQTL and differential 

expression analyses based on GTEx lung tissue data and TCGA lung cancer data for 

these four new regions. In GTEx lung eQTL database, we identified a total of 10 
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genes that showed significant cis-eQTL results (P value < 0.05), and 5 of them were 

related to cancer in previous studies. INDEL rs58404727 was a lung cis-eQTL for 

HSPA4L, which encodes heat shock protein family A (Hsp70) member 4 like. 

HSPA4L expression was significantly upregulated in lung tumor tissues compared 

with adjacent lung tissues (P = 4.57×10-13; Figure 3). For INDEL rs71450133, its 

tag SNP rs28435996 was associated with decreased GAPDH, TPI1, USP5 expression 

and increased MLF2 expression. In the differential expression analysis, GAPDH, 

TPI1, USP5 and MLF2 were all significantly upregulated in lung tumor tissues 

compared with adjacent lung tissues (Figure 3). The full results from the cis-eQTL 

and differential expression analyses are presented in Table S4. 

To identify the causal variants for the four INDELs regions, we constructed a 

rank scoring system based on the public functional databases. As shown in Table 3, 

we found that rs5777156, rs71450133 and rs34057993 were related to multiple 

regulatory elements (promoter histone marks, enhancer histone marks and TFBS) in 

multiple tissues or cell lines, while rs58404727 is located in a desert region. 

Furthermore, rs5777156 was located in the promoter histone marks and enhancer 

histone marks in the A549 EtOH 0.02pct lung carcinoma cell line in the ENCODE 

database; rs71450133 also showed enhancer histone marks in the A549 EtOH 

0.02pct lung carcinoma cell line and in NHLF lung fibroblast primary cells in the 

ENCODE database. In the RegulomeDB annotation, the RegulomeDB score for 

rs5777156 was 3a, suggesting that rs5777156 might affect TF binding at the DNase 

peak. Meanwhile, rs71450133 may interact with the VWF and CD9 genes through 

the 3D SNP annotation. The other two INDELs did not show any functional 

evidence in multiple databases. For these four new signals, we also identified seven 

candidate causal SNPs based on the rank scoring system (Table S5). At 1p13.2, a 

non-coding variant, rs12567622 in MAGI3, were predicted as the causal variant. At 

4q28.2, the most plausible target SNP was rs72618844, which also showed an 

enhancer histone mark in the A549 EtOH 0.02pct lung carcinoma cell line. At 

12p13.31, the predicted causal SNPs include rs7304688, which is located in the 

regulatory element site in A549 EtOH 0.02pct lung carcinoma cell line. At 14q22.3, 
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the rs10483677 SNP was a predicted causal variant. Further studies will be required 

to determine whether these SNPs are truly causal variants for each locus. 

 

The relationship between INDELs and SNPs 

To understand the effects of the INDELs or SNPs on lung cancer risk, we 

examined the relationship between the two types of variations from the same loci. In 

the four known loci, we found that most of the INDELs were in considerable LD 

with previously reported risk SNPs (r2: 0.5~1.0; Table S6). However, 5 INDELs in 

the HLA region did not show high LD with known risk SNPs (r2 < 0.1). We 

performed a conditional analysis to determine whether those 5 INDELs exerted 

independent effects from known SNPs for each locus. INDEL rs145093187 showed 

an independent signal after adjusting the reported SNPs through Bonferroni 

correction (OR = 0.86, 95CI% = 0.81-0.91, conditional P = 5.10×10-8), while other 

the INDELs did not reach the suggestive threshold (Table S7). For the new loci, the 

regional plots provide the LD relationship between the INDELs and SNPs at a 1 Mb 

window (Figure 2). We found that although INDELs showed a strong effect on lung 

cancer risk, there were still SNPs with high LD (r2 > 0.8) showing a stronger effect. 

We also conducted conditional analysis on the INDELs and top SNPs in each locus. 

By adding the SNP with the lowest P value into the model for each locus, neither the 

INDEL nor the SNP showed a significant signal (Table S7). Meanwhile, we also 

performed conditional analyses on the four candidate causal SNPs and four new 

INDELs in each locus. When we added the candidate causal SNPs to the model, the 

INDELs showed stronger effects at the statistical level. In half of the four 

conditional analyses, the INDELs remained nominally significant (P < 0.05) (Table 

S8). 

 

Discussion 

In this study, we conducted a genome-wide meta-analysis with 23,202 cases and 

19,048 controls to systematically explore the associations between INDELs and lung 

cancer risk. We identified 19 signals for lung cancer risk, and 4 of them were first 
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reported in lung cancer. 

INDEL rs5777156 is an insertion lying in the MAGI3 intron at 1p13.2. MAGI3 

acts as a scaffolding protein at cell-cell junctions, regulating various cellular and 

signaling processes, such as the Ras signaling pathway and PTEN pathway. Previous 

studies showed that MAGI3 could downregulate Wnt/β-catenin signaling, 

suppressing malignant glioma cell phenotypes [33], and competes with NHERF-2 to 

negatively regulate LPA2 receptor signaling in colon cancer cells [34]. Additionally, 

INDEL rs5777156 and the predicted causal variant were all present in regulatory 

elements, including promoter and enhancer histone marks in a lung carcinoma cell 

line based on the ENCODE database, suggesting that rs5777156 may affect lung 

cancer risk through transcript regulation.  

Our study also identified a new risk locus at 4q28.2 marked by INDEL 

rs58404727 mapping to 65 kb upstream of RP11-184M15.2, which is a lncRNA with 

little functional evidence. However, the predicted causal variant SNP rs72618844 

showed promoter and enhancer histone marks in A549 lung carcinoma cell line. 

INDEL rs58404727 may be a tagging signal at this locus, while rs72618844 affects 

lung cancer risk.  

INDEL rs71450133 is a deletion that maps to 23 kb upstream of PLEKHG6 at 

12p13.31. Genetic variants at 12p13.31 have been shown by previous studies to be 

associated with colorectal cancer risk in East Asians [35]. Although the function of 

PLEKHG6 in tumors is unclear, some studies showed that PLEKHG6 might regulate 

the invasion activity of breast cancer cells [36,37]. In the eQTL analyses, 

rs71450133 was associated with the expression of several genes, and 4 of them were 

tumor related. GAPDH encodes a member of the glyceraldehyde-3-phosphate 

dehydrogenase protein family and can interact with proteins participating in DNA 

repair [38]. USP5, namely ubiquitin specific peptidase 5, plays an important role in 

ubiquitination. USP5 expression has been proven to be associated with several 

cancer types, such as hepatocellular carcinoma, glioblastoma and pancreatic cancer 

[39-41]. Previous studies have shown that USP5 had many cellular targets and 

stabilizes multiple proteins, such as p53 [42]. TPI1, triosephosphate isomerase 1, 
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encodes a crucial enzyme in the carbohydrate metabolism, and previous studies have 

shown its expression level might be associated with several cancer types [43,44]. 

Another gene, MLF2 or Myeloid Leukemia Factor 2, is related to myeloid leukemia 

and leukemia, and MLF2 knockdown may reduce tumor initiation and metastasis in 

breast cancer [45]. Functional annotation based on ENCODE suggested that 

rs71450133 and its high LD SNPs are located in regulatory elements in A549 EtOH 

0.02pct lung carcinoma cell line.  

Another new susceptibility locus, 14q22.3, was marked by INDEL rs34057993, 

which is a deletion located in the intron of non-coding RNA OTX2-AS1, an OTX2 

antisense RNA at 14q22.3. OTX2, which encodes a member of the bicoid subfamily 

of homeodomain-containing transcription factors, has been implicated as a potential 

driver of medulloblastoma tumorigenesis [46,47]. Although rs34057993 and its LD 

SNPs did not show any promoter or enhancer histone marks, genes associated with 

INDEL rs34057993 were cancer-related, it is possible that rs34057993 may act by 

regulating the expression of genes to influence lung cancer risk.  

In this study, we found four novel risk loci for lung cancer, as well as illustrated 

the relationships between INDELs and SNPs. In the reported regions, most of the 

significant INDELs were correlated with previously reported SNPs, especially in 

5p15.33 and 15q25.1. In the HLA region, we found a novel signal that was 

independent of the previously reported SNPs. Considering the complex LD and 

haplotype structure in the HLA region [48], the novel INDEL may be a true 

association. In the new regions, we also observed INDELs that did not harbor the 

lowest P values and showed high LD with nearby SNPs. The effects of the INDELs 

were decreased after adjusting for the top SNP in each region. This suggests that the 

presented SNPs promote more stable effects in both known and new regions. 

However, it is generally assumed that SNPs with the most significant signal usually 

tag causal variants with a small effect. After conducting conditional analysis on 

seven potential causal SNPs, we found that the INDELs in the new loci were still 

nominally significant. Thus, it is possible that the INDELs may also be both causal 

and tagging variants. The combination of these variants with small effects together 

could lead to lung cancer. The functional annotation results confirmed our insights. 
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In new region, two INDELs, rs5777156 and rs34057993, showed enhancer histone 

marks in regulatory regions, which may influence enhancer activity in lung cancer. 

Meanwhile, the most significant SNPs in those two regions did not show strong 

functional evidence. This means INDELs could also be a causal variant, which could 

regulate gene expression and affect the risk of lung cancer. The comprehensive 

annotation of each locus also identified potential causal variants in high LD with the 

INDELs. Interestingly, we noticed that all 19 significant INDELs mapped to the 

non-coding region (intronic or intergenic region). INDELs in the coding region can 

result in frameshift and non-frameshift mutations, which are relatively severe 

mutations and more likely to be observed in Mendelian diseases or tumors [9,11]. 

Overall, the limitation of the present study is that we only evaluated the functional 

evidence from available databases for the identified INDELs, further functional 

experiments are needed to better understand INDEL mechanisms in lung cancer 

carcinogenesis. 

In conclusion, we performed a large-scale case-control study to evaluate 

INDELs and their risk for lung cancer, and four new risk loci at 1p13.2, 4q28.2, 

12p13.31 and 14q22.3 were identified. Our findings indicate that INDELs could be 

potentially functional genetic variants for lung cancer risk.  
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Supplemental Data 

Supplemental Data include one figure and eight tables. 
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Figure Titles and Legends 

 

Figure 1. Manhattan plots of INDEL associations with lung cancer risk.  

The x-axis represents the chromosomal location and the y-axis represents the -log10 

(P value). Red, previously known loci and blue, new loci identified in this analysis. 

The red line denotes the Bonferroni correction significance (P = 1.03 × 10-7) and the 

green line denotes the suggestive significance (P < 1.0×10-6). 

 

Figure 2. Regional plots of the 4 new regions, including (A) Chr1p13.2: 

rs5777156, (B) Chr4q28.2: rs58404727, (C) Chr12p13.31: rs71450133, and (D) 

Chr14q22.3: rs34057993. 

 

The x-axis shows the chromosomal positions and the left y-axis shows the –log10 p 

values from an association test. The INDELs are shown as purple diamonds. The 

colors of the dots indicate the LD relationship between the most significantly 

associated INDELs and the remaining SNPs in the 500 kb region. The right y-axis 

shows the recombination rate between the SNPs. The genes within the 

region-of-interest are annotated with arrows indicating the direction of transcription. 

 

Figure 3. eQTL and differential expression of the INDELs among GTEx lung 

tissue and TCGA lung cancer data. 
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Tables 

Table 1. The association between the INDELs in the new regions and lung cancer risk.

a: The effect allele frequencies of the insertion or deletion in 1000 Genomes EUR samples;

b: The effect allele frequencies of the insertion or deletion in 1000 Genomes EAS samples;

c: The OR (95%CI) and P value for the meta-analysis were fixed-effects model; 

INFO.: imputaion quality info.; Het P: P value for heterogeneity test.

Overall Results c

Chr. INDEL Gene INS/DEL INFO. Major Minor
EUR 

a
EAS b

OR (95%CI) P Het P

1p13.2 rs5777156 MAGI3 Insertion 0.999 - A 0.24 0.61 0.92 (0.89,0.95) 9.10×10-8 0.837

4q28.2 rs58404727 RP11-184M15.2 Deletion 0.999 T - 0.02 0.33 1.19 (1.11,1.28) 5.25×10-7 0.191

12p13.31 rs71450133 PLEKHG6 Deletion 0.986 AA - 0.18 0.38 1.09 (1.05,1.13) 8.83×10-7 0.990

14q22.3 rs34057993 OTX2-AS1 Deletion 0.975 G - 0.17 0.27 0.90 (0.87,0.94) 7.64×10-8 0.587
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Table 2. The association between the INDELs in the known regions and lung cancer risk.

a: The effect allele frequencies of the insertion or deletion in 1000 Genomes EUR samples;

b: The effect allele frequencies of the insertion or deletion in 1000 Genomes EAS samples;

c: The OR(95%CI) and P value for the meta-analysis were fixed-effects model; 

Het P, heterogeneity P value.

Overall Results c

Chr. INDEL Gene INS/DEL Major Minor EUR a EAS b

OR (95%CI) P Het P

5p15.33 rs34218850 TERT Deletion C - 0.34 0.19 1.14 (1.11,1.18) 7.98×10-18 0.097

6p21.32 rs200675567 HLA-DQA1 Deletion C - 0.11 0.16 0.90 (0.86,0.96) 4.03×10-7 0.412

6p21.32 rs9279532 NOTCH4 Deletion G - 0.12 0.05 1.11 (1.07,0.94) 2.77×10-7 0.588

6p21.33 rs550239034 POU5F1 Deletion TT - 0.25 0.46 0.92 (0.89,0.95 2.12×10-7 0.055

6p21.33 rs549219764 HCP5 Deletion G - 0.20 0.02 1.11 (1.07,1.15) 2.01×10-9 0.091

6p22.1 rs9280949 RPP21 Insertion - T 0.09 0.06 1.16 (1.11,1.22) 2.53×10-10 0.468

6p22.1 rs139089584 LINC00533 Insertion - TTTG 0.29 0.54 0.92 (0.89,0.95) 2.40×10-7 0.145

6p22.1 rs34832458 HLA-G Insertion - T 0.39 0.24 0.92 (0.89,0.94) 1.29×10-9 0.077

6p22.1 rs374787445 HLA-F-AS1 Deletion C - 0.18 0.23 1.11 (1.07,1.15) 6.56×10-9 0.323

6p22.2 rs145093187 BTN2A1 Insertion - T 0.12 0.05 0.87 (0.83,0.91) 9.44×10-9 0.478

11q23.3 rs139157129 MPZL2 Deletion A - 0.48 0.43 0.93 (0.90,0.95) 1.90×10-7 0.864

15q25.1 rs577626090 CHRNA5 Deletion AAAAG - 0.37 0.03 1.29 (1.25,1.33) 9.91×10-64 0.945

15q25.1 rs138784116 CHRNB4 Deletion AGG - 0.37 0.14 0.89 (0.86,0.92) 4.65×10-14 0.655

15q25.1 rs143284856 MORF4L1 Insertion - TT 0.47 0.12 1.11 (1.08,1.14) 1.29×10-12 0.732

15q25.1 rs61655864 CHRNA5 Deletion A - 0.29 0.77 0.81 (0.79,0.84) 6.24×10-37 0.068
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Table 3. Comprehensive functional annotations for the INDELs in the new regions. 

Chr. SNP Region INS/DEL Gene Enhancer a Promoter a TFBS a 3D Score a 3D Interaction Gene a CADD b RegulomeDB c PINES d

1p13.2 rs5777156 Intronic Insertion MAGI3 6 1 2 2.300 - 4.264 3a 0.243

4q28.2 rs58404727 Intergenic Deletion RP11-184M15.2 0 0 0 1.820 - 3.743 7 0.499

12p13.31 rs71450133 Intergenic Deletion PLEKHG6 11 0 0 3.810 VWF, CD9 6.315 6 0.089

14q22.3 rs34057993 Intronic Deletion OTX2-AS1 18 1 0 6.960 - 1.310 7 0.061

a: Enhancer, promoter and TFBS were obtained from 3DSNP based on the ENCODE database. 3DSNP was the overall function score and the interacting gene reflected the three-dimensional 

interaction genes.

b: CADD was used to evaluate the relative deleteriousness.

c: RegulomeDB was used to identify DNA features and regulatory elements in non-coding regions in the human genome.

d: PINES provided a powerful in silico method to prioritize and finely map the functional non-coding variants. SNPs with lower P values indicated more abundant functions.
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