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Biomolecular Self-Assembly Under Extreme Martian Mimetic 

Conditions 

The recent discovery of subsurface water on Mars has challenged our 

understanding of the natural limits of life. The presence of magnesium 

perchlorate (Mg(ClO4)2) on the Martian surface raises the possibility that  it may 

also be present in this subsurface lake.  Given that the subsurface lakes on Earth, 

such as Lake Vostok and Lake Whillans, are capable of harbouring surprising 

amounts of life, these new findings raise interesting possibilities for how 

biomolecules might self-assemble in this environment on Mars. Here we 

investigate the self-association and hydration of the amino acid glycine in 

aqueous Mg(ClO4)2 at 25oC and -20oC using neutron diffraction with hydrogen 

isotope substitution and subsequent analysis with empirical potential structure 

refinement to yield a simulated box of atoms consistent with the scattering data. 

We find that although the highly chaotropic properties of Mg(ClO4)2  disrupt the 

hydration and hydrogen bonding ability of the amino acid, as well as the bulk 

water structure,  glycine molecules are nonetheless still able to self-associate. 

This occurs more readily at lower temperature, where clusters of up to three 

molecules are observed, allowing us to speculate that the formation of biological 

molecules is possible in the Martian environment. 

Keywords: neutron diffraction; empirical potential structure refinement; amino 

acid; water; clustering 

Introduction 

As our understanding of biological life on Earth has grown, we have also developed a 

deep interest in the solvent environment which defines biomolecules: water. Far from 

our initial view of water as a passive diffusive matrix for much more exciting 

biomolecules and biochemistry, we now know that it is an active contributor to life on 

every length scale [1].  Its loosely packed, hydrogen bonded, tetrahedral network of 

polar molecules yield a host of fascinating, and in many cases unexplained phenomena 

[2-4], such as its unusual density variation as a function of temperature, and its ability to 
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spontaneously drive unfolded proteins into functional conformations and make them the 

workhorses of biology [5].  It is in fact so fundamental to life, that speculations of life 

elsewhere in the universe are fuelled by the discovery of extra-terrestrial liquid water 

[6]. 

Over the past decade there has been growing evidence of periods of flowing 

surface water on Mars [7-14], and it is now known that there exists subsurface water in 

the form of a lake located 1.5 km below the surface near the south pole [15].  This 

environment may be comparable with subsurface lakes found on Earth, such as Lake 

Vostok and Lake Whillans, which are capable of harbouring surprising amounts of life 

[16-18].  The “active” Lake Whillans, underneath 800 m of ice, showed a metabolically 

active and diverse microbial ecosystem with 130,000 cells per millilitre of extracted 

lake water [17], whereas the “inactive” Lake Vostok, underneath 3800 m of ice, 

revealed two confirmed bacterial phylotypes, one of which was a hitherto-unknown 

type of bacterium referred to as W123-10. 

When we start to consider the hostile environment of the subsurface Martian 

water, we must speculate on its likely contents. It is known that Martian soil contains 

magnesium perchlorate (Mg(ClO4)2) [7,10,13,14], hence it is reasonable to assume that 

this is also present in the subsurface water. However there exists no direct evidence of 

what its concentration may be.  While it is shown that Mg(ClO4)2 can become highly 

bactericidal when irradiated by UV flux levels consistent with what would be expected at 

the Martian surface [19], or when desiccated [20], this subsurface briny water would offer 

an environment where these bactericidal effects would be significantly diminished. It has 

been shown that several organisms, such as the microorganism Halorubrum 

lacusprofundi isolated from Deep Lake in Antarctica, are capable of anaerobic growth in 

0.04 M Mg(ClO4)2 [21,22], hence the presence of this salt alone does not eliminate the 



4 
 

possibility for life. Both ionic species in this compound are highly chaotropic and 

therefore act as powerful protein denaturants due to their strong interaction with the 

surfaces of biological molecules [23-25].  

These ions also act to perturb water structure [26-29] and therefore are likely to 

perturb hydrogen bonding.  Mg(ClO4)2 does this particularly effectively and is capable 

of compressing water structure in a manner similar to the formation of ice VII at room 

temperature, corresponding to an external pressure of approximately 3 GPa [30,31].  

This phenomenon leads us to ask the question: how does the presence of Mg(ClO4)2 

affect the hydration and association of biological molecules in water?  This is 

investigated at a near eutectic [7] magnesium perchlorate concentration and using 

glycine as a model amino acid due to its molecular simplicity, high solubility [32], and 

previously recorded presence in astronomical environments [33-35]. Data was collected 

using neutron scattering with isotopic substitution at 25oC and -20oC and analysed using 

empirical potential structure refinement (EPSR) [36-38] to yield a simulated box of 

atoms consistent with the scattering data.  These two temperatures were chosen as they 

are between the freezing temperature of eutectic NaCl solution and the bubble 

temperature of eutectic NH3 solution, as these will be the subject of future 

investigations. It is found that while magnesium perchlorate disrupts the hydrogen 

bonding ability of the amino acids, they are still able to cluster, and that this clustering 

is temperature dependent. 

Materials and Methods 

Neutron Diffraction 

Measurements were taken using the Near to InterMediate Range Order Diffractometer 

[39] (NIMROD) at the ISIS neutron facility.  This covers a wide 𝑄 range of 0.1-300 nm-

1, where 𝑄 is the difference in momentum between the incident and scattered neutrons, 
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corresponding to interatomic separations of 0.1-30 nm.  The obtained data can then be 

used to yield the total interference differential scattering cross section, 𝐹(𝑄), which can 

then be broken down into its constituent partial structure factors 𝑆(𝑄) [30,36].  The 

relative contribution of each partial structure factor to the total structure factor is 

dependent on the particular atomic species’ concentration 𝑐, and their nuclear scattering 

length 𝑏, such that: 

 𝐹(𝑄) = ∑ 𝑐𝛼𝑐𝛽𝑏𝛼𝑏𝛽(𝑆𝛼𝛽(𝑄) − 1)𝛼𝛽  (1) 

The Fourier transform of the partial structure factor then gives the corresponding 

RDF, the integral of which then yields the corresponding coordination numbers. Data 

were corrected for multiple scattering, attenuation, and inelastic scattering using Gudrun 

software. 

Sample Densities 

Densities of final samples were measured by weighing 1 mL of sample.  The results 

were then verified by using a densitometer.  It was also assumed that the densities of the 

samples containing both Mg(ClO4)2 and glycine changed negligibly at lower 

temperatures.  The densities were then calculated in terms of atoms/Å3, and the final 

values of 0.0975 and 0.1030 atoms/Å3 for the samples with and without Mg(ClO4)2 

respectively were applied to the EPSR simulations. 

EPSR Simulations 

In order to perform EPSR analysis, a cubic simulation box was built such that the 

experimental concentrations, temperatures, and densities were matched (Supplementary 

Table 1). The EPSR simulations of the pure water and glycine samples contained 172 

glycine molecules and 5160 water molecules in a cubic box of dimension 55.0677 Å at 

25oC, yielding an atomic number density of 0.1030 atoms/Å3.  The simulations of the 
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samples containing Mg(ClO4)2
 contained 172 glycine molecules, 5418 water molecules, 

325 Mg2+ ions and 650 ClO4
- ions in a cubic box of dimension 60.4608 Å at 25oC and -

20oC, yielding an atomic number density of 0.0975 atoms/Å3. Glycine was modelled in 

its zwitterionic form which occurs in solution at neutral pH [40]. The Mg(ClO4)2 

concentration used here corresponds to 39.6 wt%, which is near the eutectic 

concentration of 44 wt% [7].  The experiment was originally designed such that a 

eutectic concentration of Mg(ClO4)2 would be used, however due to the highly 

hydroscopic properties of Mg(ClO4)2, it is likely that H2O was absorbed into the 

chemical from the atmosphere before the final samples were made.  Therefore the final 

concentration of Mg(ClO4)2 was determined from the predicted differential scattering 

cross section of the neutron scattering data.  This can be considered a reliable way of 

verifying the concentration as the predicted differential scattering cross section is 

extremely sensitive to hydrogen isotope substitution due to their large differences in 

scattering lengths. All bond lengths, angles, Lennard Jones and Coulomb parameters of 

all components were set to match values found in literature [30,41-48] (Supplementary 

Table 2).  As no previous neutron diffraction and EPSR analysis based literature exists 

documenting the Lennard Jones or Coulomb parameters of glycine this was estimated 

from neutron diffraction experiments of other amino acids and short peptides.  Freindorf 

et al. [49] used a combined DFT quantum mechanical and AMBER molecular 

mechanical potential approach to determine the Lennard Jones parameters for the 

atomic species present in several amino acids and compared these to the results found 

using other potentials. The results are in good agreement with the 𝜎 values, however the 𝜀 are much lower than those used in this research. There is also a large contrast with the 

values determined for hydrogen, as it is typically modelled in EPSR such that it only 

interacts via a Coulomb force. All final parameters can be found in the supplementary 
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information, as well as the final fits for 𝐹(𝑄) from the EPSR simulations 

(Supplementary figures 10-12).  It is important to note that the resultant EPSR 

simulations do not guarantee unique molecular positions and orientations that perfectly 

match the samples, but merely solutions that are consistent with the scattering data and 

are based on sensible interaction parameters.  The divergence of the EPSR simulated 

fits to the data at low Q values are a result of insufficient correction of the data to 

account for inelasticity effects, which becomes increasingly difficult at low Q values 

and with samples containing large quantities of light atoms, such as hydrogen.  It is 

highly unlikely however to impact the overall structure observed from the resulting 

EPSR [50]. 

Results 

Local Water Structure 

The EPSR analysis yields the partial structure factors, and hence radial distribution 

functions (RDFs), for all interatomic correlations.  Perturbation to water structure can be 

discussed in terms of the water oxygen – water oxygen (OwOw) and the water oxygen – 

water hydrogen (OwHw) RDFs as shown in Supplementary Figures 1 and 2, their 

coordination numbers, and visualised using spatial density functions (SDFs).  Distances 

used to calculate the coordination numbers can be found in Supplementary Tables 3a-c.  

Upon the addition of glycine, the water structure undergoes a slight perturbation as the 

first peak in the OwOw RDF shifts slightly inwards from 2.82 Å in the case of ambient 

water [2] to 2.79 Å. The OwHw peaks still occur either side of the OwOw peak at 1.86 

and 3.35 Å respectively. The second hydration shell is drawn inwards from ~4.5 Å in the 

case of ambient water [2,51,52] to 4.42 Å in glycine solution.  This slight compression 

is also reflected by an increase of the height of the first peak in the OwOw RDF from 

2.49 in the case of ambient water [2] to 2.98 while decreasing the OwOw average 
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coordination number found in ambient water of ~4.7 to 4.167±0.005, where the quoted 

uncertainty for all coordination numbers reported in this paper are calculated by fitting a 

Gaussian peak to the coordination numbers predicted from EPSR using Origin 9.1.  This 

yields an uncertainty associated with the position of the centre of the peak. A reduction 

of this coordination number, together with the compression effects observed within the 

RDF suggest that the observed decrease in this coordination number is due to an 

excluded volume effect of the glycine. The OwHw average coordination number in the 

case of ambient water is given as 1.88 [2], whereas the current research finds 

2.378±0.007 when calculated over near identical distances. This striking increase is 

particularly significant as this coordination number is associated with hydrogen bonding 

in water, and will be explored in more detail in the discussion section. Two hydration 

shells are also clearly visible in the SDF shown in figure 2. The similarity of this SDF to 

ambient water, together with the similarity of the OwOw coordination number, RDF 

peak heights and their positions, suggest that the water is relatively structurally 

unperturbed, and therefore the hydrogen bond network is likely to remain mostly intact.   

As with previous results [30], in the presence of Mg(ClO4)2 a highly compressed 

structure emerges with the second hydration shell collapsing into the first, as can also be 

seen in figure 1, and the third hydration shell being drawn inwards from 6.93 to 5.39 

and 5.00 Å at 25oC and -20oC respectively.  Hydration shell collapse is reflected by an 

increased OwOw coordination number of 5.635±0.006 and 5.841±0.004 at 25 and -20oC 

respectively.  Despite the large structural perturbation, the OwHw peak positions do not 

change significantly, but the coordination numbers decrease slightly to 1.947±0.002 and 

1.718±0.004 at 25 and -20oC respectively.  This implies that the hydrogen bonding 

network is perturbed to a lesser degree than the overall structural perturbation would 

suggest, as has been seen previously in molecular dynamics simulation studies [51]. 
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Glycine Hydration 

As would be expected, glycine is strongly hydrated around the hydrophilic amine and 

carbonyl groups.  In the absence of Mg(ClO4)2, each amine hydrogen (Hx) coordinates 

an average of 0.9034±0.0001 water oxygens at a distance of 1.78 Å. Each carbonyl 

oxygen (O1) coordinates 3.230±0.005water oxygens at a distance of 2.67 Å, and 

2.52±0.01 water hydrogens at a distance of 1.70 Å. The average O1Ow and O1Hw 

coordination numbers suggest that 78% of the coordinated water molecules orient an 

OH bond toward the carbonyl oxygen at a slightly shorter than those found in bulk 

water. Upon addition of Mg(ClO4)2 a slight compression of the first hydration shell is 

seen around the carbonyl oxygen, with the O1Hw distance being drawn into 1.74 and 

1.69 Å at 25 and -20oC respectively.  Around the amine hydrogen the peak position does 

not change significantly in the first hydration shell, but the second hydration shell is 

drawn inwards from 3.22 to 3.12 Å at -20oC.  The structural perturbation is reflected in 

the average O1Ow coordination number (Supplementary Tables 3b and c). This is shown 

to decrease to 2.484±0.005 at 25oC and increase to 3.952±0.002 at -20oC, while the 

O1Hw coordination number is shown to decrease to 0.4±0.2 and 1.2±0.5 at 25 and -20oC 

respectively. The large discrepancy between the O1Ow average coordination numbers in 

the presence of Mg(ClO4)2 is likely due to the relatively large difference between the 

distances used to calculate the coordination numbers, as shown in supplementary tables 

3a-c. The intensity of the first peaks in these OH RDFs also decrease for both the amine 

and carbonyl groups in the presence of Mg(ClO4)2, with the -20oC peak having higher 

intensity than the 25oC (Supplementary figure 3 and 4 respectively). The zwitterionic 

nature of the modelled glycine also means there is charge ordering of the magnesium 

ion around the carbonyl group and the perchlorate ion around the amine group as 

evidenced by the relevant RDFs (Supplementary figures 13 and 14 respectively).  The 
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peaks observed in both RDFs decrease in intensity with decreasing temperature due to 

preferential hydrogen bonding of the amine and carbonyl groups to the surrounding 

water molecules resulting in a decrease in association between the charged amine and 

carbonyl groups and the ions. The O1Mg RDF features an intense sharp peak centred at 

1.48 Å, which is reminiscent of a chemical bond.  However this is unrealistic for our 

system and likely a result of the large charge difference between the Mg2+ ion and the 

carbonyl oxygen.   

Glycine Association 

Using EPSR it is also possible to estimate glycine cluster formation.  In this work two 

molecules are deemed clustered if one of their amine hydrogens is within a given 

distance of the neighbouring glycine’s carbonyl oxygen. This distance corresponds to 

the first minimum of the relevant O1Hx RDF (Supplementary figure 6). This method of 

evaluating clustering will be explained further in the discussion section. The cluster size 

distribution is shown in figure 3, where the largest cluster size predicted through EPSR 

is three glycine molecules in the case of aqueous glycine, and the proportion of 

molecules found in clusters of two or more molecules is 0.320. It is clear that while the 

presence of Mg(ClO4)2 is hindering clustering by screening the charge based 

interactions, as the proportion of molecules found in clusters of two or more molecules 

decreases to 0.203 and 0.221 at 25oC and -20oC respectively , it is not destroying it 

completely.  A temperature dependence is therefore observed for the clustering in the 

samples containing Mg(ClO4)2, with clusters of two glycine molecules occurring 17% 

less frequently at the lower temperature, and clusters of three glycine molecules 

occurring over 4 times more frequently. This is also reflected by the relative intensities 

of the first and second peaks in the O1Hx RDF, where the pure glycine and water sample 

has the highest intensity for both the first and second peak. Both samples containing 
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Mg(ClO4)2 have identical first peak heights, however the second peak is significantly 

higher for the lower temperature sample, as shown in supplementary figure 6. 

Discussion 

Bulk Water Structure 

In this research the OwHw average coordination number was shown to increase in the 

presence of glycine compared to ambient water while an excluded volume effect of the 

glycine simultaneously decreased the OwOw coordination number.  This suggests an 

increased tendency of the OH bond to orient itself towards a neighbouring water oxygen 

which could be interpreted as an increase in bulk water hydrogen bonding.  The ratio of 

the two coordination numbers suggests over half of the average coordinated water 

molecules have their OH bonds oriented towards the central molecule and are acting as 

hydrogen bond donors. This therefore predicts that the central molecule is over-bonded, 

with ~4.8 hydrogen bonds per molecule, and more water molecules than are predicted to 

be in the first hydration shell are hydrogen bonded to the central molecule. This is 

clearly impossible. As ambient water has somewhere between 3.4 and 3.6 hydrogen 

bonds per molecule [4,54-56], this increase in coordination number and the slight 

second hydration shell compression is likely a reflection of weakened hydrogen bonding 

in the bulk water with some bonds becoming too bent to still be classified as hydrogen 

bonds. However due to the overall similarity between pure water and water in the 

presence of glycine as determined by RDFs and SDFs (Figure 1 and Supplementary 

figure 1 and 2), and the difference between the OwOw peak position and the OwHw peak 

position of 0.93 nm, which is very close to the accepted OH distance found in a water 

molecule [43], the fraction of hydrogen bonded water molecules is likely to be mostly 

intact when compared with ambient water. 

Hydrogen Bonding in Glycine 
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Aqueous amino acids and chemicals featuring similar chemical groups have been 

previously studied through several means, including molecular dynamics simulations 

and neutron diffraction studies [44-48,57-66]. These studies have consistently shown a 

strong hydrogen bonding ability of the hydrophilic areas of amino acid molecules, in 

this case the carbonyl hydrogen bond acceptor and amine hydrogen bond donor groups 

of glycine. It has also been shown that of the two groups the carbonyl group has a 

stronger hydrogen bonding capacity, with each CO group capable of forming hydrogen 

bonds with two water molecules compared to each NH group being capable of forming 

a hydrogen bond with a single water molecule.  Waters bound to the carbonyl group are 

also reported to exhibit much slower reorientation times by a factor of ~2 compared 

with bulk water or water bound to the amine group. This difference in hydrogen 

bonding is supported by the current research.  The SDFs shown in figure 2 demonstrate 

a clear ability of these charged groups to coordinate water molecules with each amine 

group usually coordinating a single water molecule and each carbonyl usually 

coordinating three, with some water molecules being shared between each carbonyl 

oxygen.  This is also reflected in the relevant RDFs between the amine hydrogens or 

carbonyl oxygens with the water oxygens and water hydrogens. (Supplementary figures 

3, 4 and 9). In both the amine and carbonyl group the hydrogen bond acceptor-donor 

distance is shorter than that found in bulk water with the relevant O-H distance 

occurring at 1.78 and 1.70 Å respectively.  Here the shorter distance of the carbonyl 

hydrogen bond, together with a stronger first peak in the RDF, is an indicator of 

stronger hydrogen bonding.  This is likely explained by the increased dipole moment of 

the CO bond.  In this simulation there is a larger absolute charge difference between 

carbonyl carbon and oxygen compared with the amine hydrogen nitrogen 

(Supplementary table 2) and a greater separation between the two atoms. 
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Glycine molecules are therefore capable of hydrogen bonding to one another, as 

has been shown for other amino acids and similar molecules. Several studies [44-48,64] 

have now shown that hydrophilic interactions are the dominant force that drives the 

clustering of amino acids in solution. The most relevant example from previous 

literature uses L-proline [45] at a similar concentration to this research, and also finds 

that it typically forms dimers in solution as a result of interactions between its CO2
- and 

NH2
+ groups. This is clearly evidenced in this research. If one considers the RDF 

between the hydrophilic amine hydrogens and carbonyl oxygens, it is possible to assess 

hydrophilic association, and if one considers the RDF between the hydrophobic 

hydrogen side chains (Hbk) it is possible to assess hydrophobic association.  Comparing 

these two RDFs, as shown in figure 4, it is clear that the O1Hx has clear maxima and 

minima implying a reoccurring structural motif, whereas the HbkHbk has no significant 

discernible features.  This suggests that any clustering of glycine molecules is driven by 

hydrophilic forces rather than hydrophobic.  It is possible to verify this hydrophilic 

association by running the EPSR simulation in the absence of glycine atomic charges.  

If the clustering was occurring as a result of hydrophobic effects then this would still 

occur with glycine molecules with no partial charges, however clustering is almost 

entirely eliminated with 97.6, 98.8 and 95.1% of glycine molecules existing as 

monomers for aqueous glycine at 25oC, and glycine in aqueous Mg(ClO4)2 at 25 and -

20oC respectively. (Supplementary Figure 5). The observed temperature dependence on 

cluster size distribution also suggests an enthalpic origin for the hydrophilic interaction 

between glycine molecules. An enhanced level of clustering is therefore indicative of 

increased hydrogen bonding between glycine molecules at lower temperatures.  This is 

consistent with previous studies on water – alcohol solutions [67-69] and is consistent 

with hydrogen bonding in liquid water [4,70,71]. Whilst it is difficult to comment on the 
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directionality of the bond formed between amine and carbonyl groups of neighbouring 

glycine molecules, and hence to what extent this is a true hydrogen bond, there are 

several consistencies between the observed affects and what would be predicted through 

hydrogen bonding. 

Magnesium Perchlorate 

As described in the Results section, the addition of Mg(ClO4)2 perturbs bulk water 

structure, glycine hydration, and glycine clustering. A slight compression of the hydration 

shell around both hydrophilic areas of the glycine molecule is observed.  This is more 

apparent for the carbonyl group where the first peak in the O1Ow RDF shifts inwards and 

decreases in size and the associated coordination number changes significantly while the 

O1Hw coordination number simultaneously decreases.  These effects are less apparent at 

lower temperature. Collectively, this indicates that Mg(ClO4)2 acts to reduce the hydrogen 

bonding ability of the amine and carbonyl groups with the surrounding water, likely by 

screening the charge based hydrophilic interactions.  It is also evident from the 

coordination numbers and relative first OH peak intensities that hydrogen bonding is 

preserved to a greater extent at lower temperature.  This is clear when comparing the 

SDFs shown in figure 2, where the hydration structure around both charged groups in the 

presence of Mg(ClO4)2 is more reminiscent of pure water and glycine at lower 

temperature.  This is consistent with previous results, as an increased hydrogen bonding 

ability of hydrophilic groups within larger molecules at lower temperatures has been 

observed in neutron diffraction experiments on aqueous methanol and ethanol [4,67-69]. 

The reduction in hydrogen bonding ability of the glycine by Mg(ClO4)2 would also 

explain the observed reduction in glycine clustering and the associated temperature 

dependence. 
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As glycine is the simplest amino acid, it is likely that the perturbations to 

clustering by Mg(ClO4)2 shown in this work would occur for all zwitterionic amino 

acids.  It is also likely that an amino acid with a charged side chain would resist this 

perturbation to a greater extent by offering a site for preferential association of the ions, 

and thus protecting the hydrogen bonding ability of the amine and carbonyl group.  It is 

certainly true that salt-loving halophilic organisms tend to have a higher concentration 

of charged amino acids on the surface of their proteins, and that these are likely to help 

screen the effect of the ions present in their solvent environment and therefore preserve 

the hydrogen bonding network present of the protein. At a larger scale the effect of 

Mg(ClO4)2 on the viability of mesophilic and halophilic organisms has been tested with 

mixed results [19-22,72].  Some organisms experience a rapid decrease in viability, 

while some are unaffected, and some are even capable of anaerobic growth in 40 mM 

Mg(ClO4)2.  The perturbation but ultimate persistence of hydrogen bonding in the 

extreme case of near eutectic Mg(ClO4)2 studied here, combined with the ability of 

some terrestrial organisms to thrive at low Mg(ClO4)2 concentrations, seems to suggest 

that the limits to life are not met by the mere presence of this highly chaotropic salt. 

Acknowledgements 

The project was supported by a grant from the Engineering and Physical Sciences 

Research Council (EPSRC) (EP/P020088X/1) to Dr L. Dougan. Harrison Laurent is 

jointly supported by an EPSRC DTA studentship and an ISIS Facility Development 

Studentship. Experiments at the ISIS Pulsed Neutron Facility were supported by a beam 

time allocation from the Science and Technology Facilities Council under proposal 

number RB 1800054. The authors thank Tristan Youngs for his support during the 

running of the neutron diffraction experiments. 

Declaration of Interest 



16 
 

The authors declare no competing interests 

References 

[1] P. Ball, Proc. Natl. Acad. Sci. 114, 13327 (2017). 

[2] A. K. Soper, ISRN Phys. Chem. 2013, 1 (2013). 

[3] K. Amann-Winkel, M.C. Bellissent-Funel, L.E. Bove, T. Loerting, A. Nilsson, A. 

Paciaroni, D. Schlesinger, and L. Skinner, Chem. Rev. 116, 7570 (2016). 

[4] L. Zhao, K. Ma, and Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015). 

[5] M.C. Bellissent-Funel, A. Hassanali, M. Havenith, R. Henchman, P. Pohl, F. 

Sterpone, D. Van Der Spoel, Y. Xu, and A.E. Garcia, Chem. Rev. 116, 7673 (2016). 

[6] E.F. van Dishoeck, E.A. Bergin, D.C. Lis, and J.I. Lunine, in Protostars Planets VI 

(2014). 

[7] V.F. Chevrier, J. Hanley, and T.S. Altheide, Geophys. Res. Lett. 36, L10202 (2009). 

[8] F.J. Martín-Torres, M.-P. Zorzano, P. Valentín-Serrano, A.-M. Harri, M. Genzer, O. 

Kemppinen, E.G. Rivera-Valentin, I. Jun, J. Wray, M. Bo Madsen, W. Goetz, A.S. 

McEwen, C. Hardgrove, N. Renno, V.F. Chevrier, M. Mischna, R. Navarro-González, 

J. Martínez-Frías, P. Conrad, T. McConnochie, C. Cockell, G. Berger, A. R. Vasavada, 

D. Sumner, and D. Vaniman, Nat. Geosci. 8, 357 (2015). 

[9] A.S. McEwen, L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, 

S.L. Murchie, N. Thomas, and V.C. Gulick, Science (80-. ). 333, 740 (2011). 



17 
 

[10] S.C. Cull, R.E. Arvidson, J.G. Catalano, D.W. Ming, R. V Morris, M.T. Mellon, 

and M. Lemmon, Geophys. Res. Lett. 37, L22203 (2010). 

[11] J.D. Rummel, D.W. Beaty, M.A. Jones, C. Bakermans, N.G. Barlow, P.J. Boston, 

V.F. Chevrier, B.C. Clark, J.-P.P. de Vera, R. V Gough, J.E. Hallsworth, J.W. Head, 

V.J. Hipkin, T.L. Kieft, A.S. McEwen, M.T. Mellon, J.A. Mikucki, W.L. Nicholson, 

C.R. Omelon, R. Peterson, E.E. Roden, B. Sherwood Lollar, K.L. Tanaka, D. Viola, and 

J.J. Wray, Astrobiology 14, 887 (2014). 

[12] G.M. Marion, D.C. Catling, K.J. Zahnle, and M.W. Claire, Icarus 207, 675 (2009). 

[13] J.D. Toner, D.C. Catling, and B. Light, Geochim. Cosmochim. Acta 136, 142 

(2014). 

[14] M.H. Hecht, S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, D.W. Ming, 

D.C. Catling, B.C. Clark, W. V. Boynton, J. Hoffman, L.P. DeFlores, K. Gospodinova, 

J. Kapit, and P.H. Smith, Science (80-. ). 325, 64 (2009). 

[15] R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di 

Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. 

Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. 

Restano, and R. Seu, Science (80-. ). 361, 490 (2018). 

[16] D. Fox, Nature 512, 244 (2014). 

[17] B.C. Christner, J.C. Priscu, A.M. Achberger, C. Barbante, S.P. Carter, K. 

Christianson, A.B. Michaud, J.A. Mikucki, A.C. Mitchell, M.L. Skidmore, T.J. Vick-

Majors, W.P. Adkins, S. Anandakrishnan, S. Anandakrishnan, L. Beem, A. Behar, M. 

Beitch, R. Bolsey, C. Branecky, A. Fisher, N. Foley, K.D. Mankoff, D. Sampson, S. 



18 
 

Tulaczyk, R. Edwards, S. Kelley, J. Sherve, H.A. Fricker, S. Siegfried, B. Guthrie, T. 

Hodson, R. Powell, R. Scherer, H. Horgan, R. Jacobel, E. McBryan, and A. Purcell, 

Nature 512, 310 (2014). 

[18] S.A. Bulat, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, (2016). 

[19] J. Wadsworth and C.S. Cockell, Sci. Rep. 7, 4662 (2017). 

[20] K. Beblo-Vranesevic, M. Bohmeier, A.K. Perras, P. Schwendner, E. Rabbow, C.S. 

Moissl-Eichinger, Christine, Cockell, R. Pukall, P. Vannier, V.T. Marteinsson, E.P. 

Monaghan, P. Ehrenfreund, L. Garcia-Descalzo, F. Gomez, M. Malki, R. Amils, F. 

Gaboyer, F. Westall, P. Cabezas, N. Walter, and P. Rettberg, PLoS One 12, (2017). 

[21] V.J. Laye and S. DasSarma, Astrobiology 18, 412 (2017). 

[22] A. Oren, R. Elevi Bardavid, and L. Mana, Extremophiles 18, 75 (2014). 

[23] N. Schwierz, D. Horinek, U. Sivan, and R.R. Netz, Curr. Opin. Colloid Interface 

Sci. 23, 10 (2016). 

[24] A.H. Crevenna, N. Naredi-Rainer, D.C. Lamb, R. Wedlich-Söldner, and J. 

Dzubiella, Biophys. J. 102, 907 (2012). 

[25] H.I. Okur, J. Hladílková, K.B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. 

Cremer, and P. Jungwirth, J. Phys. Chem. B 121, 1997 (2017). 

[26] K.D. Collins, G.W. Neilson, and J.E. Enderby, Biophys. Chem. 128, 95 (2007). 

[27] K. Ma and L. Zhao, Int. J. Mol. Sci. 17, (2016). 

[28] M.Y. Kiriukhin and K.D. Collins, Biophys. Chem. 99, 155 (2002). 



19 
 

[29] R. Mancinelli, A. Sodo, F. Bruni, M.A. Ricci, and A.K. Soper, J. Phys. Chem. B 

113, 4075 (2009). 

[30] S. Lenton, N.H. Rhys, J.J. Towey, A.K. Soper, and L. Dougan, Nat. Commun. 8, 1 

(2017). 

[31] W.F. Kuhs, J.L. Finney, C. Vettier, and D. V. Bliss, J. Chem. Phys. 81, 3612 

(1984). 

[32] R. Carta and G. Tola, J. Chem. Eng. Data 41, 414 (1996). 

[33] H. Cottin, J.M. Kotler, K. Bartik, H.J. Cleaves, C.S. Cockell, J.P.P. de Vera, P. 

Ehrenfreund, S. Leuko, I.L. Ten Kate, Z. Martins, R. Pascal, R. Quinn, P. Rettberg, and 

F. Westall, Space Sci. Rev. 209, 1 (2017). 

[34] O. Botta and J.L. Bada, Surv. Geophys. 23, 411 (2002). 

[35] K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. 

Briois, U. Calmonte, M.R. Combi, H. Cottin, J. De Keyser, F. Dhooghe, B. Fiethe, S.A. 

Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Haessig, A. Jäckel, E. Kopp, A. 

Korth, L. Le Roy, U. Mall, B. Marty, O. Mousis, T. Owen, H. Rème, M. Rubin, T. 

Sémon, C.Y. Tzou, J.H. Waite, and P. Wurz, Sci. Adv. 2, (2016). 

[36] A.K. Soper, Phys. Rev. B 72, 104204 (2005). 

[37] A.K. Soper, Mol. Phys. 99, 1503 (2001). 

[38] A.K. Soper, Chem. Phys. 202, 295 (1996). 



20 
 

[39] D.T. Bowron, A.K. Soper, K. Jones, S. Ansell, S. Birch, J. Norris, L. Perrott, D. 

Riedel, N.J. Rhodes, S.R. Wakefield, A. Botti, M.A. Ricci, F. Grazzi, and M. Zoppi, 

Rev. Sci. Instrum. 81, 033905 (2010). 

[40] S. Roy, A. Hossain, K. Mahali, and B.K. Dolui, Russ. J. Phys. Chem. A 89, 2111 

(2015). 

[41] P.-G. Jonsson and A. Kvick, Acta Cryst. B28, 1827 (1972). 

[42] H.K. Lim, Y.S. Choi, and S.T. Hong, Acta Crystallogr. Sect. C Cryst. Struct. 

Commun. 67, i36 (2011). 

[43] A.G. Császár, G. Czakó, T. Furtenbacher, J. Tennyson, V. Szalay, S. V. Shirin, 

N.F. Zobov, and O.L. Polyansky, J. Chem. Phys. 122, 214305 (2005). 

[44] E. Scoppola, A. Sodo, S.E. McLain, M.A. Ricci, and F. Bruni, Biophys. J. 106, 

1701 (2014). 

[45] S. Busch, C.D. Lorenz, J. Taylor, L.C. Pardo, and S.E. Mclain, J. Phys. Chem. B 

118, 14267 (2014). 

[46] N.H. Rhys, A.K. Soper, and L. Dougan, J. Phys. Chem. B 116, 13308 (2012). 

[47] S.E. McLain, A.K. Soper, and A. Watts, Eur. Biophys. J. 37, 647 (2008). 

[48] S.E. McLain, A.K. Soper, I. Daidone, J.C. Smith, and A. Watts, Angew. Chemie - 

Int. Ed. 47, 9059 (2008). 

[49] M. Freindorf, Y. Shao, T.R. Furlani, and J. Kong, J. Comput. Chem. 26, 1270 

(2005). 



21 
 

[50] F. Meersman, D. Bowron, A.K. Soper, and M.H.J. Koch, Biophys. J. 97, 2559 

(2009). 

[51] A.K. Soper and M.A. Ricci, Phys. Rev. Lett. 84, 2881 (2000). 

[52] A.H. Narten and H.A. Levy, Science (80-. ). 165, 447 (1969). 

[53] S. Imoto, H. Forbert, and D. Marx, Phys. Chem. Chem. Phys 17, 24224 (2015). 

[54] R. Kumar, J.R. Schmidt, and J.L. Skinner, J. Chem. Phys. 126, 204107 (2007). 

[55] D. Swiatla-Wojcik, Chem. Phys. 342, 260 (2007). 

[56] B.M. Auer and J.L. Skinner, Chem. Phys. Lett. 470, 13 (2009). 

[57] F. Sterpone, G. Stirnemann, J.T. Hynes, and D. Laage, J. Phys. Chem. B 114, 2083 

(2010). 

[58] D. Russo, G. Hura, and T. Head-Gordon, Biophys. J. 86, 1852 (2004). 

[59] C. Malardier-Jugroot, D.T. Bowron, A.K. Soper, M.E. Johnson, and T. Head-

Gordon, Phys. Chem. Chem. Phys. 12, 382 (2010). 

[60] I. Daidone, C. Iacobucci, S.E. McLain, and J.C. Smith, Biophys. J. 103, 1518 

(2012). 

[61] S. Busch, L.C. Pardo, W.B. O’Dell, C.D. Bruce, C.D. Lorenz, and S.E. McLain, 

Phys. Chem. Chem. Phys. 15, 21023 (2013). 

[62] S. Busch, C.D. Bruce, C. Redfield, C.D. Lorenz, and S.E. McLain, Angew. Chemie 

- Int. Ed. 52, 13091 (2013). 



22 
 

[63] N. Steinke, R.J. Gillams, L.C. Pardo, C.D. Lorenz, and S.E. Mclain, Phys. Chem. 

Chem. Phys. Phys. Chem. Chem. Phys 18, 3862 (2016). 

[64] N.H. Rhys, A.K. Soper, and L. Dougan, J. Phys. Chem. B 119, 15644 (2015). 

[65] S.E. Norman, A.H. Turner, and T.G.A. Youngs, RSC Adv. 5, 67220 (2015). 

[66] S. Biswas and B.S. Mallik, J. Mol. Liq. 212, 941 (2015). 

[67] S. Lenton, N.H. Rhys, J.J. Towey, A.K. Soper, and L. Dougan, J. Phys. Chem. B 

122, 7884 (2018). 

[68] L. Dougan, S.P. Bates, R. Hargreaves, J.P. Fox, J. Crain, J.L. Finney, V. Réat, and 

A.K. Soper, J. Chem. Phys. 121, 6456 (2004). 

[69] L. Dougan, R. Hargreaves, S.P. Bates, J.L. Finney, V. Ŕat, A.K. Soper, and J. 

Crain, J. Chem. Phys. 122, 174517 (2005). 

[70] C. Huang, K.T. Wikfeldt, D. Nordlund, U. Bergmann, T. McQueen, J. Sellberg, 

L.G.M. Pettersson, and A. Nilsson, Phys. Chem. Chem. Phys. 13, 19997 (2011). 

[71] L. Xu, F. Mallamace, Z. Yan, F.W. Starr, S. V Buldyrev, and H.E. Stanley, Nat. 

Phys. 5, 565 (2009). 

[72] A.H. Stevens, D. Childers, M. Fox-Powell, N. Nicholson, E. Jhoti, and C.S. 

Cockell, Astrobiology ast.2018.1840 (2018).  

 



23 
 

 

 

 

   

   

 

 



24 
 

 

 

 

 

 

 

 

1 2 3 4
1E-3

0.01

0.1

1

P
ro

po
rt

io
n

Cluster size

Aqueous glycine at 25°C
 

1 2 3 4
1E-3

0.01

0.1

1
Glycine in aqueous Mg(ClO4)2

at 25°C 

P
ro

po
rt

io
n

Cluster size

1 2 3 4
1E-3

0.01

0.1

1
Glycine in aqueous Mg(ClO4)2

at -20°C 

P
ro

po
rt

io
n

Cluster size



25 
 

 

 

 

 

 

 

 

0 5 10 15

0

1

2

3

4

5

6

7

O
1H

x g
(r

)

r (Å)

 Glycine Mg(ClO4)2 -20oC

 Glycine Mg(ClO4)2 25oC

 Glycine 25oC

0 5 10 15

0

1

2

3

4

5

H
bk

H
B

k 
g(

r)

r (Å)

 Glycine Mg(ClO4)2 -20oC

 Glycine Mg(ClO4)2 25oC

 Glycine 25oC



26 
 

Figure 1. Spatial density functions of water around a central water molecule from 

neutron diffraction data and EPSR analysis for water in the presence of glycine (top) 

and water in the presence of glycine and Mg(ClO4)2.  These surface contours contain 

the highest 30% probability areas of finding another molecule within a distance of 5 Å 

from the central molecule. (Figure updated) 

 

Figure 2. Spatial density functions of water around a central amine group (top) or a 

central carbonyl group (bottom) of glycine without Mg(ClO4)2 at 25oC (left), with 

Mg(ClO4)2 at 25oC (middle), and with Mg(ClO4)2 at -20oC (right) from neutron 

diffraction data and EPSR analysis.  These surface contours contain the highest 15% 

probability areas of finding a water molecule within a distance of 5 Å from the central 

molecule. (Figure updated) 

 

Figure 3. Cluster size distribution predicted from EPSR simulations as determined using 

the definition for hydrophilic clustering found in the “glycine association” section. 

Distribution plotted on a logarithmic scale to highlight differences in cluster size 

distributions. Proportion of clusters containing only one glycine molecule shown in 

black and white. 

 

Figure 4. Labelling convention for glycine molecule used in present research (top). 

EPSR simulated RDFs of amine hydrogens from a carbonyl oxygen (middle) and side 

chain hydrogens from a side chain hydrogen (bottom).  Spectra are vertically offset for 

clarity. (Figure updated) 

 


