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Abstract 1 

 2 

Using sampling experiments, we found that, when there are fewer groups than variables, between-groups PCA 3 

(bgPCA) may suggest surprisingly distinct differences among groups for data in which none exist. While 4 

apparently not noticed before, the reasons for this problem are easy to understand. A bgPCA captures the g-1 5 

dimensions of variation among the g group means, but only a fraction of the in g−∑  dimensions of within-6 

group variation ( in are the sample sizes), when the number of variables, p, is greater than g-1. This introduces a 7 

distortion in the appearance of the bgPCA plots because the within-group variation will be underrepresented, 8 

unless the variables are sufficiently correlated so that the total variation can be accounted for with just g-1 9 

dimensions. The effect is most obvious when sample sizes are small relative to the number of variables, because 10 

smaller samples spread out less, but the distortion is present even for large samples. Strong covariance among 11 

variables largely reduces the magnitude of the problem, because it effectively reduces the dimensionality of the 12 

data and thus enables a larger proportion of the within-group variation to be accounted for within the g-1-13 

dimensional space of a bgPCA. The distortion will still be relevant though its strength will vary from case to 14 

case depending on the structure of the data (p, g, covariances etc.). These are important problems for a method 15 

mainly designed for the analysis of variation among groups when there are very large numbers of variables and 16 

relatively small samples. In such cases, users are likely to conclude that the groups they are comparing are much 17 

more distinct than they really are.  Having many variables but just small sample sizes is a common problem in 18 

fields ranging from morphometrics (as in our examples) to molecular analyses.  19 

20 



 

 1 

 2 

Introduction 3 

 4 

As a general trend, modern science tends to generate a very large number of variables (p) from samples that can 5 

vary widely in size (n) and often includes few individuals relative to the number of variables. Indeed, the 6 

‘Omics’ revolution, brought forward by the rapid advancement of informatics and molecular biology, offers 7 

some of the best examples of this trend. For instance, microarray analyses may include hundreds of genetic 8 

markers from a relatively small number of individuals (Culhane et al. 2002 is an example). However, 9 

statistically analyzing such high dimensional data with relatively small sample sizes (p/n ratios) is an important 10 

and challenging problem.  11 

 A variety of methods for dimensionality reduction are available in the statistical literature (Izenman 12 

2008). Among these, principal component analysis (PCA) is still probably the most popular in biology. A PCA 13 

is a rigid rotation of the multidimensional space of all the variables followed by a projection of the data onto 14 

relatively few  orthogonal axes that together account for as much of the overall variance as possible, though 15 

there is no reason for the axes themselves to be especially meaningful biologically. When p ≥ n, a PCA can only 16 

extract at most n-1 uncorrelated dimensions that, together, contain all the information about the variances and 17 

covariances of the original p variables (all p dimensions can be extracted when p < n). Often, there are dominant 18 

directions of variance so that a relatively small number of PCs may account for most of the variation. The first 19 

(higher order) PCs capture the major aspects of covariation in the sample and the later PCs the smaller ones.  20 

Bookstein (2017) first brought attention to the Marchenko-Pastur theorem  that shows that large p/n ratios cause 21 

an  exaggeration of the sizes of the eigenvalues for the first PCs relative to those of the last PCs, thus giving a 22 

misleading impression of the relative importance of the patterns that they seem to suggest. The initial motivation 23 

for the present paper was to investigate whether large p/n ratios might cause problems for the relatively new and 24 

increasingly popular type of PCA, between-group PCA (bgPCA). In this method a PCA is performed on the 25 

covariance matrix based on the g sample means (rather than on the original data matrix) followed by the 26 

projection of the original n samples onto these bgPC axes. Plots of these axes are then used to illustrate the 27 

distances between sample means and allow a user to judge the distinctiveness of the groups. 28 

  29 

 Phenotypic variation is complex and, although the number and choice of morphometric descriptors 30 

should be determined by the specific study hypothesis (Oxnard and O’Higgins, 2011), morphometric studies are 31 

often exploratory, tending to employ large numbers of variables, which make this discipline typically highly 32 

multivariate (Blackith and Reyment 1971). This is intrinsically true for landmark coordinate-based GM 33 

(geometric morphometrics), because each additional landmark or semilandmark adds two variables to a 2D 34 

study or three to a 3D study. While the p/n ratios are very variable (Table 1), datasets used in GM studies often 35 

have many more measurements than specimens. This is particularly common in, but not exclusive to, 36 



 

anthropology, the discipline in which semilandmark methods for the analysis of curves and surfaces were 1 

developed and are widely employed to study human evolution (Bookstein, 1997; Gunz and Mitteroecker, 2013; 2 

Slice, 2005). Semilandmarks are typically closely spaced sets of arbitrary points used to ‘discretize’ anatomical 3 

features, such as curves and surfaces, that are devoid of clearly corresponding landmark points; therefore, they 4 

can greatly increase the number of variables in a study.  Indeed, a propensity for morphometrics to employ large 5 

numbers of variables has become especially evident in the last decade, thanks to new, cheaper and faster 6 

instruments for the acquisition and analysis of 3D images. For instance, almost 60% of about 1000 entries, 7 

retrieved at the end of 2018 in Publish or Perish (https://harzing.com/resources/publish-or-perish) using google 8 

scholar to search “geometric morphometrics AND semilandmarks”, were papers published since 2013. 9 

 10 

Description of the bgPCA method 11 

An important topic in biology is the description and interpretation of group differences in multivariate spaces 12 

Various approaches have been suggested to summarize among group variation in scatterplots (ordination 13 

methods) and to classify individuals in groups. Yet, today’s most commonly multivariate technique for 14 

separating groups is still multi-group linear discriminant analysis (DA), also known as canonical variates 15 

analysis (CVA), originally proposed by Fisher (Fisher, 1936) and Mahalanobis (Mahalanobis, 1936). However, a 16 

limit for using DA/CVA in a study is that, for statistical reliability, it requires sample sizes greatly exceeding the 17 

count of variables in the analysis (Mitteroecker and Bookstein, 2011), and indeed it is not even computationally 18 

defined if p n g> − . In these instances, a between-group PCA (bgPCA) has been suggested as an interesting 19 

potential alternative to explore group structure. To our knowledge, this method was originally proposed by 20 

Yendle and MacFie (1989) who called it “discriminant principal components analysis” (DPCA), though it does 21 

not involve a standardization by the within-group variation as in DA and CVA. Another early paper is Culhane 22 

et al. (2002), who applied it to the analysis of high-dimensional microarray data. While bgPCA has similarities 23 

with discriminant functions, but also, as discussed by Boulesteix (2005), has relationships to partial least-squares 24 

dimension reduction methods.  Compared to DA/CVA, bgPCA is just a PCA and does not involve standardizing 25 

the variables based on the variation within groups (Seetah et al. 2012). Also, as with DA/CVA, bgPCA has been 26 

used for classification, and thus for predicting group affiliation based on bgPCs, an aim which should be 27 

achieved with a cross-validation, as exemplified by leave-one-out jack-knife used in Culhane et al. (2002) and 28 

Seetah et al. (2012). However, in contrast to a DA/CVA (Kovarovic et al. 2011; Mitteroecker and Bookstein, 29 

2011), a bgPCA does not require p n g≤ − , which is why it has been claimed that “in ... between-group PCA 30 

there is NO restriction on the number of variables” (https://www.mail-31 

archive.com/morphmet@morphometrics.org/msg05221.html).  32 

The bgPCA procedure is used to reduce the dimensionality of multivariate data to just those dimensions 33 

necessary to account for the differences among the g group means. Each sample is based on in individuals for a 34 



 

total sample size of in n=∑  or in gn=   in the case of equal sample sizes, as will be assumed here for 1 

simplicity. A bgPCA is performed by projecting the original n×p data matrix, X, onto the matrix, E, of the 2 

normalized eigenvector of the among-group SSCP matrix ( ) ( )
g

t

i i i

i

n= − −∑A x x x x , where ix  is the row 3 

vector for the mean of the ith group and x is the grand mean vector. The A matrix is at most of rank g-1 because 4 

it is a PCA of just the matrix of g means so only the first g-1 eigenvalues can be greater than zero and thus only 5 

the first g-1 columns of E need to be retained. The n×(g-1) transformed data matrix is then ′ =X XE . Based on 6 

these, the transformed within-group and among-group SSCP matrices are t′ =W E W E  and t′ = =A E AE Λ , 7 

the diagonal matrix of the first g-1 eigenvalues of A  (note: the superscript “t” indicates matrix transpose; also, 8 

while the equation for A given above weights the mean for each group by its sample size, that may not be 9 

appropriate for many applications, see Bookstein, 2019, but it is used here for generality). Importantly, the 10 

number of bgPCs cannot be more than g-1. Thus, with just two groups, there are only two group means, and one 11 

needs a single dimension to represent differences between two points; thus, when g = 2, there is only one bgPC. 12 

If there are three groups, the differences among the three corresponding means can be fully described by a plane 13 

passing through the three mean points, and thus by just two bgPCs. With g > 3 the rationale is the same and the 14 

number of bgPCs is g-1, but the geometric representation is not as easy, because we cannot represent 15 

multivariate spaces with more than three dimensions in a single scatterplot and even a 3D scatterplot (as with g = 16 

4) can be difficult to interpret (Mitteroecker et al. 2005).   17 

 18 

Sampling experiments 19 

To investigate the effect of varying p/n ratios on bgPCA, sampling experiments were performed using both 20 

isotropic data (independent variables with equal means and variances called Model 1 below) and data 21 

constructed from an actual morphometric study but with no true differences among the group means (called 22 

Models 2-3 below). Fig. 1 shows the result of bgPCAs using g = 3 groups with the same true means (i.e., no real 23 

group differences), a constant total sample size (n=120), and an increasingly larger numbers of variables (p=12, 24 

120 or 360). On the left (Fig. 1a) are bgPCA plots for isotropic data (Model 1, below) for g = 3 groups of 25 

identical size ( 3 4 0in n= = ). On the right (Fig. 1b), the same in , g and p are used as in Fig. 1A but based on 26 

correlated morphometric variables from real data, which have been randomly divided into three groups so that 27 

there are no real group differences. Convex hulls for each group are shown in order to identify group 28 

memberships for each sample. Rather than showing the groups superimposed as one might expect, because there 29 

are no true differences, Fig. 1 shows that bgPCA created an apparent clustering of the samples around their 30 

group means as first noticed by one of us (AC). The groups appear increasingly distinct from one another as the 31 

p/n ratio increases because larger numbers of variables are used. The effect is particularly evident for isotropic 32 

data and less pronounced but still present for correlated variables. 33 



 

The sampling experiments, shown in Fig. 1, were based on two different models, one (Fig. 1a) being the 1 

same as model 1 (below) and the other (Fig. 1b) being similar to models 2-3 (below). In all instances, there are 2 

no true differences among the means of the groups and the groups have the same size. Thus, in more detail, the 3 

models used in the more extensive sampling experiments described below, were: 4 

Model 1: A purely isotropic model with p independent random normally distributed variables, each with μ 5 

= 0 and σ = 1. This model was used for Figs. 1a, 2, and 4 below. 6 

Model 2&3:  Random normally distributed variables with the same true covariance matrix as that of a real 7 

morphometric dataset, but with all means equal to zero: 8 

Model 2: Procrustes shape coordinates from a sample of 45 adult yellow-bellied marmot (Marmota 9 

flaviventris) left hemimandibles. The original 2D configuration consists of 10 landmarks and 50 10 

semilandmarks, with the semilandmarks slid in TPSRelw (Rohlf 2015) using the minimum 11 

Procrustes distance criterion. This data matrix was then used to compute the covariance matrix 12 

among the variables and its corresponding eigenvector matrix and eigenvalues. All eigenvectors 13 

that had positive eigenvalues were retained. These were then used as described below to 14 

generate random data matrices with the covariance matrix taken from the original dataset.  15 

Model 3: Procrustes shape coordinates from a sample of 171 adult male vervet monkey skulls, which are 16 

part of a larger published dataset (Cardini and Elton 2017). There were 86 3D skull landmarks 17 

(Cardini et al. 2007; Cardini and Elton 2017). As with Model 2, as described below, these were 18 

used to generate samples of random variables with the same true covariance matrix as in the 19 

original data.  20 

  21 

A sample, X, from a population with a given true covariance matrix of Σ was generated using the 22 

following relationship. 1 2=X YEΛ , where Y is an n×p matrix of independent random normally distributed 23 

numbers with zero means and unit variances, E is a matrix of the p, p-dimensional normalized eigenvectors of Σ, 24 

and Λ is the p×p diagonal matrix of its eigenvalues. A difference between sampling experiments using the 25 

isotropic model (Model 1) and all others based on actual data (Models 2 and 3) is that the maximum number of 26 

eigenvectors that can be computed is limited to the number of variables in the original study because the method 27 

cannot construct more dimensions than are in the original data. For models 2 and 3, random samples of the rows 28 

(corresponding to the variables) of matrix E were used to generate variables.  When the desired p was greater 29 

than the original number of variables, variables were obtained by sampling the rows of E with replacement.  30 

 In the sampling experiments that follow, the data were subjected to a bgPCA using code written by FJR 31 

in MATLAB and group separation was assessed by computing an index of overlap between pairs of samples. Let 32 

ij
O  be the proportion of individuals in a group i that are closer to the mean of group j. When the dispersions in 33 

two groups i and j do not overlap, ij
O will be equal to 0 and will approach 0.5 for a pair of groups that overlap 34 



 

almost perfectly, because in that case a point is equally likely to be closest to either mean. The average, ijO  for 1 

all pairs of samples in a particular analysis is used as the measure of overlap. Initially, the amount of overlap 2 

between convex hulls was considered, but this has some unsuitable properties (such as rapid decrease in the 3 

probability of overlap as the number of dimensions increases even without the bgPCA transformation).  4 

 5 

What happens when n or g are changed relative to p? 6 

 7 

Figure 2 summarizes the results of sampling experiments using ijO  as a measure of overlap and varying g, in , 8 

and p. The figure uses in rather than n because the total size is not relevant for the computation of average 9 

overlap as they depend on the relationships among pairs of samples and not the number of samples (and thus not 10 

on the total sample size). The sampling experiments used g = 3 and 6 groups, sample sizes of in = 20 and 40, 11 

and a range of values for the number of dimensions, p. Fig. 2 shows the expected outcome that overlap is larger 12 

when p is smaller, in larger, and when there are more groups. The effect of p is strongest for the isotropic 13 

model, but the effect is clear for all three models.  The companion paper also demonstrates the effect of relaxing 14 

the assumption of equal sample sizes. 15 

 16 

Mathematical interpretation: why the apparent separation of groups as p increases? 17 

Because the ijO index seems difficult to work with analytically, an alternative index inspired by the partitioning 18 

of sums of squares in an anova or MANOVA was investigated for the simple null model (Model 1) used above, 19 

i.e., samples of independent normally distributed random variables from the same population. As an 20 

approximation, covariances among the variables are ignored (as they should be minimal for isotropic data) and 21 

the group differences described in terms of the traces (sums of the diagonal elements) of the usual within and 22 

among-groups sums of squares matrices, rather than the usual multivariate test statistics such as Wilks’ Lambda 23 

or Lawley-Hotelling U statistics, which require the computation of the matrix inversion and determinants of the 24 

sums of squares matrices.  25 

The reader should carefully note that all expressions in Table 2 are based just on the g-1-dimensional 26 

space of the bgPCA transformed data. Thus, the within-group sums of squares here only refers to that part of 27 

total within group sums of squares expected in the g-1-dimensional subspace. This table is not intended for and 28 

should never be used for statistical testing (unlike that of a standard MANOVA, which would use the variation 29 

in the p-dimensional space of the original variables even if resampling procedures are used), and is specifically 30 

designed to produce an explanation for the apparent differences between groups such as shown Fig 1A.  31 



 

As above, let A represent the among-groups SSCP matrix based on all p variables and E its matrix of 1 

normalized eigenvectors. After projecting the data for all samples onto these vectors, one has a bgPCA 2 

transformed data matrix  ′ =X XE . At most, only the first g-1 columns of E and thus ′X  are nonzero, so we will 3 

use only the first g-1 columns. Let ′A  be the among-groups SSCP matrix based on this transformed data matrix. 4 

The sum of the eigenvalues of A and ′A are equal because all of the variation among g means is captured in a g-5 

1-dimensional space. Similarly, one can define W as the within-groups SSCP matrix using the original p 6 

variables and ′W  as the equivalent matrix using the projections of the data onto E. Note that its trace ( )tr ′W  7 

will, in general, be less than that of W because only within-group variation in the g-1 dimensions in which the 8 

means differ is preserved by the projection onto the g-1-dimensional bgPCA space. The W matrix has n-g 9 

degrees of freedom and thus would require ( )min ,n g p−  dimensions to account for all the within-group 10 

variation. 11 

Consider sampling experiments, such as described in the prior section for Model 1, where in  specimens 12 

are in each sample (assuming equal sample size, so that in gn= ) are drawn from the same p-dimensional 13 

multivariate normal distribution, that has a mean vector p
=µ 0  (a vector of p zeroes) and a covariance matrix 14 

of p
=Σ I  (a p×p identity matrix). The true W matrix would then be ( ) pn g− I  with ( ) ( )tr n gp= −W . The 15 

true among groups variance component matrix, AΣ  , is p
0  because there are no true differences among the 16 

population means. However, due to sampling error the expected among-groups covariance matrix is i An+Σ Σ . 17 

For the transformed data, the trace of the observed among-groups SSCP matrix is unchanged by the 18 

transformation because all of the variation among g means will be accounted for by the g-1 eigenvectors. 19 

However, the trace of the expected within-groups SSCP matrix will be reduced by the fraction ( )1g p−  20 

assuming the remaining n-g dimensions of within-group variation are just a random sample of the total variation 21 

(reasonable here because, as mentioned above,  there are no actual differences). These relations are conveniently 22 

summarized in the format of a MANOVA table (Table 2), but just using the trace of each matrix divided by g-1 23 

as a summary of the relative amounts of within and among samples variation captured in the bgPCA space only.  24 

Note that the isoF   ratio defined in Table 2 (ratio of traces of among to within group MS using only the 25 

g-1 bgPCs) is analogous to an F-ratio and is a function of just p and g. The subscript “iso” is to remind the 26 

reader that it assumes isotropic data and is not the usual F employed for statistical testing (that, as mentioned, 27 

should not be done using the equations of Table 2). Likewise, the “iso” in the subscript of 
2
iso

R  is to remind the 28 

reader that this is not the usual squared multiple correlation coefficient, because this statistic, as it is 29 

computed here using only the bgPCA variance, is only aimed at assessing the amount of group separation. 30 



 

Thus, a value near zero would imply that groups account for little of the total variation and values near 1 1 

imply that most of the variation is between groups rather than within groups. Figure 3 shows plots of 2 

( )( )2 1iso iR p p g n= + −  as a function of in   and p for g = 3 and 6 that illustrate how 
2
iso

R  increases as a 3 

function of p (suggesting more distortion with more variables), but decreases as a function of in  (indicating less 4 

separation of groups with larger samples). For a given p and in , if g is smaller, and therefore also in gn=  is 5 

smaller, the denominator in the 
2
iso

R  formula is reduced and 
2
iso

R  becomes larger, which is why the 
2
iso

R  6 

surfaces in Figure 3 are higher for g = 3 than for g = 6. This is because adding more groups increases the 7 

dimensionality of the bgPCA space and thus should account for a larger proportion of the within-group 8 

variation. 9 

 The reader should note that larger 
2
iso

R  implies more separation and thus less overlap as measured by 10 

ijO . Fig. 4 shows a scatterplot ijO as a function of 
2
iso

R  using the data from Fig. 2. The slope of the relationship 11 

differs for data from the different models. The slope is less steep for the models with correlated variables. Within 12 

each dataset the scatter corresponds to the effects of different values of g and in . The 
2
iso

R  statistic is somewhat 13 

ad hoc, but Figure 4 (below) shows that it is a useful predictor of overlap for isotropic data. 14 

 The expressions in Table 2 are compared in Table 3 with the results from two sampling experiments. 15 

The example in the upper half is for the case where there are fewer variables but larger sample sizes in each 16 

group. The second for the case where the number of variables is larger and sample sizes are smaller. The values 17 

are averages over 10,000 replications and show the close agreement with the expected values (given in 18 

parentheses) computed using the formulas from Table 2.  19 

 20 

The effect of covariation among variables. 21 

 The isotropic Model 1, used in the previous section, is based on the unrealistic assumption that the 22 

variables are independent and have equal variances. Intuitively, one might expect that data with highly correlated 23 

variables might be less prone to overestimating of the degree of group separation, and indeed the sampling 24 

experiments presented in Figs. 1B, 2 and 4 do show less spurious separation for data with correlated variables 25 

(i.e., the models using vervet and marmot covariance matrices). If, as an extreme case, because of a strong 26 

correlation between variables, all of the variation in a dataset could be accounted for with just g-1 dimensions, 27 

then all of the within-group variation would also be captured by the g-1 among-groups dimensions of the bgPCA 28 

and no information would be lost. The 
2
iso

R  statistic described above should then be close to 0 and ijO  should  29 

measure the correct amount of overlap between groups, which should be close to 0.5 if there are no real groups).  30 

 In order to investigate the effect of covariation using sampling experiments, one must specify a model 31 

for the pattern and strengths of the correlations. The selection of a model can be simplified because one can 32 



 

rotate the data matrix to its principal axes, so that one need only consider models that differ in how the 1 

eigenvalues decrease as a function of their number. For independent variables they would decrease somewhat 2 

according to the Marchenko–Pastur formula (Bookstein 2017), but for highly correlated variables they would 3 

decrease more rapidly. A very simple model is that the logs of the eigenvalues, ( )ln iλ , decrease linearly as a 4 

function of the log of their number, that is, ( ) ( )ln lni a b iλ = −  or as
bi

i
eλ −= , where a is a constant greater 5 

than 0 (ignored here) and b determines how rapidly the eigenvalues decrease. This approach also models the 6 

effect of unequal variances for the different variables. More realistic models with a factor structure could have 7 

been investigated, but this model seems sufficient to illustrate the effect of different proportions of the variance 8 

being accounted for by the first g-1 dimensions. Fig. 5A shows examples with b varied from 0 to 1. Larger 9 

values of b yield increasingly rapid declines of successive eigenvalues, which imply stronger correlations among 10 

variables.  11 

 Fig. 5B shows the results of, sampling experiments with g = 3 groups of in = 20 observations each, with 12 

p ranging from 3 to 80, and each replicated 1000 times, for the b values used in Fig. 5A. The effect of increasing 13 

correlations among the variables was to reduce the size of the expected 
2
iso

R  statistic implying a larger ijO  and 14 

thus less spurious clustering of points around the means. Many morphometric datasets follow patterns like that 15 

shown for b equal to 1 or even larger values of b. For instance, the curve for the marmot mandible dataset 16 

(Model 2) would be even more extreme than the curve shown for b = 1 The curve for the vervet data (Model 3) 17 

is less extreme.  Thus, it is not surprising that Fig. 1 shows that for data with highly correlated variables there 18 

will be much less spurious group separation than that found for the isotropic model (Model 1).  19 

 20 

Discussion 21 

The primary focus of the present paper is on the reasons for the apparent clustering of points around the means 22 

of arbitrary groups and predicting the magnitude of this distorted summary of group differences. In contrast, the 23 

companion paper, Bookstein (2019), examines the effect of large p/n ratios on the bgPCA method in relationship 24 

to the predictions of the Marchenko-Pastur theorem as described in Bookstein (2017), along with two other 25 

aspects of the problem: the role of variations in sample sizes of the groups, and the effect of correlations among 26 

the variables based on a variety of factor models. It also suggests ways of evaluating the impact of these effects 27 

when analyzing actual data sets.  We use sampling experiments and examples from our own field, 28 

morphometrics, i.e. the quantitative study of biological forms (Blackith and Reyment 1971, Bookstein 1991). 29 

However, the issue and its implications are general and apply similarly to multivariate data used to compare 30 

groups in other fields such as genetics.   31 

In our analyses we found that bgPCA ordinations may tend to exaggerate differences between groups 32 

relative to the amount of within-group variation. In extreme cases, with few groups, small samples and very 33 



 

many variables, bgPCA may consistently show perfect separation of the groups even when there are no true 1 

differences among group means. This is in part because the g-1 dimensions of a bgPCA capture the entire 2 

amount of variation among the g group means, but only a fraction of the variation within each group when p > g-3 

1. Thus, most of the variance within groups is lost, when p is much larger than g-1. With small samples, the 4 

groups may appear quite distinct, but any apparent group differences will largely be an artefact of very large 5 

sampling error (Cardini & Elton 2007; Cardini et al. 2015). This is because any inaccuracies in group mean 6 

estimates are completely captured by the bgPCs, as if they were true differences, and used to define the g-1-7 

dimensional space.  8 

 Not surprisingly, one can also see in Figure 2 that, with the same p and g, larger samples overlap more 9 

than smaller samples. Indeed, whether there are true differences or not, the range of variation within a sample is 10 

expected to increase as its sample size increases and thus there is a greater chance of overlapping. 11 

 In summary, the distortion showing a consistent spurious degree of separation between groups is not a 12 

promising property for a method that was proposed to analyze data with large numbers of variables and small 13 

samples, but the picture is complex, because the gravity of the problem, as nicely exemplified by Figure 4, varies 14 

sharply from case to case.  Indeed, the severity of the distortion depends on both g and in relative to p, as well 15 

as on how strongly variables covary and whether true differences are indeed present (a case which we did not 16 

explore in our simulations). This is not unlike what Kovarovic et al. (2011) found in a study of discriminant 17 

analysis (DA). They remarked that (p. 3012): “increasing the number of predictors may increase … group 18 

separation in scatterplots of non-cross-validated DFAs, even if those predictors are random numbers which do 19 

not add any relevant information on group differences”. However, with bgPCA, this well-known problem of DA 20 

may be even more serious, because in bgPCA there is no theoretical limit to the number of variables that can be 21 

used to summarize groups and thus p can be much larger than n and g, as in many publications (Table 1). 22 

 Among the factors that might reduce the distortion, or even make it negligible, covariance is one of the 23 

most interesting, as it is expected in most biological datasets. The reason why covariance mitigates against the 24 

problem of bgPCA spurious group separation is that, with correlated variables, the number of independent 25 

dimensions is effectively reduced and, therefore, operationally, it is as if the ( )1ip g n −  ratio was smaller. The 26 

degree to which it is smaller depends on the strength of the covariances. Yet, the problem is clearly still there, as 27 

both separation and 
2
iso

R  still increase with p. Thus, the main conclusion is the same: even with covariances, 28 

with a large ( )1ip g n −  ratio, not only might one see groups that appear overly separated, as in our sampling 29 

experiments, but also, if there are true groups, the differences will be inflated by a case-specific degree, which is 30 

difficult to predict a priori.  31 

 There are many reasons to expect strong covariances in studies using Procrustes-based GM. Some 32 

covariance is introduced by the fact that, for 2D data, the superimposition reduces the 2q-dimensional variation 33 

of the raw coordinates (with q being the number of landmarks) to the 2q-4 dimensions of shape space (Rohlf and 34 



 

Slice, 1990). In addition, covariation will depend on factors such as the number and distribution of the 1 

anatomical points. For example, landmarks that are very close together and closely spaced semilandmarks are 2 

expected to be highly correlated (Cardini 2018). Thus, the marmot data includes slid semilandmarks and 90% of 3 

the total variance in these data can be accounted for by just the first 10 PCs (out of the 44 possible because n = 4 

45 and p = 120). By contrast, the vervet data requires 56 PCs (out of the 170 possible because n = 171 and p = 5 

251) to account for the same percentage of total variance. Fig. 2 shows that the curves for the marmot data are 6 

higher (more overlap and thus less false clustering) than the curves for the vervet data (less overlap and thus 7 

stronger false separation of the groups). Note that these results do not suggest that one should purposely add 8 

highly correlated variables to reduce the distortion expected in the results of a bgPCA. Adding perfectly 9 

correlated variables to an existing dataset will not change the effective dimensionality of a dataset and thus will 10 

not alter the degree of false clustering expected in the results of a bgPCA. 11 

 12 

 On the other hand, in datasets where strong correlations among variables are expected, such as is 13 

common in GM, where additional covariance is introduced by the Procrustes superimposition itself (Rohlf and 14 

Slice, 1990) and many semilandmarks are used (because physically close semilandmarks tend to covary 15 

strongly), one might hope to circumvent some of the issues raised in this paper by reducing the number of 16 

variables used in the bgPCA.  Indeed, in GM studies, it is often the case that distance matrices among specimens 17 

assessed using a few landmarks are highly correlated with those derived from the full set of landmarks plus 18 

many semilandmarks (Skinner et al, 2009; Ferretti et al. 2013; Watanabe, 2018; Galimberti et al. 2019). This can 19 

be assessed formally, for instance, through matrix correlations where testing whether full (all landmarks and 20 

semilandmarks) and reduced (a subset of the full configuration) data matrices are highly correlated. Thus, 21 

smaller ratios of ( )1ip g n −  can be achieved at the outset, simply by limiting the number of variables used in 22 

the study. If this is done, the resulting visualizations of shape differences among specimens will be less detailed, 23 

because fewer landmarks are used, but results of bgPCA will be less likely to be misleading.  24 

 It is important to bear in mind that scatterplots are not the only tool for assessing group differences. 25 

Results from a bgPCA should be complemented by tests of significance, as well as by cross-validated 26 

classifications of groups (e.g., Seetah et al. 2012). However, they must be performed using the full p-27 

dimensional space (unlike the statistics in the ‘ad-hoc’ MANOVA Tables 2-3, using only bgPCs with the 28 

specific aim of assessing the magnitude of spurious group differences in the bgPCA sub-space).Wwith small 29 

samples, and/or negligible group separation in the full data space, group differences using all p variables will be 30 

non-significant, thus alerting the user that any appearance of group separation in bgPCA scatterplots should be 31 

regarded with extreme suspicion. Also, as one of the main aims in the formulation of bgPCA by Culhane et al. 32 

2002 was classification, the results should be checked by cross-validating bgPCAs in the full data space. Finding 33 

a cross-validated accuracy only negligibly different from that expected by chance should warn users about likely 34 

distortions in the scatterplots.  35 



 

  1 

 In conclusion, big datasets are increasingly common, but having very many variables does not 2 

‘counterbalance’ the effect of small n;  it could make it worse, as shown here and in Bookstein (2019). Thus, we 3 

show that in attempting to assess group distinctiveness using bgPCA there is a potential trap, in that spurious 4 

apparent groupings may emerge in scatterplots, especially when the subspace spanned by the g-1 bgPCs does not 5 

adequately reflect within group variation, as is increasingly likely to happen when p/n is large and g is small.  6 

The appearance of spurious groups in bgPCA offers a good reminder of how a large number of descriptors might 7 

bring problems as well as benefits, with the problems sometimes potentially outweighing the benefits. Indeed, as 8 

with other methods (Hair et al. 2009; Bookstein, 2017), bgPCA provides another example of the potential perils 9 

of high dimensional data, and of the possible misuse of techniques and misinterpretation of findings, when the 10 

basic issues of sampling error and data dimensionality are not clearly borne in mind. 11 

 12 
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Fig. 1. bgPCA scatterplots (computed using Morpho – Schlager, 2017 – and drawn using Adegraphics 1 

– Siberchicot et al. 2017) showing the increasing spurious separation of random groups as p/n 2 

increases: (a) normal multivariate isotropic (i.e., uncorrelated variables) model; (b) normal multivariate 3 

model with covarying variables (based on the covariance matrix of a set of adult male vervet cranial 4 

linear measurements). 5 

 6 

 7 

Fig. 2. Plots of  (average overlap between groups) from sampling experiments for three models: 8 

Mod1 (isotropic), Mod2 (Marmot Procrustes shape coordinates), and Mod3 (Vervet Procrustes shape 9 

coordinates), using g = 3 or 6 groups and = 20 and 40. In all models, there is less overlap when there 10 

are fewer groups and smaller as  p increases.  11 
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Fig. 3. Expected relationship between 
2
iso

R  and in  and p. A.  For g = 3. B. For g = 6 groups. Note that 4 

the height of the surface is lower when larger sample sizes are larger, more groups, and fewer variables
 

5 

(see Table 2). 6 
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Fig. 4. A scatterplot of  (average overlap between groups) against  using the results of the 3 

sampling experiment shown in Fig. 2. Within each dataset it shows a tight negative relationship 4 

between  and with a shallower slope for datasets that have more highly correlated variables. 5 

Dotted lines connect points for g = 3 groups and dashed lines for g = 6 groups. For isotropic data  6 

is smaller when there are more groups. Curves for different sample sizes are plotted but 7 

indistinguishable.  8 
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Fig. 5. A. Plot showing the effect of varying b the rate of decrease of the eigenvalues (λ) for a 5 

hypothetical covariance matrix with p = 80 variables. The curve for b = 1 is similar to those usually 6 

observed in morphometric data. B.  Plot showing 
2
iso

R
 
values for the results of sampling experiments 7 

for simulated data based on the models shown in Fig 5A. The slope b was varied from 0 to 1 to 8 

increase the level of correlation among the variables. Experiments were performed using 1000 9 

replicates for g = 3 groups of size in = 20. The solid line shows the expected relationship, 10 

( )( )2 1iso iR p p g n= + − , for uncorrelated data that closely matches the results from this sampling 11 

experiment. This plot shows that for the bgPCA method the proportion of the total variance accounted 12 

for by the variance among groups is expected to increase as the number of variables increases but less 13 

so as the overall level of correlation among the variables increases. For large in , the slope of the curve 14 

would approach the abscissa if the correlations were such that only the first g-1 eigenvalues were 15 

greater than 0. 16 

 17 
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Tables and captions 1 

 2 

Table 1. Examples of papers showing the wide range of p/N and N/g ratios used in Procrustean GM 3 

studies involving groups. The number of shape coordinates is used as a proxy for p (i.e., without 4 

considering the loss of dimensions in the superimposition and, if applicable, because of sliding 5 

semilandmarks or 'symmetrization'). N is either the number of individuals or, if individuals were 6 

averaged in the between group analyses, the number of taxa. The average number of specimens per 7 

group (with g being the number of groups) is also shown. Studies using bgPCA are emphasized in bold 8 

while the columns with pNn and N/g ratios are emphasized in light grey. 9 
 10 

study semilandmarks? N p p/N g p/g N

Hublin et al., 2017 (root surface) yes 69 1650 23.9 5 330 

Neubauer et al., 2018 yes 127 2805 22.1 5 561 

Torres-Tamayo et al., 2017 yes 80 1245 15.6 4 311 

Knigge et al., 2015 yes 87 567 6.5 4 142 

Gunz et al., 2012 yes 80 312 3.9 2 156 

Bookstein et al., 1999 yes 21 50 2.4 8 6 

Schlager & Ruddel, 2015 yes 534 1110 2.1 4 278 

Baab, 2016 (Bodo dataset) - 24 42 1.8 2 21 

Gonzalez et al., 2013 - 59 93 1.6 5 19 

Sansalone et al., 2018 - 53 72 1.4 2 36 

Domjanic et al., 2015 yes 134 170 1.3 2 85 

Benazzi et al., 2011 yes 38 48 1.3 3 16 

Green et al., 2015 yes 279 258 0.9 5 52 

Gomez-Robles et al., 2011 yes 129 94 0.7 10 9 

Fruciano et al., 2016 (fish body) yes 61 44 0.7 2 22 

Chiozzi et al., 2018 (fish body) yes 62 44 0.7 5 9 

Kubiak et al., 2017 - 85 60 0.7 4 15 

Cucchi et al., 2011 yes 114 80 0.7 9 9 

Fruciano et al., 2017 (all landmarks) - 138 93 0.7 23 4 

Serb et al., 2017 yes 933 606 0.6 6 101 

Pallares et al., 2016 - 249 132 0.5 9 15 

Chemisquy et al., 2014 (upper molar) yes 103 52 0.5 5 10 

Sanfilippo et al., 2010 - 160 72 0.5 2 36 

Seetah et al., 2012 - 67 24 0.4 4 6 

Cooke & Terhune, 2015 - 169 60 0.4 7 9 

Ritzman et al., 2016 yes 315 90 0.3 4 23 

Klenovšek et al., 2016 - 215 58 0.3 6 10 

Franklin et al., 2013 - 400 93 0.2 2 47 

Cardini & Elton, 2008 - 1126 258 0.2 30 9 

Fruciano et al., 2011 - 223 40 0.2 9 4 

Corti et al., 2001 - 277 44 0.2 12 4 

Ivanovic et al., 2009 - 166 26 0.2 9 3 
Dapporto et al., 2011 - 130 20 0.2 2 10 



 

Cardini & O'Higgins, 2004 - 354 52 0.1 14 4 
Souto-Lima & Millien (skull) - 212 30 0.1 3 10 

Franchini et al., 2014 - 297 40 0.1 3 13 

Cardini, 2003 - 388 18 0.0 14 1 

Astua, 2008 - 1079 38 0.0 56 1  1 

Table 2. MANOVA-style table summarizing expectations after a bgPCA transformation with g equal-2 

sized samples of size ni all drawn from the same p-dimensional normally distributed population with 3 

mean p
=µ 0  (a vector of p zeros) and covariance matrix p

=Σ I  (a p×p identity matrix). Because the 4 

table assumes equal-sized samples, n=gni. The expressions for the traces of the SS matrices are given 5 

along with their MS after division by degrees of freedom. The isoF   ratio is also given in analogy to the 6 

usual F ratio and the proportion of the total variation accounted for by differences among means, 
2
iso

R , 7 

is also given. Note that these are not the usual F and R2
 
coefficients from an anova or a multiple 8 

regression analysis – they are expected values assuming the isotropic model, unlike a standard 9 

MANOVA where one estimates between-group variance relative to within-group using all original 10 

variables, here computations are only within the g-1 dimensions of the bgPCA transformed data and 11 

cannot be used for statistical testing. This means that the within-group component shown in the table 12 

only refers to the residual variance left unexplained by groups in the g-1 dimensional bgPCA space 13 

(i.e., the within-group variation one sees in the scatterplots such as in Fig. 1).  14 
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Table 3. Two examples of sampling experiments showing averages based on 10,000 replicates of the 2 

null model with all samples drawn from the same independent and normally distributed population 3 

with mean 0 and variance 1. Expected values based on Table 2 are given in parentheses. The upper 4 

table is an example with smaller p and large sample sizes. The lower table has a larger p and smaller 5 

sample sizes. As with Table 2, all computations are done using only using the g-1 = 2 dimensions from 6 

a bgPCA. Note that, unlike the formulas in Table 1, the traces are divided by g-1 to give an average 7 

diagonal element. 8 

 9 

p = 20, g = 3, n
i
 = 40 

Source of variation df Trace SS/(g-1) Trace MS/(g-1) 
isoF  Ratio  

Among 2 20.0380 (20)  10.0190 (10) 10.1124 (10) 

Within 117 116.9471 (117) 0.9995 (1)  

Total 59 136.9851 (137) 1.1511 (1.1513)  

2
iso

R
 
=

 
0.1460 (0.1460)  

 10 

p = 80, g = 3, n
i
 = 10 

Source of variation df Trace SS/(g-1) Trace MS/(g-1) 
isoF  Ratio  

Among 2 79.96975 (80) 39.9849 (40) 41.4724 (40) 

Within 27 27.0319 (27) 1.0012 (1)  

Total 29 107.0016 (107) 3.6897 (3.6897)  

2
iso

R = 0.7469 (0.7477)  

 11 
 12 
 13 


