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Abstract 

The Mega Amp Spherical Tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ~ 1.3) with 
similar poloidal cross-section to other medium-size tokamaks.  The physics programme concentrates 
on addressing key physics issues for the operation of ITER, design of DEMO and future spherical 
tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and 
modelling to significantly advance our understanding.  An empirical scaling of the energy confinement 
time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of 
electron scale turbulence.  Measurements of ion scale turbulence with beam emission spectroscopy and 
gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is 
broken by flow shear.  Near the non-linear stability threshold, flow shear tilts the density fluctuation 
correlation function and skews the fluctuation amplitude distribution.  Results from fast particle physics 
studies include the observation that sawteeth are found to redistribute passing and trapped fast particles 
injected from neutral beam injectors in equal measure, suggesting that resonances between the m=1 
perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport.  Measured 
D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than 
predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre 
approximation.  Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) 
can reproduce trends observed in experiments when the plasma response and charge-exchange losses 
are accounted for.  Measurements with a neutral particle analyser during merging-compression start-up 
indicate the acceleration of ions and electrons.  Transport at the plasma edge has been improved through 
reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an 
ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma 
potential estimates from ball-pen probes.  The application of RMPs leads to a reduction in particle 
confinement in L-mode and H-mode and an increase in the core ionization source.  The ejection of 
secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point.  
Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in 
modest changes to their velocity, and in most cases can be treated as moving independently.  A 
stochastic model of scrape-off layer profile formation based on the superposition of non-interacting 
filaments is in good agreement with measured time-average profiles.  Transport in the divertor has been 
improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament 
near the X-point, extending from the separatrix to ψn ~ 1.02.  Simulations of turbulent transport in the 



divertor show that the angle between the divertor leg on the curvature vector strongly influences 
transport into the private flux region via the interchange mechanism.  Coherence imaging measurements 
show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines 
where the gas is ionised.  MAST Upgrade is based on the original MAST device, with substantially 
improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts.  SOLPS-
ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms 
of upstream density, in the Super-X compared with a conventional configuration and that the radiation 
front movement is passively stabilised before it reaches the X-point.  1D fluid modelling reveals the 
key role of momentum and power loss mechanisms in governing detachment onset and evolution.  
Analytic modelling indicates that long legs placed at large major radius, or equivalently low |B| at the 
target compared with the X-point are more amenable to external control.  With MAST Upgrade 
experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has 
been carried out and a mitigation strategy developed.  



1. Introduction 

The Mega Amp Spherical Tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ~1.3, Ip ≤ 

1.3MA, Bφ(R0) ≤ 0.52T) with a similar cross-section to other medium-size tokamaks (e.g. ASDEX 

Upgrade [1]) and, together with NSTX-U [2] was one of the two largest spherical tokamaks.  Advances 

in our understanding of key physics issues concerning the operation of ITER [3] and the design of 

DEMO [4][5] have been made by utilising high resolution diagnostics together with sophisticated 

numerical modelling.  MAST operations finished in October 2013 to enable the construction of MAST 

Upgrade.  Since then, substantial data analysis and modelling activities have been performed to validate 

models to improve our capability to extrapolate to future devices, in particular MAST Upgrade [6][7]. 

The construction of MAST Upgrade has recently been completed and features substantially improved 

capabilities over the previous MAST device.  These include 17 new poloidal field coils (14 of which 

are within the vacuum vessel), new closed, up-down symmetric divertors with Super-X capability fitted 

with cryopumps, 50% higher toroidal field (from 0.585T to 0.92T at R=0.7m) and a new solenoid will 

nearly double the inductive flux from 0.9Vs to 1.7Vs, allowing for the maximum plasma current and 

pulse length to be 2MA and 5s respectively (from 1.35MA and 0.7s), although not concurrently.  

Operation at maximum current and toroidal field will enable pulses up to ~2s flat-top duration and a 

maximum plasma current of 1MA will be sustained for up to 5s.  A combination of on and off-axis 

neutral beam heating and current drive to tailor the fast ion distribution and q profile to avoid MHD 

instabilities.  The planned physics programme emphasises utilisation of its unique divertor and core 

capabilities to address key issues for the success of ITER operations and the design of future devices 

[7], including exploring reactor-relevant alternative divertor configurations, adding to the knowledge 

base for ITER and to explore the performance of spherical tokamaks at higher magnetic field, shaping 

and auxiliary heating. 

This paper describes results from MAST, starting from the plasma core, data and gyrokinetic modelling 

of ion scale turbulence and simulations of electron scale turbulence are discussed in section 2.  In section 

3, the impact of sawteeth and Resonant Magnetic Perturbations (RMPs) on fast ion confinement, 

characterisation of a neutron deficit and evidence for the acceleration of electrons and ions during 

merging-compression start-up on MAST are discussed.  In section 4, new insights into transport at the 

edge of the confined plasma using a reciprocating probe are presented, including measurements of a 

Geodesic Acoustic Mode, the impact of RMPs on particle confinement, measurements of secondary 

ELM filaments in MAST and initial modelling of ELMs in MAST-U with JOREK are presented.  In 

section 5, measurements and modelling of transport in the divertor and scrape-off layer are presented, 

together with modelling of detachment and the influence of the divertor geometry on its access and 

evolution.  An overview of the preparations for initial operations of MAST Upgrade are presented in 



section 6, with details of a package of further enhancements to address key gaps in our understanding 

of plasma exhaust approaching reactor relevant conditions. 

2. Core Transport & Confinement 

Spherical tokamaks such as MAST are an excellent environment for studying core transport in very 

challenging conditions with high β, strongly driven toroidal flow (and flow shear) and fast ion pressure.  

Previous experiments on MAST and NSTX found that the energy confinement time varied according 

to the scaling 𝐵𝜏𝐸 ∝ 𝜈∗−0.82±0.1 [8][9], where B is the magnetic field, τE is the energy confinement time 

and 𝜈∗ is collisionality, which is favourable for higher power devices with closed divertors that can 

reach lower collisionality such as MAST Upgrade.  We note that this trend is consistent with recent 

electrostatic simulations of Electron Temperature Gradient (ETG) scale turbulence at mid-radius in a 

MAST H-mode plasma1 using the gyrokinetic flux-tube code GS2 [10] with adiabatic ions.  On running 

ETG simulations at low collisionality for sufficiently long durations (~0.01τE) [13], it is found that the 

dominant radially elongated streamer-like structures of an early “ quasi-saturated” state become 

suppressed by slowly growing zonal modes that reduce turbulence (and its associated transport) to reach 

a saturated state that is dominated by “vortex streets”, as shown in Figure 1.  The fully saturated electron 

heat flux is found to scale linearly with collisionality due to the damping of zonal modes by collisions, 

which provides a candidate mechanism to explain the favourable ST scaling of energy confinement 

with collisionality.  Other candidate mechanisms have previously been proposed based on the collision 

dependence of microtearing mode linear growth rates [15] and on the collision dependence of 

dissipative trapped electron mode turbulence [16]. 

Transport due to ion scale turbulence is normally strongly suppressed by flow shear which alters the 

characteristics of the remaining structures generated by the turbulence.  Sophisticated analysis 

techniques have been applied to Beam Emission Spectroscopy (BES) data, taking account of the finite 

spatial resolution [17] to extract spatial and temporal correlation parameters of density fluctuations in 

neutral beam heated plasmas.  In up-down symmetric double null plasmas, toroidal flow shear breaks 

the symmetry of the turbulence [18].  Sheared equilibrium flow shears turbulent eddies, resulting in a 

tilt of the spatial correlation function, which increases with flow shear, as shown in Figure 2. Close to 

the non-linear threshold, the shear also skews the amplitude distribution of the density fluctuations.  

These observations are not inconsistent with results of non-linear gyro-kinetic simulations of ion-scale 

turbulence for a MAST equilibrium, close to threshold normalised temperature gradient required for the 

excitation of sub-critical turbulence, in which the turbulence is found to be dominated by a few, isolated, 

                                                           

1 Gyrokinetic simulations have previously suggested that ETG turbulence can give rise to experimentally relevant levels 
of electron heat transport at mid-radius in MAST H-mode plasmas [10][11], and that the turbulence at ion scales is often 
suppressed by flow shear [12].  In [13], an analysis at mid-radius in the MAST H-mode discharge #8500 with 2MW of 
Neutral Beam Injection heating.  Its data are available in the International Multi-Tokamak Profile Database [14]. 



long-lived structures [19].  The simulations suggest that further from the threshold, the symmetry is 

effectively restored, reducing both the tilt of the correlation function and skewness of the distribution. 

 

3. Fast Particle Physics 

In future devices where a significant proportion of the plasma heating comes from alpha-particles 

generated by fusion reactions, confinement of energetic particles in the presence of MHD instabilities 

that cause the redistribution, and sometimes loss, of energetic particles, is a significant issue.  Sawteeth 

invariably result in the redistribution of fast particles, but a high fast particle population inside the q=1 

surface extends the sawtooth period, resulting in a larger crash, which can lead to the triggering of 

instabilities such as Neoclassical Tearing Modes (NTMs) that significantly degrade plasma confinement 

[20]. Studies of the effects of sawteeth on fast ion confinement in MAST [21], based principally on 

neutron camera data, suggest that passing and trapped fast particles are redistributed in approximately 

equal measure.  The amplitude of the fast ion redistribution, inferred from neutron camera and Fast Ion 

D-alpha (FIDA) measurements, is consistent with TRANSP [22] / NUBEAM [23] simulations.  Three 

separate sawtooth models are all compatible with the measured impact of sawteeth on neutron emission 

profiles: the Kadomtsev model [24] which assumes full reconnection inside the q=1 surface, both 

including and excluding ergodisation; and the Porcelli model [25], in which incomplete reconnection is 

assumed to occur.  No evidence has been found of an energy threshold for redistribution of passing or 

trapped particles due to sawteeth, suggesting that resonances between the m=1 sawtooth perturbation 

and the fast ion orbit (both the poloidal bounce and toroidal precession) frequencies may be playing a 

dominant role in the fast ion transport.  Further insights into the effects of sawteeth on fast ion 

confinement have been derived from a novel tomographic reconstruction technique applied to FIDA 

data to reconstruct the fast particle distributions, in pitch and energy space, before and after a sawtooth 

[26].  The inverted data, shown in Figure 3, indicate a 42% reduction across the fast ion density profile 

with a modest change in its shape, comparable to but slightly lower than a 46% reduction predicted by 

TRANSP/FIDASIM simulations.         

Fusion reactions on MAST occur primarily due to the interaction between energetic neutral deuterons 

generated by a Neutral Beam Injector (NBI) and thermal deuterium ions in the plasma, contributing 

~90%, and the remainder are mainly due to interactions between energetic particles delivered by the 

NBIs making up most of the remaining ~10%.  The fusion reaction rate of this process is well known, 

so any discrepancy between calculated and measured fluxes of fusion products is expected to be due to 

errors in the assumed deposition profile of the neutral beam(s), or processes such as fuel dilution or the 

transport of fast ions [27].  Recent analysis of fusion product fluxes measured independently with a 

neutron camera [28] and charged fusion product detector [29] indicates that these are approximately 

40% lower than those predicted by the TRANSP/NUBEAM codes [30], independent of the plasma 



scenario.  An anomalous fast ion diffusivity is sometimes required to obtain a good match between 

TRANSP/NUBEAM and the neutron camera measurements, ranging from zero in quiescent scenarios 

to 3 m2s-1 when MHD instabilities are present.  The discrepancy cannot be explained by uncertainties 

in the measured plasma profiles of the main ions or impurities, or the injected neutral beam power.  A 

possible explanation is that the guiding centre approximation used in NUBEAM leads to an over-

estimate of the neutron emissivity.  It is expected that the guiding centre approximation is inaccurate on 

spherical tokamaks such as MAST due to the low confining magnetic field, which means that the 

Larmor radii of fast ions are a significant fraction of the length scales of plasma profiles.  This 

inaccuracy appears to persist even when using a Finite Larmor Radius correction algorithm available in 

NUBEAM [31].  This will motivate future studies with full orbit following codes.  

In future large, high power fusion experiments such as ITER, it is anticipated that techniques such as 

the application of Resonant Magnetic Perturbations will be required to mitigate or suppress Edge 

Localised Modes (ELMs) that would otherwise pose a risk to the integrity of plasma-facing surfaces on 

the first wall and divertor [32].  The application of RMPs with a toroidal mode number of 3 to low 

current (Ip = 400kA) H-mode plasmas results in a degradation of fast ion confinement, indicated by a 

factor ~2 reduction in the neutron rate measured by a fission chamber.  Simulations of fast ion losses 

caused by RMPs were carried out using a non-steady-state orbit-following Monte-Carlo code (NSS 

OFMC), showing that both the plasma response to the RMPs and charge-exchange reactions with 

background neutrals must be taken into account [31].  In experiments, the application of RMPs with 

higher toroidal mode number or operation at higher plasma current is found to considerably diminish 

the reduction in the measured neutron rate. 

Studies of neutral particle analyser (NPA) and microwave data have revealed that magnetic 

reconnection during merging-compression plasma start-up in MAST resulted in the acceleration of both 

ions and electrons [33]. While merging-compression will not be used as a start-up method in MAST 

Upgrade, it is intended that particle acceleration due to other types of reconnection event will be studied 

using new fast ion diagnostics, including a scintillator-based fast ion loss detector [34] and a solid state 

Neutral Particle Analyser. 

 

4. Edge, Pedestal & ELMs 

Understanding the transport mechanisms prevailing at the plasma edge is essential to understand and 

predict global confinement and L-H transitions.  Detailed measurements of electrostatic potential 

fluctuations have yielded new observations of mode activity that has been found on several devices to 

regulate the transport in this region (e.g. on DIII-D [35], AUG [36], HL-2A [37] and others).  

Measurements from an ohmic L-mode plasma indicate the presence of a Geodesic Acoustic Mode 

(GAM) 2cm inside the separatrix, with a frequency of ~10kHz, maximum radial mode number krρp ~ -



0.15 and radial phase velocity of 1km/s [38].  Further studies are on-going to ascertain the impact of 

the GAM on transport in this region.   

Ball-pen probes mounted into reciprocating probe heads [39] [40], have been used to obtain an estimate 

of the radial profile of plasma potential and Te.  They consist of a Langmuir probe recessed from the 

surface of the reciprocating probe shadowed from the majority of plasma ions in order to equalise the 

fluxes of ions and electrons to the probe such that the probe floats at the plasma potential.  Analysis of 

the data collected has been complicated by an incomplete understanding of the mechanisms that 

transport ions and electrons to the probe surface.  These transport mechanisms have been elucidated 

using particle-in-cell modelling, showing ions reach the recessed Langmuir probe via a combination of 

their Larmor orbits and ExB drifts due to electrons polarising the material leading to the probe [41]. 

The application of RMPs to L-mode and H-mode plasmas has been shown to degrade particle 

confinement, often referred to as a “density pump-out” on MAST [42] DIII-D [43] JET [44] and other 

devices.  The effects of RMPs on particle confinement have been quantified by applying a global 

particle balance model [45] constrained by the measured fuelling rates from gas valves and neutral beam 

injection, and particle sources in the main chamber from the intensity of Dα emission.  The particle 

confinement time is found to reduce by ~20% in L-mode and ~30% in H-mode between ELMs relative 

to before the RMP was applied, where perturbations with toroidal mode numbers n=3 or 4 were applied 

respectively, as shown in Figure 4.  In L-mode and H-mode during inter-ELM periods, the application 

of RMPs leads to increased Dα emission at the outer mid-plane, suggesting an increase in neutral fuelling 

that partially compensates for the reduction in particle confinement on the core density profiles [46]. 

The characteristics of unmitigated ELMs have been studied using fast imaging data, showing that in 

certain magnetic configurations, following the ejection of type-I ELMs, secondary filaments have been 

observed up to 1ms following the ELM, concurrent with an increase in the width of the SOL. The 

appearance of secondary filaments correlates with plasma interaction with poloidal field coils near the 

X-point.  This will be the subject of further study in MAST-U using the baffling structures at the 

entrance to the closed divertors. 

Initial simulations of the propagation of large type-I ELMs through a Super-X divertor configuration in 

MAST-U have been carried out using the JOREK code [47] with the addition of a simplified fluid model 

describing the transport of neutrals.  The simulations show the ELM burning through the cold (Te < 

5eV), dense plasma in the divertor, as illustrated in Figure 5.  These and future simulations will be used 

to guide experiments exploring whether closed divertors, long divertor legs and ELM mitigation 

techniques can effectively exhaust the ELM energy before it reaches the divertor targets. 

 

5. Scrape-Off Layer & Divertor 



Finding a solution to the exhaust of heat and particles is of paramount importance for the operation of 

ITER and design of future reactors.  The high concentration of heat and particle loads to plasma-facing 

surfaces in the divertor is strongly governed by a combination of filamentary transport across the scrape-

off layer (SOL) and transport along the magnetic field; the resulting highly concentrated parallel heat 

fluxes must be reduced to avoid damaging divertor surfaces.  Data from MAST experiments, together 

with detailed modelling, have yielded key insights into the nature of filamentary transport with a 

conventional open divertor in preparation for studies in alternative divertors such as the Super-X in 

MAST Upgrade.   

 

The separation of filaments in the Scrape-Off Layer, the possible interactions between pairs of filaments 

and possible implications on the formation of radial profiles have been studied in detail through analysis 

of fast imaging data and numerical simulations respectively.  Measurements of the toroidal separation 

of the filaments from camera images indicate they have a double exponential distribution [48], with the 

peak at ~5cm spatial separation, suggesting the lack of a toroidal mode structure.  The interaction 

between pairs of filaments of varying size and separation has been studied with 2D and 3D simulations 

[49] with the BOUT++ code [50] utilising the STORM transport model [51] [52] [53].  This interaction 

occurs when the dipolar electrostatic fields associated with the filaments merge or cancel each other, 

thereby altering the centre-of-mass velocity of the pair of filaments.  The interaction quickly decays 

with increasing filament separation, resulting in changes in their velocity of ≤50% for filaments seeded 

~1 width apart.  Conversely, filaments separated by more than 5 times their width are found to behave 

independently.  This suggests that the impact of interactions between filaments on MAST, that are 

typically separated by ~5 filament widths, is expected to be modest. This finding adds credence to 

stochastic models that treat the SOL density profile as the superposition of non-interacting filaments.  

One such model [54], that treats the production of filaments as a Poisson process and includes radial 

transport and draining of particles and energy along field lines.  It has recently been extended to 

accommodate filaments launched from different toroidal locations with a finite toroidal velocity, with 

distribution functions of the filament amplitude, radial and toroidal extent, and toroidal separation 

derived from comparison with fast camera data from MAST.  This extended model is in good agreement 

with radial profiles of the average measured Dα emission profiles from the outer mid-plane and its 

variance.  Furthermore, it indicates that the toroidal velocity does not affect the shape of time-averaged 

profiles in axisymmetric systems. 

Understanding transport in the divertor region is challenging in experiments due to the paucity of data 

and diagnostic access and in simulations due to the high magnetic shear in the vicinity of the X-point 

and the wide range of transport, atomic, molecular and other processes at work.  Nevertheless, deeper 

understanding is needed in order to predict the power and particle loads to divertor surfaces.  High-



speed imaging of the lower divertor in MAST indicates the presence of several regions where the 

characteristics of the observed filaments are qualitatively different, including the far SOL of the outer 

leg due to filaments generated upstream and sheared by the X-point, small (~1cm) high frequency 

filaments close to the separatrix of the outer leg away from the X-point and in the private flux region 

[55], as illustrated in Figure 6.  A quiescent region that appears devoid of filaments has been recently 

identified in the outer divertor leg in the vicinity of the X-point [56], with a radial extent spanning from 

the separatrix to ψn ~ 1.02, approximately 1 e-folding length of the heat flux profile from the separatrix, 

containing around 60% of the heat deposited to the divertor, and has been observed over a broad range 

of operating conditions in L and H-mode, over a wide range of electron density and auxiliary heating 

power.  Possible explanations for the apparent quiescence of this region include the merging of 

filaments in the vicinity of the X-point or the prevalence of other non-filamentary transport 

mechanisms. 

BOUT++ simulations of turbulent transport in a simplified sheared slab geometry were carried 

out to identify the dominant sources of heat and particle flux spreading in a divertor leg [57].  In these 

simulations, the dominant cross-field transport mechanism is due to the Kelvin-Helmholtz instability, 

driven by radial variations in the electron temperature at the target, and by extension the electrostatic 

potential at the sheath edge.  This leads to the production of mesoscale structures which transport heat 

and particles from the scrape-off layer into the private flux region, whilst the interchange mechanism 

predominantly acts non-linearly on existing structures, propelling them anti-parallel to the curvature 

vector.  The angle between the divertor leg and the curvature vector strongly influences transport into 

the private flux region via the interchange mechanism, promoting transport in inner divertor legs where 

the curvature is directed toward the private flux region, and against transport in outer legs.  This will 

motivate future modelling efforts and experiments in long-leg divertors in MAST Upgrade to 

understand the influence of divertor geometry on heat and particle transport.  The influence of a static 

plasma background on filament propagation was studied in 3D BOUT++ simulations in a slab 

geometry, including the effects of neutrals, in plasma conditions representative of those in MAST [58] 

[59].  They indicate the velocity of filaments increases with increasing temperature of the plasma 

background.  Furthermore, by comparison of several models with varying complexity in the plasma-

neutral interactions included, the direct interaction between filaments and neutrals was found to have 

minimal impact on the filament motion. 

An empirical scaling of the width of the divertor heat flux footprint mapped to the outer mid-plane, λq, 

has been derived from a database of IR imaging data of L-mode pulses [60].  Impurity transport in the 

scrape-off layer was studied using coherence imaging that captures the radial and vertical variation of 

the flows of impurity ions along magnetic field lines.  Coherence imaging of C2+ flows [61] on the high 

field-side in the early phase of MAST discharges where the plasma was limited on the centre column 

revealed counter-streaming impurity flows when high-field side gas fuelling was applied [62].  These 



flow patterns have been reproduced in EMC3-EIRENE simulations, which indicate that they are driven 

by enhanced pressure on field lines where the gas is ionised.  Motivated by these findings, the gas 

fuelling system on MAST Upgrade will have gas outlets at 4 poloidal positions across the centre column 

and multiple outlets distributed toroidally at each poloidal position to minimise the local perturbation 

of plasma on field lines close to the gas outlets. 

The steady-state divertor loads can be mitigated by using detachment to dissipate the plasma heat flux, 

however deep detachment, which can also reduce the particle flux, can lead to strong radiation at the 

X-point and reduced core confinement.   MAST-U will have unprecedented flexibility to tailor the 

magnetic geometry within up-down symmetric, tightly baffled divertor chambers and excellent 

diagnostics to improve our understanding of detachment onset and control with a radiating zone in the 

leg away from the X-point in conventional and alternative divertor configurations, such as the Super-X 

[63] [7], X-divertor [64] [65], snowflake [66] and others.  The sensitivity of detachment to external 

control was studied using an analytic 1D model along the magnetic field [67] including heat conduction 

and impurity concentration to estimate the ‘detachment window’ in the control parameters (upstream 

density, power flowing into the SOL or impurity fraction), where the ‘window’ is the range of that 

control parameter between detachment starting at the target and when it reaches the X-point.  It was 

found that, for a given divertor configuration, the detachment window is greatest for variations in the 

impurity concentration, followed by   PSOL then upstream density.  The detachment window for all 

parameters increases with the ratio of the total magnetic field at the X-point and the divertor target.  In 

spherical tokamaks such as MAST Upgrade where the magnetic field drops significantly across the 

radial extent of the divertor (as the magnetic field across the divertor varies roughly as 𝐵 ∝ 1/𝑅), this 

ratio can be higher than in a typical divertor in a conventional aspect ratio device (around 3 and 1.3 

respectively).  If the leg is moved to large major radius, the model predicts a wider detachment window 

and improved real-time control of the location of the detachment front.  The impact of increasing the 

major radius of the divertor leg was studied using SOLPS-ITER simulations in a minimally complex 

slot divertor geometry [68], finding that electron density increases and temperature decreases with 

increasing target major radius, according 𝑓𝑅2 = 𝐵𝑢2/𝐵𝑡2, the total magnetic field upstream and at the 

divertor target respectively, in good agreement with the modified two-point model [69] [67].  The roll-

over of the divertor particle flux with increasing density, emblematic of the onset of detachment, is 

found to occur when Te at the divertor target reaches ~0.6eV, independent of the strike point major 

radius, but the upstream density required to reach this threshold halves when fR is doubled, suggesting 

the Super-X should reach detachment at much lower upstream density compared with a conventional 

configuration.  These findings were confirmed in simulations in a realistic MAST-U geometry [70] 

where the upstream density is increased, shown in Figure 7, in divertor configurations where the strike 

point major radius in the Super-X is nearly twice that of the conventional (0.8m and 1.5m respectively).  

This leads to a factor 2.4 reduction in the upstream density required to reach detachment for otherwise 



similar operating parameters.  In simulations of the Super-X configuration where nitrogen impurity 

seeding into the divertor is used to reach detachment, the region of greatest radiation emission moves 

away from the target but its movement slows to essentially stop at the entrance to the baffled divertor 

at the highest seeding rates, thereby avoiding possible core confinement degradation associated with 

strong radiation at the X-point.  In these SOLPS-ITER simulations, collisions between plasma ions and 

molecules is identified as an important sink of momentum at and beyond the detachment threshold.  

Deeper insights into the fundamental processes governing the onset and evolution of detachment have 

been provided by 1D simulations carried out using the BOUT++ module SD1D [71].  For MAST 

Upgrade-like parameters, power dissipation through radiation is required for detachment to occur, and 

the energy required to ionise neutrals is required to vary with Te, either through hydrogenic or impurity 

radiation, is needed to reduce the target particle flux.  Volume recombination is not found to play a 

major role except in full detachment, where it accelerates the reduction in target ion current.  Recent 

advances in accelerating the convergence of SOLPS-ITER using the parareal algorithm [72] have 

resulted in the execution time of simulations being reduced by up to a factor 10 in simulations of MAST 

and is expected to facilitate interpretive modelling of MAST Upgrade experiments. 

 

6. Preparations for MAST Upgrade Operations 

MAST Upgrade is currently transitioning to operations, following a successful construction phase (the 

completed interior is shown in Figure 8).  The vacuum vessel and its interior components have been 

baked to achieve good vacuum conditions.  Activities carried out in preparation for the plasma 

operations have concentrated on ensuring the operating space is as wide as possible and the 

implementation of novel diagnostics to enable detailed physics studies.  The minimum density [73] and 

highest β [74][75][76] achievable in tokamaks can be determined by the amplitude and spectrum of 3D 

error fields introduced by imperfections in the manufacture and/or alignment of the poloidal field coils.  

A rigorous characterisation of the intrinsic error field has been carried out through high-precision 3D 

measurements of the magnetic field produced by the poloidal field coils in the main chamber and 

divertors that indicate the dominant harmonics have toroidal mode numbers n = 1, 2.  These 

measurements were used to determine the optimum orientation of each coil to minimise the n = 1 

harmonic, which as then applied during the final alignment of the coils to an accuracy of 0.3mm.  Such 

an error would result in a resonant m/n = 2/1 error field of amplitude normalised to the toroidal field of 

~1x10-6 at the q=2 surface per coil in a typical equilibrium.    This is expected to result in a density 

threshold for locked mode onset of ~3x1018 m-3 (2% of the Greenwald density limit [77] at 1MA plasma 

current).  Active compensation of the residual n = 1 and n = 2 error fields will be carried out using a 

combination of ex-vessel and in-vessel coils respectively, guided by modelling using the ERGOS 



vacuum model and MARS-F linear single fluid MHD code to optimise the active control of the n = 2 

harmonic. 

The first experimental campaign is expected to commence in 2019, utilising the new capabilities 

provided by the upgrade and high-resolution diagnostics to address key physics issues for the operation 

of ITER and the design of DEMO, principally plasma exhaust, energetic particle physics and the 

development of integrated scenarios.  New divertor diagnostics have been installed including novel 

electrical modules utilising field programmable gate arrays will operate the real-time protection system, 

divertor Langmuir probes [78] and foil bolometer arrays [79] that will provide unprecedented flexibility 

and data quality.  A divertor Thomson scattering system will provide spatially resolved electron 

temperature and density measurements across the lower divertor chamber [80]. 

New and improved fast particle diagnostics include an upgraded neutron camera is expected to have a 

time resolution of 1ms, a statistical uncertainty of less than 10% for all MAST Upgrade scenarios and 

a spatial resolution of 10 cm for a fixed neutron camera position.  The resolution can be increased by 

scanning the camera lines of sight between repeated discharges.  Moreover, a new scintillator-based 

fast ion loss detector [34] and solid-state Neutral Particle Analyser (NPA) will be installed. 

Analysis of data from line-of-sight integral measurements and comparison with modelling will be 

significantly improved using the new CHERAB and Raysect tools [81] [82] that employ highly efficient 

ray tracing techniques and realistic 3D models of the machine interior to accurately simulate reflections.  

Synthetic representations of the primary divertor diagnostics have been developed to aid data 

interpretation and analysis, for example, simulated images of emission from C2+ ions in the lower 

divertor are shown in Figure 9 for a detached outer divertor.  As the divertor approaches detachment, 

an emission front moves from the outer strike point toward the X-point and is under investigation as a 

means of controlling the degree of detachment in real-time. 

A phased programme of enhancements is underway to address key gaps in the EUROfusion plasma 

exhaust strategy for finding a solution to the heat exhaust in a reactor, involving 5MW of additional 

NBI heating (bringing the total NBI heating power to 10MW), a cryoplant to serve the existing 

cryopumps, a high frequency pellet injector and new and upgraded diagnostics including new fast 

imaging cameras viewing the main chamber SOL and IR cameras, infrared video bolometers and a 

Thomson scattering system viewing the X-point [83]. 

 

7. Summary  

Recent results from MAST have advanced our understanding in key areas concerning the design and 

operation of future fusion devices, including core transport and confinement, fast particle physics, edge 

transport and stability and transport and dissipation in the Scrape-Off Layer (SOL) and divertor.  There 



is a strong emphasis on challenging theory and models with high-resolution measurements to improve 

our capability to extrapolate these results to future devices. 

Studies of core transport have concentrated on understanding the effects of flows on measured and 

simulated ion scale turbulence and understanding improved energy confinement in spherical tokamaks 

with decreasing collisionality.  Near the non-linear stability threshold, flow shear breaks the symmetry 

in up-down symmetric plasmas, leading to tilted density fluctuation correlation functions and skewed 

fluctuation distribution functions.  Electron scale turbulence in MAST has been modelled using GS2, 

run for sufficiently long (~1% of τE) for slowly growing zonal modes to break up radially elongated 

streamers and increase the energy confinement with decreasing collisionality, as observed in 

experiments. 

Fast particle physics studies have concentrated on understanding the effects of sawteeth on fast ion 

confinement, improving predictions of fusion products and the impact of Resonant Magnetic 

Perturbations (RMPs) on fast particle confinement.  Measurements of the fast particle population in the 

presence of sawteeth were compared with TRANSP/NUBEAM simulations, finding that both passing 

and trapped particles are redistributed in equal measure, suggesting that resonances between the m=1 

perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport.  Measured 

fusion products from D-D interactions with a neutron camera and a charged fusion product detector are 

40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding 

centre approximation. 

Transport at the edge of the plasma has been studied in detail using a reciprocating probe, indicating 

the presence of a Geodesic Acoustic Mode 2cm inside the separatrix in an ohmic L-mode plasma.  The 

application of RMPs can lead to a 20-30% reduction in the particle confinement time in L-mode and H-

mode.  Initial predictions of type-I ELM evolution and transport through a Super-X divertor 

configuration in MAST-U have been developed, which will be used to test the influence of the extended 

divertor volume on the distribution and dissipation of the energy deposited to surfaces in the divertor. 

New insights into turbulent transport in the SOL and divertor have resulted from a combination of 

detailed measurements, heuristic modelling and simulations.  Fast imaging of SOL filaments viewed 

from the mid-plane have been used to estimate the distribution of filament separation, which has a 

double exponential shape, peaked at ~5 filament widths.  BOUT++ simulations of interactions between 

pairs of filaments find that the interaction between filaments separated by 5 times their width is 

negligible.  This validates a key assumption in a heuristic model that describes radial profiles in the 

SOL as the superposition of independent filaments, which reproduces the mean and variance of radial 

Dα emission profiles in MAST.  Fast imaging of filaments viewed from the lower divertor indicate the 

presence of an apparently quiescent region near the X-point devoid of filaments. 



The effect of varying the major radius of the divertor strike point on the onset and evolution of 

detachment has been modelled in preparation for experiments studying the Super-X configuration on 

MAST Upgrade.  The sensitivity of detachment to external control has been studied using a thermal 

front model, predicting that operation with detached divertors should be possible over a wider region 

of operating space as the major radius is increased.  In MAST-like conditions, BOUT++ simulations 

indicate that divertor particle flux mitigation necessitates power dissipation through radiation and the 

energy required to ionise neutrals should increase with Te. 

The construction of MAST Upgrade is complete, featuring baffled divertors with a highly flexible set 

of poloidal field coils to allow for detailed studies of detachment physics in alternative divertor 

configurations.  Studies of confinement of thermal and energetic particles will benefit from a 

combination of increased maximum toroidal field (from 0.585T to 0.92T at R=0.7m), plasma current 

(from 1.35MA to 2.0MA) and a combination of on and off-axis heating.  Further enhancements, part-

funded by EUROfusion, are underway to increase the auxiliary heating power from 5MW to 10MW, a 

cryoplant to serve the existing cryopumps, a high frequency pellet injector and new and upgraded 

diagnostics. 

 

Acknowledgements 

This work has been carried out within the framework of the EUROfusion Consortium and has received 

funding from the Euratom research and training programme 2014-2018 under grant agreement No 

633053 and from the RCUK Energy Programme [grant number EP/P012450/1]. To obtain further 

information on the data and models underlying this paper please contact 

PublicationsManager@ccfe.ac.uk.  The views and opinions expressed herein do not necessarily reflect 

those of the European Commission.  This work supported in part by the US Department of Energy 

contracts: DE-AC05-00OR22725 and DE-SC0012315. 

 

References 

[1] A. Kallenbach et al., Nucl. Fusion 57 102015 (2017) 

[2] J. E. Menard et al., Nucl. Fusion 57 102006 (2017) 

[3] O. Motojima Nucl. Fusion 55 104023 (2015) 

[4] H. Zohm et al., Nucl. Fusion 53 073019 (2013) 

[5] G. Federici et al., Fusion Eng. Des. 109-111 1464 (2016) 

[6] J. Milnes et al., Fusion Eng. Des. 96-97 42 (2015) 

[7] A. W. Morris et al., IEEE Trans. Plasma Sci. 46 5 1217-1226 (2018) 



[8] M. Valovič et al., Nucl. Fusion 51 073045 (2011) 

[9] S. Kaye et al., Nucl. Fusion 47 499 (2007) 

[10] C. M. Roach et al., Plasma Phys. Control. Fusion 47 B323 (2005) 

[11] N. Joiner et al., Plasma Phys. Control. Fusion 48 685 (2006) 

[12] C. M. Roach et al., Plasma. Phys. Control. Fusion 48 124020 (2009) 

[13] G. J. Colyer et al., Plasma Phys. Control. Fusion 59 055002 (2017) 

[14] C. M. Roach et al., Nucl. Fusion 48 125001 (2008) 

[15] W. Guttenfelder et al., Phys. Rev. Lett. 106, 155004 (2011) 

[16] W. X. Wang et al., Nucl. Fusion 55 122001 (2015) 

[17] M. F. J. Fox et al., Plasma Phys. Control. Fusion 59 044008 (2017) 

[18] M. F. J. Fox et al., Plasma Phys. Control. Fusion 59 034002 (2017) 

[19] F. van Wyk et al., Plasma Phys. Control. Fusion 59 114003 (2017) 

[20] I. T. Chapman et al., Plasma Phys. Control. Fusion 53 124003 (2011) 

[21] M. Cecconello, A. Sperduti, Plasma Phys. Control. Fusion 60 055008 (2018) 

[22] J. Ongena, M. Evrard, D McCune, Trans. Fusion Technol. 33 181 (1998) 

[23] A. Pankin, D. McCune, R. Andre, G. Bateman, A Kritz, Commun. Comput. Phys. 159 157 
(2004) 

[24] B. Kadomtsev Sov. J. Plasma Phys 1 389 (1976) 

[25] F. Porcelli et al., Plasma Phys. Control. Fusion 38 2163 (1996) 

[26] B. Madsen et al., Rev. Sci. Instrum. 89 10D125 (2018) 

[27] H. Weisen et al., Nucl. Fusion 57 076029 (2017) 

[28] M. Cecconello et al., Nucl. Instrum. Methods A 753 72 (2014) 

[29] R. V. Perez et al., Rev. Sci. Instrum. 85 11D701 (2014) 

[30] M. Cecconello et al., Nucl. Fusion “Discrepancy between estimated and measured fusion product 
rates on MAST using guiding-centre approximation”, accepted for publication 

[31] K. G. McClements et al Plasma Phys. Control. Fusion 60 095005 (2018) 

[32] A. Kirk et al., Plasma Phys. Control. Fusion 55 124003 (2013) 

[33] K. G. McClements et al Plasma Phys. Control. Fusion 60 025013 (2018) 

[34] J.F. Rivero-Rodriguez et al, Rev. Sci. Instrum. 89 10I112 (2018) 

[35] M. Jakubowski, R. J. Fonck, G. R. McKee Phys. Rev. Lett. 89 265003 (2002) 

[36] G. D. Conway et al., Plasma Phys. Control. Fusion 50 055009 (2008) 

[37] K. J. Zhao et al., Phys. Rev. Lett. 96 255004 (2006) 

[38] B. Hnat et al Plasma Phys. Control. Fusion 60 085016 (2018) 

[39] J. Adámek et al., Czech. J. Phys. 55 235 (2005) 



[40] N. R. Walkden et al., Rev. Sci. Instrum. 86 023510 (2015) 

[41] S. Murphy-Sugrue et al., Plasma Phys. Control. Fusion 59 055007 (2017) 

[42] A. Kirk et al., Nucl. Fusion 50 034008 (2010) 

[43] T. Evans et al., Phys. Rev. Lett. 92 235003 (2004) 

[44] Y. Liang et al., Phys. Rev. Lett. 98 265004 (2007) 

[45] G. P. Maddison et al., Plasma Phys. Control. Fusion 48 71 (2006) 

[46] K. Flesch et al., “Effect of RMP application on neutral fueling and exhaust in MAST”, Plasma-
Surface Interactions in Controlled Fusion Devices conference (2018) 

[47] G.T.A. Huysmans, O. Czarny, Nucl. Fusion 47 659 (2007) 

[48] T. Farley et al., Proc 45th EPS Conf. 2018 

[49] F. Militello et al., Plasma Phys. Control. Fusion 59 125013 (2017) 

[50] B. D. Dudson, M. V. Umansky, X. Q. Xu, P. B. Snyder, H. R. Wilson, Comput. Phys. Commun. 
180 1467 (2009) 

[51] L. Easy et al., Phys. Plasmas 21 122515 (2014) 

[52] L. Easy et al., Phys. Plasmas 23 012512 (2016) 

[53] N. R. Walkden, L. Easy, F. Militello, J. T. Omotani, Plasma Phys. Control. Fusion 58 115010 
(2016) 

[54] F. Militello et al., Phys. Plasmas 25 056112 (2018) 

[55] J. R. Harrison et al., Phys. Plasmas 22 092508 (2015) 

[56] N. R. Walkden et al., Nucl. Fusion 57 126028 (2017) 

[57] N.R.Walkden et al, subm NME, “3D simulations of turbulent mixing in a simplified slab-divertor 
geometry” 

[58] D. Schworer et al., Nucl. Mat. Energy 12 825 (2017) 

[59] D. Schworer et al., Plasma Phys. Control. Fusion in press (2018) 

[60] S. Elmore et al., Proc 45th EPS Conf. 2018 

[61] S. A. Silburn et al., Rev. Sci. Instrum. 85 11D703 (2014) 

[62] I. Waters et al., Nucl. Fusion 58 066002 (2018) 

[63] P. M. Valanju, M. Kotschenreuther, S. M. Mahajan, J Canik Phys. Plasmas 16 056110 (2009) 

[64] H. Takase, J. Phys. Soc. Japan 70 609 (2001) 

[65] M. Kotschenreuther, P. M. Valanju, S. M. Mahajan, J. C. Wiley, Phys. Plasmas 14 072502 
(2007) 

[66] D. D. Ryutov Phys. Plasmas 14 064502 (2007) 

[67] B. Lipschultz, F. I. Parra, I. H. Hutchinson, Nucl. Fusion 56 056007 (2016) 

[68] D. Moulton et al., Plasma Phys. Control. Fusion 59 065011 (2017) 

[69] T. W. Petrie Nucl. Fusion 53 113024 (2013) 

[70] D. Moulton et al,. Proc 44th EPS Conf. 2017 



[71] B. D. Dudson et al., subm. NME “The role of particle, energy and momentum losses in 1D 
simulations of detachment” (2018) 

[72] D. Samaddar et al., Comput. Phys. Commun. 221 19 (2017) 

[73] D.F. Howell, T.C. Hender, G. Cunningham, Nucl. Fusion 47 1336 (2007) 

[74] J-K Park et al., Nucl. Fusion 52 023004 (2012) 

[75] A.M. Garofalo, R.J. La Haye, J.T. Scoville, Nucl. Fusion 42 1335 (2002) 

[76] S.A. Sabbagh et al., Nucl. Fusion 46 635 (2006) 

[77] M. Greenwald Plasma Phys. Control. Fusion 44 R27 2002 

[78] J. Lovell et al., JINST 12 C11008 (2017) 

[79] J. Lovell et al., Rev. Sci. Instrum. 87 11E721 (2016) 

[80] J. Hawke et al JINST 8 C11010 (2013) 

[81] M. Carr et al., Proc 44th EPS Conf. 2017 

[82] M. Carr et al., Rev. Sci. Instrum., in press “Description of complex viewing geometries of fusion 
tomography diagnostics by ray-tracing” (2018) 

[83] J. R. Harrison et al., Proc 43rd EPS Conf. 2016 

 

  



Figures 

 

Figure 1: Normalised electrostatic potential fluctuations eφ/Tρ* (where ρ* is the electron Larmor radius normalised to the 

minor radius) at the outer mid-plane during the early quasi-saturated phase (left) and long-term saturated state (right). The 

collisionality is 20% of the typical values obtained in MAST experiments. 

 

 

Figure 2: Spatial two-point correlation function of density fluctuations before (left) and during (right) the onset of a locked 

mode that reduces the toroidal flow shear. 

 

 

Figure 3: Reconstructions of the FIDASIM (a-b) and experimental (c-d) normalised fast ion distributions in pitch and energy 

before and after a sawtooth crash. The black curves mark a boundary outside which fast ions had only a low probability of 

being present, according to a neoclassical TRANSP simulation [26]. 

 

        
       

  

 

    

 

   

 
     

        
       

  

 

    

      

      
              

                  

        
       

  

 

    

 

   

   

   
     

        
       

  

 

    



 

Figure 4: The impact of Resonant Magnetic Perturbations (RMPs) on global particle confinement in an L-mode (left) and H-

mode plasma (right). 

 

 

Figure 5: Predicted temperature (red) and density (blue) profiles across the MAST-U divertor chamber before (left) and after 

(right) the triggering of an ELM releasing a heat pulse into the divertor, simulated using JOREK. 

 

 

Figure 6: Schematic of the different contributions to intermittent cross-field transport in the divertor observed in MAST. 

    

   

   

            

  
  
  
  
  
  

            

            

             

         

         

         
      



 

 

Figure 7: Roll over of the divertor target particle flux with upstream density in conventional and Super-X configurations. 

 

 

Figure 8: Photograph of the completed interior of MAST Upgrade prior to being pumped down. 

   

Figure 9: Synthetic camera images of emission from neutral deuterium (left) and C2+ ions calculated from a SOLPS 

simulation of MAST Upgrade as viewed from filtered cameras installed to monitor the lower X-point and inner divertor 

(middle) and lower divertor chamber (right). 


