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ABSTRACT

We give a polynomial-time algorithm for computing upper bounds on some of the smaller energy eigenvalues in a spin-1/2 ferromagnetic
Heisenberg model with any graph G for the underlying interactions. An important ingredient is the connection between Heisenberg models
and the symmetric products of G. Our algorithms for computing upper bounds are based on generalized diameters of graphs. Computing the
upper bounds amounts to solving the minimum assignment problem on G, which has well-known polynomial-time algorithms from the field
of combinatorial optimization. We also study the possibility of computing the lower bounds on some of the smaller energy eigenvalues of
Heisenberg models. This amounts to estimating the isoperimetric inequalities of the symmetric product of graphs. By using connections with
discrete Sobolev inequalities, we show that this can be performed by considering just the vertex-induced subgraphs of G. If our conjecture
for a polynomial time approximation algorithm to solve the edge-isoperimetric problem holds, then our proposed method of estimating the
energy eigenvalues via approximating the edge-isoperimetric properties of vertex-induced subgraphs will yield a polynomial time algorithm
for estimating the smaller energy eigenvalues of the Heisenberg ferromagnet.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084136., s

I. INTRODUCTION

The Heisenberg model (HM) is a quantum theory of magnetism1 and is prevalent in many naturally occurring physical systems such
in various cuprates,2,3 in solid Helium-3,4 and more generally in systems with interacting electrons.5 The HM can also be engineered in
ultracold atomic gases6 and quantum dots.7 Given the abundance of the HM, it may be advantageous to obtain a detailed understanding of its
spectral structure. Such an understanding would, for example, help us to analyze the feasibility of storing quantum information in HMs via
encoding into permutation-invariant quantum error correction codes.8–13 Moreover, given the widespread applicability of magnetic materials
in classical information processing,14,15 quantummagnets based on the HM could similarly enable quantum technologies. In addition, the HM
also can be used for quantum computation16 and quantum simulation. What is most interesting is the relevance of the HM in mathematical
physics because it is a paradigmatic model of statistical mechanics. For example, the celebrated Mermin-Wagner theorem17 was proven for
the HM.

The central object in this paper is the Heisenberg Hamiltonian (HH). It is the mathematical embodiment of the HM’s energy level
structure, and contains all information necessary to derive every property of the HM. More precisely, the HH for spin-half particles in the
absence of an external magnetic field is a matrix given by

Ĥ ≙ − ∑
{i,j}

J{i,j}
σx
i σ

x
j + σ

y
i σ

y
j + σ z

i σ
z
j − 1

2
, (1.1)

where 1 is the identity matrix, σx
i , σ

y
i and σ

z
i as the usual Pauli matrices acting on the ith particle, the sets {i, j} are included in the sumwhenever

particles i and j interact, and J{i ,j} is an exchange constant which quantifies the strength and nature of the coupling between the particles. Here,
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we restrict our attention to ferromagnetic HHs, where every exchange constant is non-negative. We write the Hamiltonian in this way because
we want the smallest eigenvalue of Ĥ to be zero. It is a well-known fact that a ferromagnetic HH can be written as a sum of graph Laplacians.
For completeness, we give its proof later in Theorem II.1. Studying the spectrum of the HH is thus equivalent to studying the spectrum of these
Laplacians. The field of spectral graph theory deals entirely on determining the eigenvalues of graph Laplacians, and an extensive amount of
work has been done on this topic. One can, for example, refer to Chung’s book for a review of the most important results in spectral graph
theory.18

Traditionally, most studies on the HM rely on the Bethe ansatz.19 In such approaches, the structure of the eigenvectors is assumed and
later verified to hold by solving for some of the previously undetermined parameters. This approach has proved hugely successful in 1D
Heisenberg models.2,20–26 Recently, lower bounds have been proved on the average free energy of the HM on three dimensional lattices27

and also on lattices with any dimension.28 However bounds on the spectrum of the Heisenberg ferromagnet have yet to be directly addressed.
Moreover, while certain other 2DHMs have been studied,3,29–31 the question of how to address HMs of potentially arbitrary geometry remains
unresolved.

In recent years, there has been impressive progress toward determining the spectrum of the HH. The seminal result of Caputo, Liggett,
and Richthammer proves the Aldous’ spectral gap conjecture,32 which implies that the spectral gap of the HH is equal to the spectral gap
of the Laplacian representing the graph of interactions of the HM. Since the size of this Laplacian is just the number of the HM’s spins,
determining the spectral gap of the HH is completely trivial and can be found numerically in polynomial time.33 One of the most impor-
tant developments thereafter was made by Correggi, Giuliani, and Seiringer27,28 where they develop important Sobolev inequalities for
discrete graphs, but which are also applicable to the HM. Based on this, they find the right inequalities to obtain lower bounds on the free
energy of the HM at finite temperatures. However the problem of obtaining bounds for the higher eigenvalues of the HH has been largely
unaddressed.

In this paper, we utilize relatively recent developments in spectral graph theory to obtain new bounds for HH’s spectrum. With regards
to the upper bounds, we rely on analytical bounds on the eigenvalues of a graph based on its generalized diameters by Chung, Grigor’yan, and
Yau.34 For the lower bounds, we use Chung and Yau’s Sobolev inequalities on graphs.35 There are two innovations provided in this paper.
First, we identify a probabilistic polynomial-time algorithm to obtain upper bounds on the HH’s eigenvalues by reducing the computation
of a generalized diameter to that of a minimum assignment problem. Second, we provide new discrete Sobolev inequalities that are based
on deleting vertices from graphs. These inequalities can be used with Chung and Yau’s Sobolev inequalities to obtain lower bounds on the
eigenvalues of the HH. To the best of our knowledge, this is the first time graph-theoretic methods are directly used to obtain bounds on the
eigenvalues of the HH.

We begin our paper by explaining how the HH is connected to the symmetric power of graphs in Sec. II. In a preprint by Rudolph, the
connection between graphs and the HH was noted, and the terminology of symmetric power of graphs was coined.36 Such graphs, later also
known as token graphs,37 have been extensively studied in recent years for their graph theoretic properties in Refs. 38–41 among many others.
Once we establish the connection of theHHwith symmetric powers of graphs, we turn our attention to the elementary problem of determining
the spectrum of the mean-field Heisenberg ferromagnet, where every pair of spins interacts with the same exchange constant. Obviously, the
SU(2) symmetry of such a model immediately allows one to determine the HH eigenvalues and multiplicities, and the eigenprojectors can be
in principle calculated using textbook methods with Clebsch-Gordan coefficients. However, we wish to highlight that by using well-known
facts about association schemes, we can already directly identify the eigenprojectors of this HH in terms of Hahn polynomials and generalized
adjacency matrices (see Theorem III.1).

Generalized diameters of graphs play a central role in deriving upper bounds on the spectrum of HHs, as we shall see in Sec. IV B. These
generalized diameters can be thought of as the widths of a body when it is interpreted to have a given dimension. The most important feature
of our algorithms is that they run much more efficiently than algorithms that attempt to directly evaluate the eigenvalues of the HH. We
show that computing these generalized diameters is equivalent to the minimum assignment problem, which is solved efficiently using the
Kuhn-Munkres algorithm (Ref. 42, p. 52). Together with analytical bounds on the eigenvalues of a graph based on its generalized diameters
by Chung, Grigor’yan, and Yau,34 we thereby obtain a polynomial-time algorithm for evaluating upper bounds on the eigenvalues of the
ferromagnetic HH, which gives us our result in Theorem IV.5.

Isoperimetric inequalities play a central role in deriving lower bounds on the spectrum of HHs in this paper. An isoperimetric inequality
essentially gives a lower bound on the minimum boundary size of a body with a fixed volume in a given manifold. Specializing this to graphs,
we require a lower bound on the minimum cut-size of a subset of k vertices, for every possible choice of k. Such bounds are then called
edge-isoperimetric inequalities, which we introduce in Sec. V. Based on edge-isoperimetric inequalities of the symmetric products of graphs,
we present lower bounds on the eigenvalues of the ferromagnetic HH (see Theorem V.8). Because deriving edge-isoperimetric inequalities on
the symmetric product of graphs is potentially difficult, we also derive isoperimetric inequalities on the symmetric product of graphs based
on the isoperimetric inequalities on their vertex-induced subgraphs (see Theorem V.6). We introduce some Sobolev inequalities in Sec. V A,
and proceed to use our results on isoperimetric inequalities on the symmetric product of graphs to obtain lower bounds on all of the HH
eigenvalues based on isoperimetric properties of the associated graphs. For this, we use the Sobolev inequalties of with Chung, Yau,35 and
Ostrovskii’s43 on graphs.

Finally in Sec. VI, we discuss some potential implications of our bounds and algorithms. We then remark on the potential to improve
both the upper and lower bounds that we present, by further investigation using a combinatorial approach. We also point out how an advance
in the field of approximation algorithms could help to make computing lower bounds for the spectrum of the ferromagnetic HH much more
efficient.
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II. GRAPHS AND THE HEISENBERG MODEL

Since we investigate the spectrum of HHs with graphs of varying dimensions, we need to explain what these graphs and their dimensions
are. Here, a graph corresponding to a HH comprises vertices from 1 to n which label the particles and edges {u, v} which label the interaction
between particles u and v. A graph’s dimension generalizes from the dimension of continuous manifolds. The edge-boundary of any set of
vertices X denoted by ∂X is the set of edges in G with exactly one vertex in X. Suppose that every set X with k vertices in G satisfies the bound

|∂X| ≥ ck1−1/δ for some positive constant c for every k ≤ n/2. Then, we say that G has a dimension of δ with isoperimetric number c. This

is analogous to the situation where a manifold with fixed volume k and a surface area of at least ck1−1/δ for some positive constant c has a
dimension of δ. The dimension of a physical system is then the dimension of the corresponding graph of interactions.

To understand how precisely HH is related to graphs, we need to define the symmetric product of a graph. When k is a non-negative

integer with k ≤ n, the kth symmetric product of a graphGwith verticesV and edges E denoted byG{k} is a graph with the following properties.

First, G{k} has as its vertices all possible subsets of V of size k. Second, the edges of G{k} are the sets {X, Y}, where (i) X and Y are subsets of V
with k vertices, (ii) X and Y have k − 1 common elements, and (iii) their symmetric difference, the union of the sets without their intersection,

is an edge in E. In short, {X, Y} is an edge in G{k} only if the symmetric difference of X and Y is an edge in E, i.e., X△Y ∈ E. Examples of the
symmetric product of graphs can be seen in Figs. 1 and 2.

FIG. 1. On the left is a graph G with six vertices and on the right is its symmetric square G{2}. The symmetric cube G{3} is depicted in Fig. 2.

FIG. 2. G{3}, the symmetric cube of the graph G depicted in Fig. 1, is shown here.
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Now, we proceed to define the Laplacians of G{k}. By denoting |X⟩ as a state with the spins labeled by X in the up state and the remaining

spins in the down state where X is a subset of vertices in G, the Laplacians of G{k} are

Lk≙∑
X⊆V
∣X∣≙k

∣∂X∣∣X⟩⟨X∣ − ∑
X△Y∈E

(∣X⟩⟨Y ∣ + ∣Y⟩⟨X∣). (2.1)

Here, each Lk is the Laplacian of the graph G{k} and has rank (n
k
). If we interpret G{k} as a discrete manifold, the eigenvectors and eigenvalues

of Lk are its normal modes and associated resonance frequencies.
If we normalize the HH so that every non-zero exchange constant is equal to 1, we get the normalized Hamiltonian

Ĥ1 ≙ − ∑
{i,j}∈E

σx
i σ

x
j + σ

y
i σ

y
j + σ z

i σ
z
j − 1

2
. (2.2)

This normalized Hamiltonian Ĥ1 is just a sum of pairwise orthogonal matrices Lk (Ref. 38, Appendix A), as we can see from the following
theorem.

Theorem II.1. Let G = (V, E) be a graph with n vertices. Then, Ĥ1 = L0 +⋯ + Ln, where Lk are as given in Eq. (2.1) and Ĥ1 is as given in
Eq. (2.2).

This decomposition of the ferromagnetic HH with graph G as a sum of pairwise orthogonal matrices, with each matrix associated with
the symmetric products of G, has already been known for years (Ref. 38, Appendix A).

The decomposition of the normalized Hamiltonian as given in Theorem II.1 holds because of its fundamental connections with Lapla-
cians in graph theory (Ref. 44, Chap. 13). Using a graph-theoretic perspective, some trivial properties of this normalized Hamiltonian can
be easily seen. For example, when the graph G is connected, each Lk has exactly one eigenvalue equal to zero with corresponding eigenvec-

tor (n
k
)−1/2∑X⊆V

∣X∣≙k
∣X⟩ (Ref. 44, Lemma 13.1.1). Hence, the ground state energy of Ĥ1 is zero with degeneracy n + 1, and the ground space is

spanned by the Dicke states ∣Dn
k⟩,10 where ∣Dn

k⟩ is a normalized superposition of all |X⟩ for which X is a subset of {1, . . ., n} of size k. Moreover,

for any graph, the Laplacians Lk and Ln−k are unitarily equivalent because of the equivalence of G
{k} and G{n−k} under set complementation.

To see this, denote X as the set complement of X ⊂ V, and note that Ln−k ≙ UkLkU
†

k
, where

Uk ≙ ∑
X⊆V :∣X∣≙k

∣X⟩⟨X∣. (2.3)

Hence, it suffices to only study Laplacians Lk for which k ≤ n
2
.

The implication of Caputo, Liggett, and Richthammer’s proof of Aldous’ spectral gap conjecture32 is that the spectral gap of every Lk for
k = 1, . . ., n − 1 is identical. This renders the problem of finding the spectral gap of HHs trivial because L1 is effectively a size nmatrix and its
spectral gap can be efficiently solved numerically, for example, by using Spielman and Teng’s celebrated algorithm.33

In this paper, we will focus on the obtaining bounds of the eigenvalues of every Lk, which we denote as

λ0(Lk), λ1(Lk), . . . , λ(n
k
)−1(Lk).

We call λ1(Lk) the spectral gap of Lk and λmax(Lk) ≙ λ(n
k
)−1(Lk) the largest eigenvalue of Lk. We order these eigenvalues so that

0 ≙ λ0(Lk) ≤ ⋅ ⋅ ⋅ ≤ λ(n
k
)−1(Lk). (2.4)

Now, we proceed to give the proof of Theorem II.1.

Proof of Theorem II.1. The first step is to notice that the swap operator of two qubits can be written as

(∣0⟩⊗ ∣0⟩)(⟨0∣⊗ ⟨0∣) + (∣0⟩⊗ ∣1⟩)(⟨1∣⊗ ⟨0∣)
+(∣1⟩⊗ ∣0⟩)(⟨0∣⊗ ⟨1∣) + (∣1⟩⊗ ∣1⟩)(⟨1∣⊗ ⟨1∣) (2.5)

and is identical to the sum
σx1σ

x
2+σ

y
1σ

y
2+σ

z
1σ

z
2+1

2
. Then, denoting the operator that swaps qubits i and j as πi ,j, we have the identity
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πi,j − 1 ≙ σx
i σ

x
j + σ

y
i σ

y
j + σ z

i σ
z
j − 1

2
. (2.6)

This allows us to rewrite the normalized HH with a graph G = (V, E) in terms of swap operators so that

Ĥ1 ≙ ∑
{i,j}∈E

(1 − πi,j). (2.7)

Next, we let X denote any subset of vertices V = {1, . . ., n}. Then, for any distinct i and j from the set V, we have

πi,j∣X⟩ ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣X⟩, i, j ∈ X
∣X⟩, i, j ∉ X
∣X△{i, j}⟩, {i, j} ∈ ∂X.

(2.8)

This allows us to obtain

∑
{i,j}∈E

πi,j∣X⟩ ≙ ∑
{i,j}∈∂X

πi,j∣X⟩ + ∑
{i,j}∉∂X

πi,j∣X⟩
≙ ∑
{i,j}∈∂X

∣X△{i, j}⟩ + ∑
{i,j}∉∂X

∣X⟩
≙ ∑
{i,j}∈∂X

∣X△{i, j}⟩ + (m − ∣∂X∣)∣X⟩, (2.9)

wherem denotes the number of edges in E. Hence,

Ĥ1∣X⟩ ≙ ∑
{i,j}∈E

∣X⟩ − ∑
{i,j}∈E

πi,j∣X⟩
≙ ∣∂X∣∣X⟩ − ∑

{i,j}∈∂X
∣X△{i, j}⟩. (2.10)

Clearly if Y is a subset of V that has a different size from X, then ⟨Y|Ĥ1|X⟩ = 0. This immediately implies that Ĥ1 can be written as a sum
of orthogonal matrices, each of them supported on the space spanned by |X⟩, where X have constant size. Next, note that ⟨X|Ĥ1|X⟩ = |∂X|,
which implies that the diagonal entries of Lk are given by the sizes of the corresponding edge-boundaries of k sets. Finally, note that if Y has
the same size as X, then ⟨Y|Ĥ1|X⟩ = 0 whenever X△Y ∉ E and ⟨Y|Ĥ1|X⟩ = 0 whenever X△Y ∈ E. This proves the result. ◽

III. EXACT SOLUTIONS FOR THE MEAN-FIELD MODEL

We begin with a combinatorial approach for producing the exact solution for a mean-field HM. Such a HM has n spins, and every pair
of spin interacts with exactly the same exchange constant J. In this case, the normalized Hamiltonian is

Ĥ1 ≙ − n

∑
i≙1

i−1
∑
j≙1

σx
i σ

x
j + σ

y
i σ

y
j + σ z

i σ
z
j − 1

2
. (3.1)

From the perspective of SU(2) symmetry, this model is trivial. This is because we can write Ĥ1 ≙ − S⃗tot ⋅⃗Stot
2

+ n(n+1)
2

1, where S⃗tot ≙ ∑n
i≙1 S⃗i and

S⃗i ≙ σ⃗ i/2. The spectrum along with the degeneracies is directly given by the representations contained in the direct product of n spin 1/2
representations,

1/2⊗ 1/2⊗⋯⊗ 1/2,

which can be easily solved using standard techniques. Moreover, the corresponding eigenvectors can be in principle calculated using text-
book methods with Clebsch-Gordan coefficients. However this computation can be fairly tedious. We show how the eigenvalues and
eigenprojectors of Ĥ1 can be alternatively obtained from a combinatorial perspective.

Note that for Ĥ1, the graph of interactions is precisely the complete graph on n vertices. The symmetric products of the complete graph
are the Johnson graphs for which the spectral problem has been exactly solved using association schemes.45,46 Using this connection, we can
use prior knowledge of the Johnson schemes to conclude that Lk has exactly one eigenvalue equal to zero, and its other eigenvalues are j(n + 1
− j) with multiplicitiesmj ≙ (nj) − ( n

j−1
) for j = 1, . . ., k (Ref. 47, Sec. 12.3.2). Hence, the positive eigenvalues of Ĥ1 are
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j(n + 1 − j) (3.2)

with multiplicities

(n + 1 − 2j)mj, (3.3)

where j ≙ 1, . . . , ⌊n/2⌋.
What is most remarkable about the connection between association schemes and the mean-field Heisenberg model is that we can assign

a combinatorial interpretation to the matrices Lk. In particular, we can analytically decompose Lk as a linear combination of eigenprojectors,
where each eigenprojector is in turn a linear combination of generalized adjacency matrices. We proceed to explain what these generalized
adjacency matrices are. Now the adjacency matrix of Lk is

Ak,1 ≙ ∑
∣X△Y∣≙2

(∣X⟩⟨Y ∣ + ∣Y⟩⟨X∣). (3.4)

Namely, the matrix element of Ak ,1 labeled by |X⟩⟨Y| has a coefficient of 1 if X is adjacent to Y in G{k}, and equal to zero otherwise. Since two
vertices in a graph are adjacent if and only if they are a distance of one apart, we can define the generalized adjacency matrices by having

Ak,z ≙ ∑
X,Y⊆{1,...,n}
∣X△Y∣≙2z

∣X⟩⟨Y ∣. (3.5)

Here, the matrix element of Ak ,z labeled by |X⟩⟨Y| has a coefficient of 1 if X is a distance of z from Y in G{k}, and equal to zero otherwise. We
call Ak ,z the zth generalized adjacency matrix of the Johnson graph associated with Lk relating k-sets a distance of z apart. For completeness,
let Ak ,0 denote a size (nk) identity matrix. Now let

hk,j(z) ≙ mj

j

∑
a≙0
(−1)a ( ja)(n+1−ja

)
(k
a
)(n−k

a
) (

z

a
) (3.6)

denote a Hahn polynomial [Ref. 48, (18) and (20)]. Then, properties of the Johnson scheme given in Ref. 48 imply that for k ≙ 1, . . . , ⌊n/2⌋,
the Laplacians Lk have the spectral decomposition

Lk ≙ k

∑
j≙1

j(n + 1 − j)Pk,j, (3.7)

where

Pk,j ≙ 1

(n
k
)

k

∑
z≙0

hk,j(z)Ak,z (3.8)

are pairwise orthogonal projectors. To make the spectral decomposition of the normalized mean-field HH explicit, we present the following
theorem.

Theorem III.1. Let G = (V, E) be a complete graph. Then, a normalized HH on this graph Ĥ1 has the spectral decomposition

Ĥ1 ≙ (n−1)/2∑
j≙1

j(n + 1 − j) (n−1)/2∑
k≙j
(Pk,j +UkPk,jU

†

k ) (3.9)

when n is odd and

Ĥ1 ≙ n/2−1
∑
j≙1

j(n + 1 − j)⎛⎝
n/2
∑
k≙j

Pk,j +
n/2−1
∑
k≙j

UkPk,jU
†

k

⎞
⎠ +

n

2
(n
2
+ 1)Pn/2,n/2 (3.10)

when n is even.

Proof. The proof of this theorem relies on the identity

a

∑
u≙0

u

∑
j≙1

au,j ≙ a

∑
u≙1

u

∑
j≙1

au,j ≙ a

∑
j≙1

a

∑
u≙j

au,j, (3.11)

which holds for all non-negative integers a, and any complex coefficients au ,j.
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When n is odd, we can write

Ĥ1 ≙ (n−1)/2∑
k≙0
(Lk +ULkU

†), (3.12)

where U is the unitary as defined in (2.3) and Lj is as given in (3.7). Substituting the decomposition of Lj, we get

Ĥ1 ≙ (n−1)/2∑
k≙0

k

∑
j≙1

j(n + 1 − j)(Pk,j +UPk,jU
†). (3.13)

Applying (3.11) then yields the result for odd n. When n is even, we have

Ĥ1 ≙ n/2−1
∑
k≙0
(Lk +ULkU

†) + Ln/2. (3.14)

By using the techniques used to prove the case for odd n, we get

Ĥ1 ≙ n/2−1
∑
j≙1

j(n + 1 − j) n/2−1∑
k≙j
(Pk,j +UkPk,jU

†

k ) + Ln/2. (3.15)

Substituting the value of (3.7) for Ln/2, we get the result. ◽

IV. UPPER BOUNDS FOR THE HEISENBERG SPECTRUM

A. Simple two-sided bounds on the largest eigenvalue

We obtain bounds on the largest eigenvalue of ferromagnetic HHs with graphs having dimension δ with isoperimetric number c, and
maximum vertex degrees β . Note that obtaining bounds on the largest eigenvalue of the normalized HH Ĥ1 amounts to obtaining bounds on
λmax(Lk). Now the largest eigenvalue of the Laplacian of any graph is at least its maximum vertex degree (Ref. 49, p. 149, line 7) and at most
twice its maximum vertex degree from Gersgorin’s circle theorem.50,51 The upper bound can also slightly improved over Gersgorin’s circle
theorem to be at most the sum of the largest and the second largest vertex degrees [Ref. 49, (6)]. Thus,

ck1−1/δ ≤ λmax(Lk) ≤ 2kβ (4.1)

for 1 ≤ k ≤ n/2. Since Ĥ1 = L0 +⋯ + Ln, we get

c⌊n/2⌋1−1/δ ≤ λmax(Ĥ1) ≤ nβ . (4.2)

B. Upper bounds from graph diameters

In this subsection, we outline an algorithmic approach for finding upper bounds on the smaller eigenvalues of the HH. This approach
relies crucially on the generalizations of the diameter of a graph. The diameter of a graph is the length of its shortest path and intuitively
measures the size of the graph. In the case when the graph has the geometry of a hypercube of dimension d, its diameter will be the length
between the vertices of the hypercube that are furthest apart. The generalization of the diameter that we will consider allows us to quantify, in
the case of the hypercube, the length of its sides. In particular, the d-diameter of a d-dimensional hypercube will be precisely the length of its
side. Intuitively, the d-diameter of a body is its width when it is interpreted to have d dimensions. The generalized diameters are important
because they can give upper bounds on the eigenvalues of a graph Laplacian.34,52

The generalized diameter of a graph quantifies its sparsity. It is then reasonable to expect that the larger the generalized diameter, the
smaller the upper bound on the eigenvalues can be, since a sparse graph ought to have smaller eigenvalues than a highly connected graph.
In the extreme case when a graph comprises disconnected vertices, its generalized distances are all infinite, and every eigenvalue is equal is
zero. Thus, in this case, we would anticipate that the upper bound we get from the diameter is also equal to zero. This is indeed the case.
When a graph has j distinct connected components, by selecting j vertices, one from each of these connected components, the corresponding
generalized distance is infinite. This then implies that the cth smallest eigenvalue of the corresponding graph Laplacian is at most zero. Since
it is known that a graph with c distinct components has a graph Laplacian with exactly c + 1 zero eigenvalues (Ref. 44, Lemma 13.1.1), in this
sense, the bound of (Ref. 34, Corollary 4.4) can be said to be tight.

J. Math. Phys. 60, 071901 (2019); doi: 10.1063/1.5084136 60, 071901-7

Published under license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

To understand the generalized diameter of a graph, we need to review the concept of the distance amongst a subset of its vertices. Now,
the distance between a pair of vertices va and vb is the just the length of the shortest path connecting them, which we denote as d(va, vb). This
can be computed using Algorithm 1.

ALGORITHM 1. Dist(G = (V, E)), Compute pairwise distances in G.

D← size nmatrix of zeros
for all v ∈ V do

Perform BFS on v, obtaining a spanning tree T rooted at v.
for all w ∈ V, w ≠ v do
D(u, v)← distance of vertex w to v in T

end for

end for

return D

The distance between a set of vertices K = {v1, . . ., vk} is then the minimum pairwise distance between distinct vertices va and vb, which
we denote as

d(K) ≙ min{d(va, vb) : 1 ≤ a < b ≤ k}. (4.3)

The j-diameter of a graph G = (V, E) has been defined (Ref. 34, p. 25, last equation) as the maximum distance of subsets K with (j + 1) vertices,
and we denote it as

dj(G) ≙ max{d(K) : K ⊆ V , ∣K∣ ≙ j + 1}. (4.4)

Now define dj ,k to be the j-diameter ofG{k}. Whenever dj ,k ≥ 2, we can obtain upper bounds on the eigenvalues of Lk from graph-theoretic
results of Ref. 34, Corollary 4.4,

λ j(Lk) ≤ λmax(Lk)⎛⎝1 − 2/
⎛
⎝1 + (

n

k
)1/(dj,k−1)⎞⎠

⎞
⎠. (4.5)

Clearly, dj ,k decreases with increasing j, and thus our upper bounds on λ j(Lk) are increasing with j as one would expect. Now let us see

how (4.5) can be tight. Let us consider a graph G with c connected components and consider k = 1 so that G{1} = G. We claim that the
(c − 1)-diameter of G is infinite. This is because we can pick a set of vertices, with one vertex from each connected component. Since
none of these vertices are connected, their pairwise distance is always infinite. Using this value for the generalized diameter, the upper
bound in (4.5) for λc−1(L1) becomes zero. Since we know from (Ref. 44, Lemma 13.1.1) that λc−1L(G) = 0, the upper bound in (4.5) is
tight.

Since the j-diameter of G{k} may be unwieldy to calculate directly, we outline a polynomial time algorithm to obtain lower bounds on

it. At the heart of our algorithm is the fact that the distances between vertices in G{k} can be computed using only information about the

distances between vertices in G. This makes it possible to estimate the j-diameter of G{k} solely by computing on the graph G. Before diving
into the specifics of our algorithm, we briefly outline its inner workings.

1. Pick any j + 1 distinct vertices X1, . . ., Xj+1 from G{k}. Note that each of these vertices are subsets of V, each with k elements.

ALGORITHM 2. SELk (j, V), Select j + 1 distinct vertices in G{k }.

X1 ← a random k-vertex subset of V
c← 1
while c ≤ j + 1 do

Y ← a random k-vertex subset of V
if Y ∪ Xa ≠ Y for all a = 1, . . ., c then
Xc+1 ← Y
c← c + 1

end if

end while

return (X1, . . ., Xj+1)
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2. Loop over all a, b such that 1 ≤ a < b ≤ j + 1.
3. Compute d(Xa, Xb).

ALGORITHM 3. Dist(X, Y, D), Evaluates the distance between X and Y in G{k }.

Z← X ∩ Y
a← |X| − |Z| ∩ Y
X = {x1, . . ., xa}← X/Z
Y = {x1, . . ., ya}← Y/Z
C←zeros(a) ▷ initialize a size amatrix

for all u = 1, . . ., a do

for all v = 1, . . ., a do

C(u, v) = D(xu, xv)

end for

end for

d← output of Kuhn-Munkres algorithm on the cost matrix C

return d

4. Exit loop.

5. A lower bound for dj(G
{k}) is the minimum d(Xa, Xb).

This procedure can in principle be repeated for all possible choices of X1, . . ., Xj+1 to obtain the value of dj(G
{k}) exactly.

Since this may be computationally expensive, we propose just to randomly select the vertices X1, . . ., Xj+1 a constant number of
times. Obviously the complexity of such an algorithm depends on the complexity of Step 3 of this procedure, where the d(Xa, Xb) is
evaluated.

A direct attack on evaluating d(Xa, Xb) might seem to take time with complexity O(k!) and hence not be polynomial in n. This is because

the distance between Xa = {x1, . . ., xk} and Xb = {y1, . . ., yk} with respect to G{k} is the sum of the distances with respect to G between xj and
yπ(j), minimized over all permutations π that permute k symbols. There are then k! possible permutations and k distances to a sum for each
instance. This however is not the case since the problem of evaluating d(Xa, Xb) is actually equivalent to the minimum assignment problem,
which can be solved inO(k3) time using the celebrated Kuhn-Munkres algorithm (Ref. 42, p. 52), after one first computes all pairwise distances
in G.

We now explain how combinatorial optimization algorithms from graph theory can be used to compute lower bounds on dj ,k can be
evaluated in polynomial time.

1. Algorithm 1 computes the all pairwise distances in G. This is achieved using breath-first-search on every vertex. Since breadth-first
search on any vertex produces a shortest path tree in linear time (Ref. 42, Theorem 6.4), and there are n such vertices, Algorithm 1 runs
in O(n2) time.

2. Algorithm 3 evaluates distances between given vertices in G{k}. It turns out that the evaluation of d(Xa, Xb) is equivalent to
the well-known minimum assignment problem in the field of combinatorial optimization. First, evaluate Z = Xa ∩ Xb and set
X = Xa/Z and Y = Xb/Z. Consider a complete bipartite graph with every vertex in x ∈ X is connected to a vertex in y ∈ Y by
a weighted edge. The weight of the edge {x, y} in the bipartite graph is equal to the distance between x and y given by d(x, y).
The problem of computing d(Xa, Xb) is then equivalent to finding the perfect matching (set of edges such that every vertex
belongs to exactly one edge) on this bipartite graph, such that the sum of the weights on these matchings is minimized. But
this is precisely equal to the minimum assignment problem, which can be solved using the Kuhn-Munkres algorithm. We there-
fore just need to generate the cost matrix for the minimum assignment problem in this algorithm to utilize the Kuhn-Munkres
algorithm.

We would be able to easily compute the generalized diameter of G{k} exactly, if we only knew how to optimally select j + 1 of its vertices

in G{k}. Without such knowledge, we can use Algorithm 2 to randomly select j + 1 vertices in G{k}.
We completely describe our algorithm to compute upper bounds on the eigenvalues of Lk in Algorithm 4.
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ALGORITHM 4. Upp(j, k, G = (V, E)), Upper bounds on λ j (Lk ).

Initialization

1 ≤ k ≤ n
2
.

1 ≤ j < (n
k
).

β ←maximum vertex degree of G.
µ ← 2kβ ▷ upper bound on λmax(Lk)
D← Dist(G) ▷ From Algorithm 1
end initialization

(X1, . . ., Xj+1)← SELk(j, V) ▷ From Algorithm 2
d←∞
for all a, b = 1, . . ., j + 1: a < b do

dXa ,Xb ← Dist(Xa,Xb,D) ▷ From Algorithm 3
if dXa ,Xb < d then

d ← dXa ,Xb

end if

end for

if d ≥ 2 then
u← µ(1 − 2/(1 + (n

k
)1/d))

else

u←∞
end if

return u

Since there are (j+1
2
) possible pairwise distances amongst X1, . . ., Xj+1 that we must consider, the time complexity of running Algorithm 4

is

O(n2) +O(j2k3). (4.6)

This thereby leads to an algorithm that evaluates a lower bound for dj ,k in time polynomial in n, j, and k. This then leads to our formal result,
which we give in the following theorem.

Theorem IV.5. Let G = (V, E) be any graph with n vertices. Let 2 ≤ k ≤ n/2 and 1 ≤ j ≤ (n
k
) − 1. Then, Algorithm 4 can compute an upper

bound on λ j(Lk) in O(n2) + O(j2k3) time.

Thus, for all k and j polynomial in n, upper bounds on the eigenvalues of the ferromagnetic HH can be computed in time polynomial in
n. Such an algorithm would outperform a direct solver for Laplacians33 whenever k ≥ 3.
V. LOWER BOUNDS FOR THE HEISENBERG SPECTRUM

A property of graphs that we focus on is their associated isoperimetric inequalities. These isoperimetric inequalities on graphs allow us
to define the notion of the isoperimetric dimension of a graph. Now let X be a set of vertices and ∂X be its boundary. In this case, the edge
boundary of X is just the set of edges in E with exactly one vertex in X and one vertex in V/X. Then, the edge-isoperimetric inequality on
graphs53 is any lower bound of the form

∣∂X∣ ≥ c∣X∣1−1/d (5.1)

that holds for every vertex subset X of size at most half the cardinality of V. The utility of these isoperimetric inequalities in the case of
continuous manifolds lies in their applicability, for example, to give bounds on the principal frequency of a vibrating membrane.54 The
rationale behind seeking edge-isoperimetric inequalities for the graphs G lies in the fact that such inequalities can yield spectral bounds on the
eigenvalues of the normalized Laplacians of G,35 and hence also of the Laplacians. Since the Heisenberg Hamiltonian is just a direct sum of

Laplacians of G{k}, edge-isoperimetric inequalities on G{k} can then yield bounds on the corresponding energy eigenvalues of the Heisenberg
Hamiltonian.

In this section, we prove several technical results relating to the edge-isoperimetric inequalities on the symmetric products of graphs.

Roughly speaking, our results allow us to establish the isoperimetric properties of G{k} in terms of the isoperimetric properties of cer-
tain subgraphs of the graph G. In particular, these subgraphs are vertex induced subgraphs of G where a number of vertices and their
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corresponding edges are deleted fromG. Our technical result applies to graphs with a finite number of vertices. In TheoremV.6, we prove that
that if deleting any k − 1 vertices from a finite graph G yields a vertex induced subgraph that has a dimension δ with isoperimetric number C,

then a lower bound on the size of the edge-boundary of a subset of vertices Ω in G{k} is given in terms of the size of the edge-boundary of Ω
in the Johnson graph that is the kth symmetric product of the complete graph.

The proof relies crucially on the fact that the size of an edge boundary of a set X can be written as a Sobolev seminorm of the indicator
function of X. This implies that edge-isoperimetric inequalities can be written in terms of the Sobolev seminorm of an indicator function
and an appropriate functional of that indicator function, as we shall see in Sec. V A. Also, we use Tillich’s observation of a one-to-one
correspondence between edge-isoperimetric inequalities and inequalities relating the Sobolev seminorm of functions and an appropriate
functional evaluated on those functions.55 Together, these insights allow us to obtain lower bounds on the size of the edge-boundary of the

subsets of vertices in G{k}.

A. Sobolev inequalities on graphs

Recall that an edge-isoperimetric inequality for a graph G = (V, E) has the form

∣∂X∣ ≥ C∣X∣1−1/d, ∀X ⊆ V : ∣X∣ ≙ k, (5.2)

where k = 1, . . ., |V|/2. The point of this section is that the size of the edge-boundary |∂X| can be written in terms of a discrete Sobolev
seminorm and this allows us to obtain some interesting insights. Namely, given a graph G = (V, E) and a function f : V → R on the vertex set,
the discrete Sobolev seminorm of f corresponding to the edge set E is defined by

∥f ∥E ≙ ∑
{u,v}∈E

∣f (u) − f (v)∣.

Now consider the case where f = 1X where 1X :V → {0, 1} is an indicator function on X so that for all X ⊆ V, 1X(x) = 1 if x ∈ X and 1X(x) = 0 if
x ∈ V/X. Then, it is clear that

∣∂X∣ ≙ ∥1X∥E. (5.3)

We call any inequality which involves the Sobolev seminorm ∥⋅∥E, such as the one above, a discrete Sobolev inequality.
The analytic inequalities of Tillich (Ref. 55, Theorem 2) establish the equivalence between edge-isoperimetric inequalities and discrete

Sobolev inequalities on functionals that map functions from ΦV to non-negative real numbers, where ΦV denotes the set of all functions
f : V → R. To state Tillich’s theorem succinctly, we introduce the following definition.

Definition V.1. Given C > 0 and a functional ρ : ΦV → R
+, we say that G is (C, ρ)-isoperimetric if for every X ⊆ V, we have ∥1X∥E ≥

Cρ(1X).
By not requiring that |X| ≤ |V|/2, an implicit constraint on the choice of feasible functionals ρ that can satisfy the discrete Sobolev

inequality in Definition V.1 is imposed.
We state Tillich’s result on functionals that are also seminorms in the following theorem.

Theorem V.2 (Ref. 55, Theorem 2). Let G = (V, E) be a graph, C > 0, and ρ be a seminorm on ΦV . Then, G is (C, ρ)-isoperimetric if and
only if ∥f∥E ≥ Cρ(f ) for every function f : V → R.

Imposing the additional constraint |X| ≤V/2 would allow ourselves to work with a larger family of seminorms ρ, but Theorem V.2 would
need appropriate modification, which we do not address in this paper. Working without the constraint |X| ≤ V/2 allowed Tillich to derive
edge-isoperimetric inequalities for graphs with a countably infinite number of vertices.

In this article, we restrict our attention to the functionals gp and ρp for p ≥ 1, where

gp(f ) ≙ ⎛⎝
1

∣V ∣ ∑x,y∈V ∣f (x) − f (y)∣
p⎞⎠

1/p

, (5.4)

ρp(f ) ≙ (∑
x∈V
∣f (x) − E(f )∣p)1/p, (5.5)

where
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E(f ) ≙ 1

∣V ∣ ∑v∈V f (v) (5.6)

denotes the expectation value of f. It is then easy to show that

gp(1X) ≙ (2∣X∣∣V/X∣∣V ∣ )1/p, (5.7)

ρp(1X) ≙ (∑
x∈V
∣1X(x) − ∣X∣∣V ∣ ∣

p)
1/p

. (5.8)

Note that when gp and ρp are evaluated on 1X , they are invariant under the substitution of X with V/X.
The discrete Sobolev inequality is closely related to the isoperimetric number and dimension of a graph as given in the following

proposition, which is obvious from definitions.

Proposition V.3. Let G = (V, E) be graph and C > 0 and δ > 1. Then, the following are true.
1. If V is finite and G is (C, gδ / (δ−1))-isoperimetric, then G has an dimension of δ with isoperimetric number C.

2. If V is finite and G has dimension δ with isoperimetric number C, then G is (2−δ /(δ−1)C, gδ / (δ−1))-isoperimetric.

Hence, we can address finite-sized graphs with the functionals ρp using the two-sided bounds on ρp(1X) in terms of gp(1X) as given in the
following lemma. Note that when p = 1, we get ρ1(1X) = g1(1X) for any vertex subset X.

Lemma V.4. Let G = (V, E) be a graph, X ⊆ V and p ≥ 1. Then,
1

21−1/p
gp(1X) ≤ ρp(1X) ≤ gp(1X).

Proof. By definition, ρp(1X) ≙ (∑x∈V ∣1X(x) − ∣X∣∣V∣ ∣p)1/p. Splitting the summation over V into the disjoint subsets X and V/X yields

ρp(1X) ≙ (∣X∣(1 − ∣X∣∣V ∣ )
p

+ (∣V ∣ − ∣X∣)( ∣X∣∣V ∣ )
p)

1/p
. (5.9)

Since (1 − ∣X∣∣V∣)p ≤ (1 − ∣X∣∣V∣) and ( ∣X∣∣V∣)p ≤ ( ∣X∣∣V∣) for p ≥ 1, we get ρp(1X) ≤ gp(1X). Since both ∣X∣(1 − ∣X∣∣V∣)p and ∣V/X∣( ∣X∣∣V∣)p are at least

( ∣X∣∣V/X∣∣V∣ )( 12)p−1, we get ρp(1X) ≥ gp(1X)(1/2p−1)1/p. ◽

We remark that Lemma V.4 is tight when p = 1 because then we would have

g1(1X) ≤ ρ1(1X) ≤ g1(1X), (5.10)

which implies that ρ1(1X) = g1(1X). The scenario p = 1 occurs for graphs with infinite dimensions and expander graphs are examples of such
graphs.

Lemma V.4 implies the following for C > 0 and δ > 1.
1. If a graph is (C, ρδ /(δ−1))-isoperimetric, the graph also has dimension δ with isoperimetric number 2−δC.
2. If a graph has dimension δ with isoperimetric number C, the graph is also (2−δ /(δ−1)C, gδ /(δ−1))-isoperimetric.

In what follows, we use Theorem V.2 where ρ= ρp for p ≥ 1.
B. The symmetric product of finite graphs

Now, we address the edge-isoperimetric problem on the graph G{k} when G has a finite number of vertices, for a fixed positive integer
k = 2, . . ., ⌊|V|/2⌋. Again, we rely on the edge-isoperimetric properties of the vertex-induced subgraphs of a graph G. A key ingredient of our
proof is a bijection between sets, described by the following proposition.
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Proposition V.5. Let V be a countable set and k be a integer such that k = 1, . . ., |V|. Then, the sets A ≙ {(W; x) : W ⊆ V , ∣W∣ ≙ k − 1, x ∈
V/W} and A

′ ≙ {(X; x) : X ⊆ V , ∣X∣ ≙ k, x ∈ X} have the same cardinality.

Proof. Let f : A → A
′, where f ↦ (W; x) = (W ∪ {x}; x) for allW ⊆ V and x ∈ V/W. The map f is invertible and is therefore a bijection

from A to A
′. Hence, A and A

′ have the same cardinality. ◽

We obtain here a lower bound on |∂Ω|, which is the size of the edge boundary of any vertex subset Ω in G{k}. Our lower bound on |∂Ω|
is provided in terms of |∂JΩ|, which is the size of the edge boundary of Ω in the Johnson graph J(n, k).

Theorem V.6. Let G = (V, E) be a graph with n vertices, and let p ≥ 1 and C > 0. Suppose that every vertex-induced subgraph of G with

n − k + 1 vertices is (C, ρp)-isoperimetric. Then, for every Ω ⊆ V {k},

∣∂Ω∣ ≥ C

n − k + 1
(2∣∂JΩ∣)1/p.

Note that the inequality in Theorem V.6 is tight for p = 1. To see this, let us consider a trivial scenario where G is the complete graph on
n vertices and k = 1. For the complete graph, we can compute the edge boundary of any vertex subset X exactly. Denoting x = |X| and n = |V|,

we have |∂X| = min{x, n − x}(n − 1). Recall from (5.7) that g1(1X) ≙ 2x(n−x)
n

. Then, the edge-isoperimetric inequality for the complete graph
with respect to the seminorm g1 is equivalent to

(n − 1)min{x,n − x} ≥ C2x(1 − x/n). (5.11)

This inequality holds trivially when x = 0, so let us consider x ≥ 1. Now focus on the scenario where x ≤ n/2. Then, (n − 1)x ≥ C2x(1 − x/n),
which is equivalent to (n − 1) ≥ C2(1 − x/n) and C ≤ n−1

2(1−x/n) . To minimum upper bound for C in this case is attained for x = 1, and thus, we

have C ≤ n
2
. Now consider the scenario where n

2
< x ≤ n. When x = n, the inequality again holds trivially. So we consider n

2
< x ≤ n − 1. Then,

the inequality we are faced with is (n − 1)y ≥ C2y(1 − y/n), where y = n − x. Since we just finished analyzing this scenario, we can conclude

that the optimal isoperimetric constant is C ≙ n
2
for the complete graph. Substituting this example into Theorem V.6, since G{1} = G, we get

for the complete graph

∣∂X∣ ≥ n

2

1

n
(2∣∂X∣), (5.12)

which is equivalent to 1 ≥ 1 and hence the inequality in Theorem V.6 is tight for the complete graph.

Proof of Theorem V.6. For all Ω ⊆ V {k}, note that ∣∂Ω∣ ≙ ∥1Ω∥E{k} . Two k-sets X and Y in Ω are adjacent in the graph G{k} if and only if
the symmetric difference of X and Y is an edge in E. Hence,

∣∂Ω∣ ≙ ∑
W⊂V
∣W∣≙k−1

∑
{u,v}∈E∥V/W∥

∣1Ω(W ∪ {u}) − 1Ω(W ∪ {v})∣. (5.13)

Applying Theorem V.2 with seminorm ρp on each induced subgraph G[V/W] for every (k − 1)-set W with respect to the function 1
Ω
(W ∪

{⋅}), we get

∣∂Ω∣ ≥ ∑
W⊂V
∣W∣≙k−1

C
⎛
⎝ ∑x∈V/W

RRRRRRRRRRRR
1Ω(W ∪ {x}) − ∑

y∈V/W

1Ω(W ∪ {y})
n − k + 1

RRRRRRRRRRRR
p⎞
⎠
1/p

. (5.14)

By subadditivity of the function (⋅)1/p for all p ≥ 1, the inequality (5.14) becomes

∣∂Ω∣ ≥ C⎛⎜⎜⎝ ∑W⊂V∣W∣≙k−1

∑
x∈V/W

RRRRRRRRRRRR
1Ω(W ∪ {x}) − ∑

y∈V/W

1Ω(W ∪ {y})
n − k + 1

RRRRRRRRRRRR
p⎞⎟⎟⎠

1/p

. (5.15)

By Proposition V.5, we can reorder the summation in (5.15) to get

∣∂Ω∣ ≥ C⎛⎝ ∑X∈V{k}∑x∈X
RRRRRRRRRRRR
1Ω(X) − ∑

y∈V/(X/{x})

1Ω(X△{x, y})
n − k + 1

RRRRRRRRRRRR
p⎞
⎠
1/p

. (5.16)
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Each k-set X appearing in the inequality (5.16) either belongs to Ω or not. Applying simple arithmetic on the right-hand side of (5.16) above
then yields

C
⎛
⎝∑X∈Ω∑x∈X

⎛
⎝ ∑
y∈V/(X/{x})

1 − 1Ω(X△{x, y})
n − k + 1

⎞
⎠
p

+ ∑
X∉Ω
∑
x∈X

⎛
⎝ ∑
y∈V/(X/{x})

1Ω(X△{x, y})
n − k + 1

⎞
⎠
p⎞
⎠
1/p

. (5.17)

Using the inequality (∑i xi)p ≥ ∑i x
p
i for non-negative xi, the expression (5.17) becomes

C
⎛
⎝∑X∈Ω∑x∈X ∑

y∈V/(X/{x})

1 − 1Ω(X△{x, y})
(n − k + 1)p + ∑

X∉Ω
∑
x∈X

∑
y∈V/(X/{x})

1Ω(X△{x, y})
(n − k + 1)p

⎞
⎠
1/p

≙ C

n − k + 1

⎛
⎝2∑X∉Ω∑x∈X ∑

y∈V/(X/{x})
1Ω(X△{x, y})⎞⎠

1/p

.

To complete the proof, note that

∑
X∉Ω
∑
x∈X

∑
y∈V/(X/{x})

1Ω(X△{x, y}) ≙ ∣∂JΩ∣.
◽

The eigenvalues of the combinatorial Laplacian of the Johnson graph J(n, k) for k = 0, . . ., ⌊n/2⌋ are j(n + 1 − j) with multiplicities(n
j
) − ( n

j−1), where j = 0, . . ., k (Ref. 47, Sec. 12.3.2). If λ is the second smallest eigenvalue of the combinatorial Laplacian of a graph, then that

graph is ( λ
2
, g1)-isoperimetric (Ref. 44, Lemma 13.7.1). Since the second smallest eigenvalue of the combinatorial Laplacian of the Johnson

graph J(n, k) is always n, ∣∂JΩ∣ ≥ n
2
g1(1Ω) for every Ω ⊆ V {k}. Hence,

(2∣∂JΩ∣)1/p ≥ (ng1(1Ω))1/p ≙ n1/pgp(1Ω). (5.18)

Using (5.18) with Theorem V.6 together with Lemma V.4 yields the following corollary.

Corollary V.7. Let G = (V, E) be a graph with n vertices, and let p ≥ 1 and C > 0. Suppose that every vertex-induced subgraph of G with

n − k + 1 vertices is (C, ρp)-isoperimetric. Then, G{k} is ( Cn1/p

n−k+1 , gp)-isoperimetric and ( Cn1/p

n−k+1 , ρp)-isoperimetric.

This corollary plays a central role in Subsection V C.

C. Lower bounds from isoperimetric considerations

If one were to compute the eigenvalues of Lk directly, one may quickly run into computational difficulties. The reason is twofold. First,
the size of the matrix Lk is (nk), and in general scales exponentially with n. This leads to the difficulty in evaluating the eigenvalues of Lk
when one does not desire to utilize a computer with both exponential memory that runs in exponential time. In view of this problem, our
methodology to obtain lower bounds on the eigenvalues of Lk will be handy. The algorithms to compute lower bounds that we introduce from
graph theory will considerably outperform algorithms that directly compute the eigenvalues of Lk. Instead of studying the symmetric products

G{k}, we restrict our attention to the vertex-induced subgraphs of G.
When one deletes vertices from a graph G along with the corresponding edges, one obtains a vertex-induced subgraph of G. We denote

the set of all graphs obtained by deleting exactly k − 1 vertices from G as V(G, k). Clearly, there are ( n
k−1) graphs in the set V(G, k). From

Corollary V.7, we know that if C is less than the isoperimetric number of every graph in V(G, k) with corresponding dimension δ, then the

graph G{k} has isoperimetric dimension δ with isoperimetric number at least

C
n1−1/δ

n − k + 1
. (5.19)

We now proceed to outline how lower bounds on the eigenvalues of Lk can be obtained from geometric considerations the graphs G{k}.
To achieve this, we will first illustrate how lower bounds on the spectrum of a graph Laplacians can depend only on the graph’s geometry.
We begin by introducing some notation. Let DG =∑v∈Vdv|v⟩⟨v| denote the degree matrix of a graph G = (V, E). Let AG denote the adjacency
matrix of a graph, which means that it is a matrix with matrix elements equal to either 0 or 1, and where ⟨u|AG|v⟩ = 1 if the vertex u is adjacent
to v. Let LG denote the Laplacian of a graph, which can be written as DG − AG. In this subsection, we have the following theorem, which is
essentially a Chung-Yau type bound35 with Ostrovskii’s correction43 for unnormalized Laplacians.
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Theorem V.8. Let a graph G = (V, E) have dimension δ > 2 with isoperimetric number c. Let b and β be the minimum and maximum
vertex degrees of G, respectively. Then,

λ j(LG) ≥ bc2

16eβ2
(δ − 2
δ − 1)

2( jβ

18∣E∣ )
2/δ

. (5.20)

When a graph is connected, its degree matrix is non-singular, and we can write its normalized Laplacian of G as

L̃G ≙ D−1/2G LGD
−1/2
G . (5.21)

The proof of TheoremV.8 relies trivially on the result on the corresponding result for lower bounds on the spectrum of normalized Laplacians.
The connection is given by the following lemma.

Lemma V.9. If the graph has minimum and maximum vertex degrees given by b and β , respectively,

bλ j(L̃G) ≤ λ j(LG) ≤ βλ j(L̃G). (5.22)

Proof. Denoting the ith largest singular value of a matrix A of size da as si(A) with s1(A) ≥ ⋅ ⋅ ⋅ ≥ sda(A), we have from Ref. 56, Problem
III.6.5 the inequalities

si(AB) ≤ si(A)s1(B), si(AB) ≤ s1(A)si(B). (5.23)

Applying the above inequalities iteratively, consequently

si(L̃G) ≙ si(D−1/2G LGD
−1/2
G ) ≤ si(LG)s1(D−1G ),

si(LG) ≙ si(D1/2
G L̃GD

1/2
G ) ≤ si(L̃G)s1(DG). (5.24)

Since thematricesDG,D
−1
G ,LG, and L̃G are positive semidefinite, their singular values are equivalent to their eigenvalues. The largest eigenvalue

of DG and D−1G are β and b−1, respectively. Hence, the inequalities (5.24) then give the result. ◽

Lower bounds on the eigenvalues of the normalized Laplacian can be obtained from the graph’s Sobolev inequalities, as shown in the
seminal work of Chung and Yau.35 Because of a gap in the proof in Ref. 35 as shown by Ostrovskii [Ref. 43, after Eq. (8)], we have to take
Ostrovskii’s correction into account when we prove the corresponding lower bounds on the graph’s Laplacian which we state explicitly in
Theorem V.8.

Proof of Theorem V.8. For a graph G = (V, E), denote the volume of a subset of vertices X as vol(X) =∑v∈Xdv. Also let vol(G) =∑v∈Vdv
denote the sum of all vertex degrees in the graph G. The isoperimetric inequality we focus on is

∣∂X∣ ≥ cδ(vol(X))1−1/δ , (5.25)

where vol(X) ≤ vol(VX). Note here that vol(X) is in general different from the number of vertices in X. While |X| counts the number of
vertices in X, the volume vol(X) counts the sum of all vertex degrees of vertices in X. We may also interpret vol(X) as the number of vertices
in X multiplied by the average degree of the vertices in X. The Sobolev inequality on graphs has the form

∑
{u,v}∈E

∣f (u) − f (v)∣2 ≥ Amin
µ∈R
(∑
v∈V
∣f (v) − µ∣αdv)

2/α
, (5.26)

where α ≙ 2δ
δ−2 . Typically A depends on cδ and δ. Chung and Yau proved when the above Sobolev inequality holds for a graph, the eigenvalues

of the graph’s normalized Laplacians satisfy the lower bound

λ j(L̃G) ≥ A

e34/δ
(j/vol(G))2/δ . (5.27)

When δ > 2, the inequality (5.26) holds with A ≙ c2δ
16
( δ−2
δ−1)2 using Ostrovskii’s Sobolev inequality [Ref. 43, (8)]. Using this fact with Lemma

V.9, we get
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λ j(LG) ≥ b c2δ
16e
(δ − 2
δ − 1)

2( j

9vol(G))
2/δ

. (5.28)

It remains to relate cδ to c. Let β be the maximum vertex degree of G. Since G has isoperimetric dimension δ and isoperimetric number c, its
vertex subsets X satisfy the bound

∣∂X∣ ≥ cmin{∣X∣, ∣V ∣ − ∣X∣}1−1/δ ≥ c

β1−1/δ min{vol(X), vol(V/X)}1−1/δ . (5.29)

Hence, we can take cδ = c/β1−1/δ . The hand-shaking Lemma also implies that vol(G) = 2|E|, and we get the result. ◽

Using Theorem V.8, we can easily obtain lower bounds on the eigenvalues of Lk using bk and βk, which are the minimum and maximum

vertex degrees of G{k}, respectively. Note that β1 denotes the maximum number of interacting neighbors each spin experiences in the Heisen-

berg ferromanget. To bound bk and βk, note that every vertex in G{k} is a set of vertices in G with k elements. Therefore, the vertex degree of

{x1, . . ., xk} in G{k} is just the edge-boundary of {x1, . . ., xk} in G. Thus, bk ≥ ck1−1/δ whenever G has dimension δ with isoperimetric number c.

Also, when β is the maximum vertex degree of G, we trivially have and βk ≤ kβ1. Hence, Corollary V.7 implies that ck ≥ ak n1−1/δkn−k+1 , where every
vertex-induced subgraph of G with k − 1 deleted vertices has dimension δk with isoperimetric number ak. The number of edges in G{k} is at
most βk(nk)/2, where n is the number of spins. Then, if δk > 2 for k = 1, . . ., n/2, Theorem V.8 implies that

λ j(Lk) ≥ ck−1/δa2k
16ekβ2

1

( n1−1/δk

n − k + 1
)
2

(δ − 2
δ − 1)

2⎛
⎝

j

9(n
k
)
⎞
⎠
2/δk

. (5.30)

To numerically estimate ak, it suffices to numerically compute the isoperimetric numbers of graphs K ∈ V(G, k)with vertex setV(K) and edge
set E(K). To find the isoperimetric number of K, we need to solve its corresponding edge-isoperimetric problem (EIP) on K, which involves
finding

min{∣∂X∣ : X ⊆ V(K), ∣X∣ ≙ j} (5.31)

for every 1 ≤ j ≤ |V(K)|/2. While solving the EIP exactly is NP-hard,57,58 we conjecture that there can be approximation algorithms to
approximately solve the EIP in polynomial time.

Conjecture V.10. Let G = (V, E) be a graph. For every k = 1, . . ., |v|/2, let ek =min{|∂X|:X ⊆ V, |X| = k}. Then, for every ε> 0 and for every
k = 1, . . ., |V|/2, there exists a polynomial time approximation algorithm that computes e′k such that (1 − ε)ek ≤ e′k ≤ ek.

A reason why Conjecture V.10 might be true is because for a multitude of different NP-hard problems, there do exist approxima-
tion algorithms that have efficient runtimes.59 If our Conjecture V.10 holds, then lower bounds on the eigenvalues can be evaluated in

O(poly(n)nk−1) time with O(n) memory. In contrast, computing the eigenvalues of Lk directly in practice requires a computer in O(n3k)

time andO(n2k) memory. Even using the best asymptotic algorithm for matrix multiplication would require at leastO(n2k) time60 andO(n2k)
memory.

VI. DISCUSSIONS

In this paper, we obtain many bounds on the spectrum of the ferromagnetic HHs. For this, we rely on tools from graph theory andmatrix
analysis. Obviously, with these bounds on the eigenvalues of the Heisenberg ferromagnet, one can easily compute bounds on thermodynamic
quantities of the corresponding Heisenberg models such as free energy.

With regards to upper bounds based on graph distances, there remains a potential to further tighten our bounds by optimizing over the
partitions used in Eq. (4.22) of Corollary 4.4 in Ref. 34. This is however beyond the scope of the current paper and we leave this for future
investigation. With regards to the lower bounds based on isoperimetric inequalities, we wish to point out that the edge-isoperimetric problem
for the Johnson graph, also known as the problem of Kleitman and West,61 remains unsolved. Given this fact, better edge-isoperimetric
inequalities for the Johnson graph will improve the edge-isoperimetric inequalities of the symmetric product of finite graphs given in Corollary
V.7. Also advances in the theory of the graph expansion properties of vertex induced subgraphs will certainly also improve the bounds given
in this corollary. Directly deriving lower bounds on the combinatorial Laplacian of a graph from discrete Sobolev inequalities can also help
to improve the constants involved in the bound. Moreover, a polynomial-time approximation algorithm for solving the edge-isoperimetric
problem for graphs (Conjecture V.10) would together with themethods already in this paper yield a polynomial-time algorithm for computing
lower bounds for the eigenvalues of the ferromagnetic HH.
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To recap, in the spin half case, the computational basis of the ferromagnetic HM can be represented by a binary string. Each binary
string is represented as a vertex, and interactions represented as edges between the vertices. In the spin-half case, each exchange interac-
tion is equivalent to a swap operator and acts as a transposition on the binary strings. The relationship between different binary strings
under transpositions that correspond to the interaction are represented as a graph. Because transpositions leave the Hamming weight of
these binary strings invariant, the HH naturally decomposes into a direct sum of graphs labeled by all the possible Hamming weights from
0 to n.

One might wonder how the results here could generalize to the spin S case. We briefly sketch how one might proceed to achieve this.
We can observe that the computational basis of the ferromagnetic HM can be represented by a (2S + 1)-nary string. We can represent
these (2S + 1)-nary strings as vertices on a graph, and interactions as relationships between the vertices. In this representation, the spin-S
exchange operator maps a (2S + 1)-nary string to a linear combination of (2S + 1)-nary strings. Since one can show that the coefficients of
this linear combination are non-negative, if all non-zero exchange constants are the same, the coefficients can rescale to allow us to interpret
them as probabilities of transitions from one vertex to another vertex. Since the spin-S exchange operator conserves total spin, the (2S +
1)-nary strings naturally partition into disjoint subsets, where only strings in different partitions do not interact, and strings in the same
partition can have their interactions represented as a Markov model. We expect the spectrum HH to thereby be related to the spectrum of the
associated (2S + 1) Markov models. Markov models describe stochastic transitions between a set of discrete states and are well-studied. We
therefore expect that connections between the theory ofMarkovmodels and spin-SHMs can bring similar insights into bound the spectrum of
spin-SHMs.

ACKNOWLEDGMENTS

Y.O. thanks Robert Seiringer and anonymous referees for their comments and recommendations that have helped to improve this
manuscript. Y.O. acknowledges support from the Singapore National Research Foundation under NRF Award No. NRF-NRFF2013-01, the
U.S. Air Force Office of Scientific Research under AOARDGrant No. FA2386-18-1-4003, and the SingaporeMinistry of Education. This work
was supported by the EPSRC (Grant No. EP/M024261/1).

REFERENCES

1W. Heisenberg, Z. Phys. 49, 619 (1928).
2N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 76, 3212 (1996).
3C. Chung, J. Marston, and R. H. McKenzie, J. Phys.: Condens. Matter 13, 5159 (2001).
4D. Thouless, Proc. Phys. Soc. 86, 893 (1965).
5S. Blundell,Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics, 1st ed. (Oxford University Press, 2003).
6L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91, 090402 (2003).
7H. Tamura, K. Shiraishi, and H. Takayanagi, Jpn. J. Appl. Phys., Part 2 43, L691 (2004).
8M. B. Ruskai, Phys. Rev. Lett. 85, 194 (2000).
9H. Pollatsek and M. B. Ruskai, Linear Algebra Appl. 392, 255 (2004).
10Y. Ouyang, Phys. Rev. A 90, 062317 (2014).
11Y. Ouyang and J. Fitzsimons, Phys. Rev. A 93, 042340 (2016).
12Y. Ouyang, Linear Algebra Appl. 532, 43 (2017).
13Y. Ouyang, preprint arXiv:1904.01458 (2019).
14B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (John Wiley & Sons, 2011).
15D. Jiles, Introduction to Magnetism and Magnetic Materials (CRC Press, 2015).
16D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature 408, 339 (2000).
17N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
18F. R. Chung, Spectral Graph Theory (American Mathematical Society, 1997), Vol. 92.
19H. Bethe, Z. Phys. 71, 205 (1931).
20F. Haldane, Phys. Lett. A 93, 464 (1983).
21L. D. Faddeev and L. A. Takhtadzhyan, J. Sov. Math. 24, 241 (1984).
22T. Koma, Prog. Theor. Phys. 78, 1213 (1987).
23S. Eggert, I. Affleck, and M. Takahashi, Phys. Rev. Lett. 73, 332 (1994).
24T. Kennedy, Commun. Math. Phys. 100, 447 (1985).
25T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).
26Y. Ogata, Commun. Math. Phys. 348, 847 (2016).
27M. Correggi, A. Giuliani, and R. Seiringer, Europhys. Lett. 108, 20003 (2014).
28M. Correggi, A. Giuliani, and R. Seiringer, Commun. Math. Phys. 339, 279 (2015).
29B. S. Shastry and B. Sutherland, Physica B+C 108, 1069 (1981).
30B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
31G. Baker, Jr., H. Gilbert, J. Eve, and G. Rushbrooke, Phys. Lett. A 25, 207 (1967).
32P. Caputo, T. Liggett, and T. Richthammer, J. Am. Math. Soc. 23, 831 (2010).
33D. A. Spielman and S.-H. Teng, SIAM J. Matrix Anal. Appl. 35, 835 (2014).

J. Math. Phys. 60, 071901 (2019); doi: 10.1063/1.5084136 60, 071901-17

Published under license by AIP Publishing



Journal of
Mathematical Physics

ARTICLE scitation.org/journal/jmp

34F. Chung, A. Grigor’yan, and S. Yau, Tsing Hua Lectures on Geometry & Analysis, Hsinchu, 1990–1991 (International Press, 1997), p. 79.
35F. R. K. Chung and S.-T. Yau, Combinatorics, Probab. Comput. 4, 11 (1995).
36T. Rudolph, “Constructing physically intuitive graph invariants,” e-print arXiv:quant-ph/0206068v1 (2002).
37R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood, Graph Combinatorics 28, 365 (2012).
38K. Audenaert, C. Godsil, G. Royle, and T. Rudolph, J. Comb. Theory, Ser. B 97, 74 (2007).
39A. Alzaga, R. Iglesias, and R. Pignol, J. Comb. Theory, Ser. B 100, 671 (2010).
40K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi, Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno, Theor. Comput. Sci. 586, 81 (2015).
41J. Leaños and A. L. Trujillo-Negrete, Graphs Combinatorics 34, 777 (2018).
42A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin- Heidelberg-New York, 2003).
43M. Ostrovskii, Quaestiones Math. 28, 501 (2005).
44C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics Vol. 207 (Springer-Verlag, New York, 2001).
45P. Delsarte, “An algebraic approach to the association schemes of coding theory,” Ph.D. thesis, Philips Research Laboratories, 1973.
46E. Bannai and T. Ito, Algebraic Combinatorics (Benjamin/Cummings Menlo Park, 1984).
47A. E. Brouwer and W. H. Haemers, Spectra of Graphs (Springer Science & Business Media, 2011).
48P. Delsarte and V. I. Levenshtein, IEEE Trans. Inf. Theory 44, 2477 (1998).
49R. Merris, Linear Algebra Appl. 197, 143 (1994).
50S. Geršgorin, Bulletin de l’Académie des Sciences de l’URSS, Classe des Sciences Mathématiques et na (l’Académie des Sciences de l’URSS, 1931), p. 749.
51R. S. Varga, Geršgorin and his Circles, 1st ed. (Springer-Verlag, 2004).
52F. R. Chung, A. Grigor’Yan, and S.-T. Yau, Adv. Math. 117, 165 (1996).
53N. Alon, Combinatorica 6, 83 (1986).
54L. E. Payne, SIAM Rev. 9, 453 (1967).
55J.-P. Tillich, Discrete Math. 213, 291 (2000).
56R. Bhatia,Matrix Analysis (Springer-Verlag, 1997).
57M. R. Garey, D. S. Johnson, and L. Stockmeyer, Theor. Comput. Sci. 1, 237 (1976).
58U. Brandes and D. Fleischer, J. Graph Algorithms Appl. 13, 119 (2009).
59D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems (PWS Publishing Co., 1996).
60J. Demmel, I. Dumitriu, and O. Holtz, Numerische Math. 108, 59 (2007).
61L. Harper, Discrete Math. 93, 169 (1991).

J. Math. Phys. 60, 071901 (2019); doi: 10.1063/1.5084136 60, 071901-18

Published under license by AIP Publishing


