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Abstract. Modeling propagation of VLF electromagnetic beams in the waveguide earth-ionosphere (WGEI) is of a great 

importance because variation in the characteristics of these waves is an effective instrument for diagnostics the influences on 20

the ionosphere “from above” (Sun-Solar Wind-Magnetosphere-Ionosphere), “from below” (the most powerful 

meteorological, seismogenic and other sources in the lower atmosphere and lithosphere/Earth, such as hurricanes, 

earthquakes, tsunamis etc.), from inside the ionosphere (strong thunderstorms and lightning discharges) and even from the 

far space (such as gamma-flashes, cosmic rays etc.). Thus, VLF became one of the most universal instrument for monitoring

the Space Weather in the direct sense of this term, i.e. the state of the Sun-Earth space and the ionosphere as it is particularly25

determined by all possible relatively powerful sources, wherever they are placed. This paper is devoted mostly to modelling 

VLF electromagnetic beam propagation in the WGEI. We present a new tensor impedance method for modelling 

propagation of electromagnetic beams (TIMEB) in a multi-layered/inhomogeneous waveguide. Suppose that such a 

waveguide, i.e. WGEI, possesses the gyrotropy and inhomogeneity with a thick cover layer placed above the waveguide. 

Note a very useful and attractive feature of the proposed TIMEB method: in spite of a large thickness of the waveguide 30

cover layer, the proposed effective impedance approach reflects an impact of such a cover on the electromagnetic (EM) 

waves, which propagate in the waveguide. This impedance approach can be applied for EM waves/beams in layered 

gyrotropic/anisotropic active media in very wide frequency range, from VLF to optics. Moreover, this approach can be 

applied to calculations of EM waves/beams propagation in the media of an artificial origin such as metamaterial microwave 

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-46

Manuscript under review for journal Ann. Geophys.

Discussion started: 7 May 2019

c© Author(s) 2019. CC BY 4.0 License.



2

or optical waveguides. The results of the modelling the propagation of VLF beams in the WGEI are included. The qualitative 

comparison between the theory and experimental observation of increasing losses of VLF waves in the WGEI is discussed. 

The new proposed method and its further development allows the comparison with the results of the future rocket 

experiment. This method allows to model (i) excitation of the VLF modes in the WGEI and their excitation by the typical 

VLF sources, such as radio wave transmitters and lightning discharges and (ii) leakage of VLF waves/beams into the upper5

ionosphere/magnetosphere. 

Keywords — ionosphere, atmosphere, VLF, tensor impedance, gyrotropy, layered waveguide, beam, electromagnetic 
wave, boundary conditions, ionospheric disturbances, vertical coupling processes

1 Introduction 

This paper is dedicated to the propagation in the system Lithosphere–Atmosphere–Ionosphere–Magnetosphere 10

(LAIM) of electromagnetic (EM) waves /beams in the radio range, with particular applications to very low frequencies 

(VLF). This topic became very actual due to the following reasons. (1) Variation in the characteristics of these waves is now 

an effective instrument for the diagnostics of “ionospheric weather” as a part of the Space Weather (Hapgood 2017; Yigit et 

al. 2016; Richmond 1996) in its direct meaning: the state of the Sun-Earth space and the ionosphere in particular determined 

by all possible sufficiently powerful sources, wherever they are placed. Change in the characteristics (amplitude and phase) 15

of the VLF waves propagating in the waveguide earth-ionosphere (WGEI) reflects the corresponding variations in the 

ionospheric electrodynamics characteristics (complex dielectric permittivity) and respectively, the influences on the 

ionosphere “from  above” (Sun-Solar Wind-Magnetosphere Ionosphere (WINDMII) (Patra  et al., 2011; Koskinen, 2011; 

Boudjada et al., 2012; Wu et al., 2016), “from below” (the most powerful meteorological, seismogenic and other sources in 

the lower atmosphere and lithosphere/Earth, such as cyclones and hurricanes (Nina et al., 2017; Rozhnoi et al., 2014; Chou 20

et al., 2015), earthquakes (Hayakawa, 2015; Surkov and Hayakawa, 2014; Sanchez-Dulcet et al., 2015), tsunamis etc. or

from inside the ionosphere (strong thunderstorms and lightning discharges, terrestrial gamma-ray flashes or sprite streamers

(Cummer et al., 1998; Qin et al., 2012; Dwyer  2012; Dwyer and Uman, 2014; Cummer et al., 2014; Mezentsev et al., 2018). 

Note that the VLF signals are very important for the merging of the atmospheric physics and space plasma physics with the 

astrophysics and high energy physics. The corresponding “intersection area” for these two disciplines includes cosmic rays 25

and very popular now objects of investigation – high-altitude discharges (sprites), anomalous X-ray bursts, powerful gamma-

ray bursts etc. The key phenomena for the occurrence of all of these objects are runaway electrons with runaway breakdown, 

and one of the necessary conditions of them is the presence of cosmic rays, consequently these phenomena are intensified 

during the air showers generating by cosmic particles (Gurevich and Zubin 2001; Gurevich et al. 2009).. The runaway 

breakdown and lightning discharges including high-latitude ones case radio emission both in HF range, which could be 30

observed using LOFAR and other radio telescopes (Buitink et al., 2014; Scholten et al., 2017; Hare 2018), and in the VLF 

range. Corresponding experimental research include measurements of the VLF characteristics by the international 

measurement system of the pairs “transmitted-receiver” separated by a distance of a couple of thousand km (Biagi et al., 
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2011; Biagi et al., 2015). Another international system is based on the measurements of VLF characteristics for the 

characterization of the thunderstorms with the lightning discharges/World Wide Lightning Location Network (WWLLN)

(Lu et al. 2019).  (2) Intensification of the magnetospheric research, wave processes, particle distribution and wave-particle 

interaction in the magnetosphere including radiation belts leads to the great interest to the VLF plasma waves, in particular 

whistlers (Artemyev et al., 2013; Agapitov et al., 2014; Agapitov et al., 2018). 5

The differences of our proposed model from the known ones used for the simulation of the VLF waves in the WGEI 

are the following. (1) In distinction to the impedance invariant imbedding model (Shalashov and Gospodchikov, 2010; Kim 

and Kim, 2016), our model provides optimal, for definite class of problems, which we consider, balance between the 

analytical and numerical approaches and is, in fact combined analytical-numerical one, basing on matrix sweep, method 

(Samarskii, 2001). As a result, this model allows to obtain analytically the tensor impedance and at the same time, provides 10

high effectiveness and stability of the modelling. (2) In distinction to the full-wave finite difference time domain (FDTD)

models such as (Chevalier and Inan, 2006; Marshall et al., 2017; Yaxin et al., 2012; Azadifar et al., 2017), our method 

provides very physically clear lower and upper boundary conditions, in particular physically justified upper boundary 

conditions corresponding to the radiation of the waves propagation in the WGEI to the upper ionosphere/magnetosphere. 

This allows in a perspective to determine the leakage modes and to interpret not only ground-based, but also satellite 15

measurements of the VLF beam characteristics. (3) In distinction to the models (Kuzichev and Shklyar, 2010; Kuzichev et 

al., 2018; Lehtinen and Inan, 2009; Lehtinen and Inan, 2008) based on the mode presentations and made in the frequency 

domain, we use the combined approach, This approach includes condition of the radiation at the altitudes of the F region, 

equivalent impedance conditions in the lower E region and at the lower boundary of the WGEI, mode approach, and finally, 

beam method. This combined approach, finally, creates the possibility to interpret adequately data of both ground and 20

satellite detection on the EM wave/beam propagating in the WGEI and these which leakage from the WGEI into the upper 

ionosphere/magnetosphere. Some other details on the distinctions from the previously published models are given below in 

Sect. 3.

The methods of effective boundary conditions,  in particular effective impedance conditions (Tretyakov, 2003; 

Senior and Volakis, 1995; Kurushin and Nefedov, 1983) are well-known and can be used, in particular, for the layered 25

metal-dielectric, metamaterial and gyrotropic active layered and waveguiding media of different types (Tretyakov, 2003; 

Senior and Volakis, 1995; Kurushin and Nefedov, 1983; Collin, 2001; Weit, 1996) including plasma-like solid state (Ruibys 

and Tolutis, 1983) and space plasma (Weit, 1996) media. The plasma wave processes in the waveguide structures metal-

semiconductor-dielectric, placed into the external magnetic field, were widely investigated (Ruibys and Tolutis, 1983; Maier,

2007; Tarkhanyan and Uzunoglu, 2006) in various frequency ranges, from radio to optical ones. Corresponding waves are30

applied in modern plasmonics and in non-destructive testing of semiconductor interfaces. It is of interest to realize the 

resonant interactions of volume and surface electromagnetic waves in these structures, so the simulations of the wave 

spectrum there are important. To describe such complex layered structures, it is very convenient and effective to use 

impedance approach (Tretyakov, 2003; Senior and Volakis, 1995; Kurushin and Nefedov, 1983). As a rule, impedance 

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-46

Manuscript under review for journal Ann. Geophys.

Discussion started: 7 May 2019

c© Author(s) 2019. CC BY 4.0 License.



4

boundary conditions are used, when the layer covering waveguide is thin (Senior and Volakis, 1995; Kurushin and Nefedov,

1983). One of the known exclusions is the impedance invariant imbedding model, the distinction to which of our new 

method has been mentioned above. Our new approach TIMEB, proposed in the present paper has the set of very attractive,

for practical purposes, features. These features are: (i) the surface impedance characterizes cover layer of finite thickness, 

and  this impedance is expressed analytically; (ii) the method allows an effective modelling of 3D beam propagating in the 5

gyrotropic waveguiding structure; (iii) finally, if the considered waveguide can be modified by any external influence such 

as bias magnetic or electric fields, or by any extra wave or energy beams (such as acoustic or quasistatic fields etc.), the 

corresponding modification of the characteristics (phase and amplitude) of the electromagnetic VLF beam propagating in the 

waveguide structure can be modelled. 

Our approach was targeting properly and is suitable for the farther important development which will allow to solve 10

also the following problems, which continue the list presented above: (iv) the problem of the excitation of the waveguide by 

the waves incident on the considered structure from above could be solved as well with the slight modification of the 

presented model, with inclusion also ingoing waves;  (v) consider a plasma-like system placed into the external magnetic 

field, such as the LAIM system (Grimalsky et al., 1999 a, b) or dielectric-magnetized semiconductor  structure; then the 

waves radiated outside the waveguiding structure (such as helicons (Ruibys and Tolutis, 1983) or whistlers (Weit, 1996)) 15

and the waveguide modes could be considered altogether; (vi) adequate boundary radiation conditions on the upper boundary 

of the covering layer are derived; and, based on this (and absence of ingoing waves), the leakage modes above the upper 

boundary of the structure (in other words, upper boundary of covering layer), will be searched with the farther development 

of the model, delivered in the present paper. Namely, the process of the leakage of the electromagnetic waves from the 

(opened) waveguide, then their transformation into magnetized plasma waves, propagating along magnetic field lines, and, 20

possibly, excitation of the waveguiding modes by the waves incident on the system from external space (Walker, 1976), can 

be modelled as a whole. Such a modification can be measured, characterising the external fields and corresponding field 

sources, caused the above mentioned waveguide modification. Combining with the proper measurements of the phases and 

amplitudes of the electromagnetic waves, propagating in the waveguiding structures and leakage waves, the model 

possessing the above mentioned features can be used for searching, and even monitoring the external influences on the 25

layered gyrotropic active artificial or natural media, for example microwave or optical waveguides or the system LAIM and 

WGEI, respectively.    

The structure of the paper is as follows. In Sect. 2 formulation of the problem is presented. In Sect. 3 the algorithm 

is presented, including the determination of the conditions of radiation of the VLF waves/beams into the upper 

ionosphere/magnetosphere at the upper boundary, placed in the F region at the altitude (250-400) km; effective tensor 30

impedance boundary conditions at the upper boundary (~ 85 km) of the effective WGEI; and finally the 3D model of the 

propagation of the VLF beam in the WGEI, which we call TIMEB, because in fact the beam method is combined with tensor 

impedance method. The questions on the mode presentation and leakage modes of VLF are discussed very briefly, because 

the corresponding details will be presented in the next papers. In Sect. 4, the results of numerical modelling are presented. In 
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Sect. 5, the discussion is presented, including an example of the qualitative comparison between the results of our theory and 

an experiment; and the future rocket experiment on the measurements of the characteristics of VLF signal, radiated from the 

VLF transmitter and propagating in the WGEI and penetrating into the upper ionosphere. Finally, conclusions are presented.

2 Formulation of the problem

5

The VLF electromagnetic (EM) waves with frequencies f = 10 - 100 kHz can propagate along the Earth’s surface for long 

distances >1000 km. The Earth’s surface of a high conductivity z = 0 and the ionosphere F-layer z = 300 km form the VLF 

waveguide, see Fig. 1. The propagation of the VLF electromagnetic radiation excited by a near-Earth antenna within the 

WGEI should be described by the full set of the Maxwell equations in the isotropic atmosphere 0 < z < 60 km, the 

approximately isotropic ionosphere D-layer 60 km < z < 75 km, and the anisotropic E- and F- layers of the ionosphere, due 10

to the geomagnetic field 0H
 , added by the boundary conditions at the Earth’s surface and at the F-layer. 

Figure 1. The geometry of the anisotropic/gyrotropic waveguide. EM waves propagate in OX direction. 0H


is the external 
magnetic field. The (effective) WGEI for EM waves occupies the region 0 < z < Lz . Isotropic media occupies the region 0 < z < LISO15
, LISO < Lz . Anisotropic/gyrotropic media occupies the region LISO < z < Lmax . Covering layer occupies the region Lz < z < Lmax. WG 
includes isotropic region 0 < z < LISO  and a part of anisotropic region Lz < z < Lmax. It is supposed that the anisotropic region is 
relatively small part of the WG, (Lz-LISO)/Lz ~ (0.1-0.2). At the upper boundary of covering layer (z = Lmax) the radiation of EM to 
the external region (z > Lmax) is accounted for with the proper boundary conditions. Integration of the equations describing the EM 
field propagation allows to obtain effective impedance boundary conditions at the upper boundary of effective WG  (z = Lz). These 20
boundary conditions effectively includes all the effect on the wave propagation of the covering layer and the radiation (at z = Lmax) 
to the external region (z  > Lmax). q is the angle between the directions of the vertical axis z and geomagnetic field 0H


. The 

coordinate system ' ' 'x y z is connected with the geomagnetic field: 0H


is directed along 'z axis, lies in the plane xz , and the 
planes ' 'x z and xz coincide with each other.

25

3. Algorithm

We present here the algorithm of the new proposed method, staying in details only on the main subject of the present paper, 

in particular on the boundary conditions, impedance method and the method for the beam propagation in the WGEI. The 
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other parts of the method, connected with the mode presentation of the excitation of WGEI by a given current source and the 

reflection of the EM waves from the effective upper boundary of the WGEI and leakage of the EM waves from the WGEI to 

the upper ionosphere/magnetosphere, will be outlined here only very briefly and will become the subjects of the next papers.

3.1 Direct and inverse tensors characterizing the ionosphere

In the next subsections we will derive the formulas describing the transfer of the boundary conditions at the upper boundary 5

(z=Lmax), Fig. 1, resulting in the tensor impedance conditions at the upper boundary of the effective WGEI (z=Li).  To make 

this, we need, firstly, to describe the tensors, characterizing the ionosphere. The monochromatic EM field is considered with 

the components of EM field ~ exp(iwt). The main goal is to transfer the EM boundary conditions from the upper ionosphere 

at the height Lz ~ 250 – 400 km to the lower ionosphere Lz ~ 70 – 90 km. The vertical axis is OZ, the inclination angle of the 

geomagnetic field is QI (Fig. 1). The anisotropic medium is inhomogeneous along OZ axis only and is characterized by the 10

tensor permittivity ˆ( , )ze w or by the inverse tensor 1ˆ ˆ( , ) ( , )z zb w e w-= : ˆ( , )E z Db w= ×
 

, where D


is the electric induction. 

Below the absolute units are utilized. The expressions for the components of the effective permittivity of the ionosphere are

in the coordinate frame X’YZ’ where OZ’ axis is aligned along the geomagnetic field 0H


:
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Here , , ,pe pi He Hiw w w w are plasma and cyclotron frequencies for electrons and ions respectively; me, mi, ne, ni are the masses 15

and the collision frequencies. The expressions of the components of ˆ( , )ze w are obtained from (1) by means of multiplication 

with the rotation matrices (Spiegel, 1959). In the case of a medium with a scalar conductivity s, like the lower ionosphere or 

atmosphere, the effective permittivity (1) reduces to the scalar: e = 1 - 4pis/w. 

3.2 The equations for the EM field and upper boundary conditions

The EM field depends on the horizontal coordinate x as ~exp(-ikxx). Generally, kx £ k0, where k0 =w/c. In simulations of VLF 20

beam propagation, we put kx = k0. In the case of searching VLF waveguide modes kx is slightly complex and should be 

calculated from boundary conditions at the Earth’s surface and upper surface of the effective WGEI.

The Maxwell equations are: 

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-46

Manuscript under review for journal Ann. Geophys.

Discussion started: 7 May 2019

c© Author(s) 2019. CC BY 4.0 License.



7

                                               

0 0 0

0 0 0

, ,

, ,

y x
x x z y x y z

y x
x x z y x y z

H H
ik D ik H ik D ik H ik D

z z
E E

ik H ik E ik H ik E ik H
z z

¶ ¶
- = + = - =
¶ ¶
¶ ¶

- = - + = - - = -
¶ ¶

                                            (2)

In eq. (2), 11 12 13x x y zE D D Db b b= + + etc. All the components of the EM field can be represented through the horizontal 

components of the magnetic field Hx, Hy, and the following equations for these components have been derived: 
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The expressions for the horizontal components of the electric field Ex, Ey are: 
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In the region z ³ Lmax the upper ionosphere is assumed weakly inhomogeneous, and the geometric optics approximation is 

valid in the VLF range there. Note that such an approximation is invalid at the upper boundary of the effective VLF WGEI at 10

80 – 90 km because of the great inhomogeneity of the ionosphere in the vertical direction within E-layer. These 

circumstances determine the choice of the upper boundary z = Lmax ~ (250-400) km, where the conditions of the radiation are 
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formulated.  The dispersion equation connected the wave numbers and the frequency of the outgoing waves has been got 

from eqs. (3), where , ~ zik z
x yH e-  , while the derivatives like ¶b11/¶z and the inhomogeneity of the media are neglected: 
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Thus, generally Eq. (5) which determines the wave numbers for the outgoing waves is of the 4th order (Weit 1996). The 

boundary conditions at the upper boundary z = Lmax within the ionosphere F-layer are the absence of the ingoing waves, i.e. 5

the outgoing (radiated) waves are present only. Two roots should be selected that possess the negative imaginary parts Im(kz1,

z2)< 0, i.e. the outgoing waves dissipate upwards. But in the case of VLF waves some simplification can be used. Namely, 

the expressions for the wave numbers k1,2 are obtained from eqs. (3), where the dependence on x is neglected: |k1,2|>> k0. This 

approximation is valid within F-layer where the first outgoing wave corresponds to the whistler of small dissipation, the 

second one to the highly dissipating slow wave. The EM field components, which are necessary to formulate the boundary 10

conditions for eqs. (3a, b) at z ³ Lmax , can be presented as:
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In the relations (6), zz z L= - . eqs. (3) are simplified there in the approximation described above: 
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Again, the solution of eqs. (7) is searched as: , ~ zik z
x yH e-  . The following equation has been obtained to get the wave 15

numbers kz1, z2 from eqs. (7):
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Therefore as it follows from eq. (8),

      
1/ 2 22 2

2 2 2 011 22 11 22 22 1 12 11 2 21
1,2 12 21 1 2 1, 22 2 2

21 1211 1 22 2 1,2

( ) ; ; ;
2 2 z z

k
kb b b b b k b b k b

k b b a a
b bb k b k k

+ + - -æ ö
= ± + = = = = =ç ÷ - -è ø

   (9)

The signs of kz1, z2 have been chosen from the condition Im(kz1, z2)< 0. From Eqs. (5) at the upper boundary z = Lmax the 20

following relations are valid:

                                                                  1 2 2 1 1 2,x yH A A H A Aa a= + = +                                                                 (10)

As it follows from eq. (10), 

                                                  1 1
1 2 2 1 1 2( ); ( ); 1x y y xA H H A H Ha a a a- -= D - = D - D = -                                             (11)  
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Thus, it is possible to exclude the amplitudes of the outgoing waves A1,2 from Eqs. (9). As a result, at z = Lmax the boundary 

conditions are rewritten in terms of Hx, Hy only: 

                                         
( )

( )

1 1 2 2 2 1 1 2 2 2 2 1

1 1 1 2 2 2 1 2 1 1 1 2

( ) ( ) ( )

( ) ( ) ( )

x
z z z z x z z y

y
z z z z y z z x

H i
i k A k A k k H k k H

z
H ii k A k A k k H k k H
z

a a a a

a a a a

¶
= - + = - - + -

¶ D
¶

= - + = - - + -
¶ D

                                     (12)  

The relations (12) are the upper boundary conditions of the radiation for the boundary z=Lmax~(250-400) km. Then these 

conditions will be transformed/recalculated using the analytical-numerical recurrent procedure into equivalent impedance 5

boundary conditions at z=Lz~(70-90) km. 

Note that in the “whistler/VLF approximation”, valid at frequencies ~ 10 kHz, one can get for the F region of the 

ionosphere. In this approximation and accounting for that 0xk » , we find, using eqs. (5), (8), (9) that dispersion equation 

takes the form 

                                                                              ' 2 2 2 2
0zk k k g=                                                                            (13)10

where  2 2 2 ' 2 ' 2
x z x zk k k k k= + = + ; '

xk and '
zk are the components of wave number, transverse and longitudinal respectively to 

geomagnetic field, respectively. For the F region of the ionosphere, where e Hen w w<< << , eq. (13) reduces to the standard 

form of whistler dispersion equation 0| ' | | |zk k k g= ; 2 / ( )pe Heg w ww» - ; 2 ' 2| | ( / )z He pec k kw w w= ; in a special case of the 

waves, propagating exactly along geomagnetic field, ' 0xk = , one obtain, for the propagating whistler waves, well-known 

dispersion dependence (Artcimovich and Sagdeev, 1979) 2 ' 2 2( / )z He pec kw w w= . Coming back to our problem and accounting 15

for that in our case we can reasonably put 0xk » , eq. (13) reduces to 4 2 4 2
0coszk k gq = . As a result, we get 1 0/ coszk g kq= , 

2 0/ coszk i g kq= - , and then, similarly to the relations (12), the boundary conditions can be presented, in terms of the 

tangential components of electric field, particularly in the form:

                                           0U BU
z

¶
+ =

¶

 
; x

y

E
U

E
é ù

= ê ú
ë û


; 0

1 11
1 12 cos

i igB k
i iq

+ -é ù
= ê ú+ +ë û


                                            (14)    

Conditions (12) or (14) are the conditions of radiation (absence of ingoing waves) formulated at the upper boundary 20

z=Lmax and suitable for the determination of the energy of the wave leaking from the WGEI into the upper 

ionosphere/magnetosphere. Let us emphasize again that the formulas expressing the boundary conditions of the radiation 

(more accurately speaking, an absence of incoming waves, what is the consequence to the causality principle)  (12), (14) are 

obtained as a result of limiting pass by the small parameter kx/k0 | / | 0x zk k ® in eq. (5). Note that in spite of disappearance 

of the dependence of these boundary conditions explicitly on kx, the dependence of the characteristics of the wave 25

propagation process on kx, as a whole, is accounted for, and all results are still valid for the description of the wave beam 

propagation in the WGEI along the horizontal axis x with finite 0~xk k . 
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3.3 Equivalent Tensor Impedance Boundary Conditions at the Upper Boundary z=Lz of the Effective WGEI 

The tensor impedance at the upper boundary of the effective WGEI z=Lz, Fig. 1, is obtained by means of 

recalculating to the level z=Lz~ 80 – 90 km of the conditions of radiation (12) or (14), formulated at the upper boundary, 

placed in the F region of the ionosphere, at z=Lmax~ (250-400) km. 

The main idea of the effective tensor impedance method is the unification of the analytical and numerical 5

approaches and the derivation of the proper impedance boundary conditions without any approximation of the “thin cover 

layer”, used in the majority of an effective impedance approaches previously, applied either for artificial or natural layered 

gyrotropic structures, see, f.e. (Tretyakov, 2003; Senior and Volakis, 1995; Kurushin and Nefedov, 1983; Alperovich and 

Fedorov, 2007). There is one known exception, namely invariant imbedding impedance method (Shalashov and 

Gospodchikov, 2010; Kim and Kim, 2016)..The comparison of our method with the invariant imbedding impedance method 10

will be presented in the end of this subsection. Eqs. (3), jointly with the boundary conditions (12), have been solved by finite 

differences. Outline here the main ideas and the steps of the derivations of the corresponding formulas. 

The derivatives in Eqs. (3) are approximated as 

                                  

( ) ( )

1 1
1/2 1/ 2

1 1 1 1

( ) ( ) ( ) ( )1( ) ( ) ( ) ,

1( ) ( )( ) ( )( ) etc.
2

x j x j x j x jx
j j

x j x j j x j

H H H HH
C z C z C z

z z h h h

F z H F z H F z H
z h

+ -
+ -

+ + - -

- -æ ö¶¶ æ ö
» -ç ÷ç ÷¶ ¶è ø è ø

¶
» -

¶

                            (15)15

In eq. (15), 1/ 2 ( 0.5)jz h j+ = × + . In eqs. (10) the approximation is 1/ [( ) ( ) ] /x x N x NH z H H h-¶ ¶ » - . Here h is the 

discretization step along OZ axis, N is the total number of the nodes. At each step j the difference approximations of Eqs. (3) 

take the form: 

                                                                 ( ) (0) ( )
1 1ˆ ˆ ˆ 0j j j j j jH H Ha a a- +
- +× + × + × =
  

                                                         (16)

where , 1, 2,...,1, ,x
j j z

y

H
H j N N z h j L h N

H
æ ö

= = - - = × = ×ç ÷
è ø


. The expressions for the matrix coefficients in Eq. (16) 20

are complicated; they are given in Appendix. The set of the matrix eqs. (16) has been solved by the method called

factorization, or elimination, or matrix sweep (method) [Samarskii, 2001]. Namely, it is possible to write down:

                                                                      1
ˆ , ,...,1j j jH b H j N-= × =

 
                                                                      (17a)

                                    1 11 1 1 12 1 2 1 21 1 1 22 1 2 1 2;  ; ;  xj j j yj j j xj yjH b H b H H b H b H H H H H+ + + + + += + = + º º                                   (17b)      

This method is in fact a variant of the Gauss elimination method for the matrix 3-diagonal set of the Eqs. (16). The value of 25

ˆ
Nb has been obtained from the boundary conditions (12). Namely, they can be rewritten as: 
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                                                                            ( ) (0)
1ˆ ˆ 0N N N NH Ha a-
-× + × =

 
                                                                       (18)  

Therefore (0) 1 ( )ˆ ˆ ˆ( )N N Nb a a- -= - × .   Then the matrices ˆ
jb have been computed sequentially down till the desired value of  z = 

=Lz =h·Nz, where the impedance boundary conditions are assumed to be applied. At each step the formulas for ˆ
jb follow 

from (16), (17) and take the form

                                                                    (0) ( ) ( )
1 1

ˆˆ ˆ ˆ( )j j j j j jb H Ha a a+ -
+ -+ × × = - ×
 

                                                                 (19)5

Therefore accounting for (17), we obtain (0) ( ) 1 ( )
1

ˆ ˆˆ ˆ ˆ( )j j j j jb ba a a+ - -
+= - + × × . The derivatives in eqs. (4) have been 

approximated as:

                    1 11 1 121
( 1) ( ) ( )( ) ( )

( )
zz zz z

z

x N y NzN Nx N x Nx
N

b H b HH HH
z h h

+ ++
- × + ×-¶

» =
¶

; analogously for ( )
z

y
N

H
z

¶

¶
               (20)           

Note that a result of this discretization, only the values at the grid level zN are included into the numerical approximation of 

the derivatives , /x yH z¶ ¶ at zz L= . We determine tensor impedance Z


in particular at z=Lz ~ 85 km such as the tensor 10

value containing in the following relations, all of which are related to the corresponding altitude (in other words, to the grid 

with number zN , corresponding to this altitude):

                                  ˆ ,  (0,0,1)n E Z H n´ = × =
  

; or 21 22 11 12;  x x y y x yE Z H Z H E Z H Z H= + = - -                                        (21)

The equivalent tensor impedance is obtained, in fact, using two-step procedure. (1) We obtain the matrix ˆ
jb using the set of 

equations (3a, b) with the boundary conditions (12) and the procedure (17)-(19) described above. (2) Put the expressions 15

(21) with tensor impedance into the left parts and the derivatives , /x yH z¶ ¶ in the form (20) into the right parts of eqs. (4). 

Equating in the left and right parts of the two obtained equations coefficients at Hx, Hy respectively, we obtain the analytical 

expressions for the components of the tensor impedance at zz L= :

21 22
11 21 112 2

0
22 222 2

0 0

( 1) ,
1 1x x

iZ b b
k h k k

k k

b b

b b

æ ö
ç ÷
ç ÷= - × - × -
ç ÷
- -ç ÷

è ø

2321 22
12 22 122 2 2

0
22 22 222 2 2

0 0 0

( 1) ,
1 1 1

y
x

x x x

HiZ b b k h
k h zk k k

k k k

bb b

b b b

æ ö
ç ÷¶ç ÷= - × - - × - ×
ç ÷¶
- - -ç ÷

è ø

2
12 21 12

21 11 21 112 2 2
0 0

22 222 2
0 0

( ) ( 1) ,
1 1

x

x x

ki
Z b b

k h k k k
k k

b b b
b

b b

æ ö
ç ÷

×ç ÷= + × - × -
ç ÷

- -ç ÷
è ø

20
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2 2
12 2312 21 12

22 11 22 13 122 2 2 2 2
0 0 0

22 22 222 2 2
0 0 0

( ) ( 1) ( )
1 1 1

x x
x

x x x

k ki
Z b k h b

k h k k k k k
k k k

b bb b b
b b

b b b

æ ö
ç ÷××ç ÷= + × - - × + - ×
ç ÷

- - -ç ÷
è ø

                                                 (22)

The proposed method of the transfer of the boundary conditions from the ionosphere F-layer Lmax = 250 – 400 km into the 

lower part of the E-layer Lz =80 – 90 km is stable and easily realizable, when compared with some alternative approaches 

based on the invariant imbedding methods (Shalashov and Gospodchikov, 2010; Kim and Kim, 2016). The stability of our 

method is due to the stability of the Gauss elimination method when the coefficients at the central diagonal are dominating; 5

the last is valid for the ionosphere with electromagnetic losses where the absolute values of the permittivity tensor are big. 

The application of the proposed method of the matrix sweep in the media without losses may require the utilization of the 

Gauss method with the choice of the maximum element, to ensure the stability. But, as our simulations (not presented here) 

demonstrated, for the electromagnetic problems in the frequency domain the simple Gauss elimination and one with the 

choice of the maximal element gives the same results. The accumulation of errors may occur in evolutional problems in the 10

time domain, when the Gauss method should be applied sequentially many times. The use of the independent functions Hx, 

Hy in Eqs. (3) seems natural, as well as the transfer (17a), because the impedance conditions are the expressions of the 

electric Ex, Ey through these magnetic components Hx, Hy at the upper boundary of the VLF waveguide 80 – 90 km. The 

naturally chosen direction of the recalculation of the upper boundary conditions from z=Lmax to z=Lz, i.e from upper layer 

with large impedance value to lower altitude layer with relatively small impedance value, provides, at the same time, the 15

stability of the simulation procedure. The obtained components of the tensor impedance are small, |Zab| £  0.1. This 

determines the choice of the upper boundary z=Lz of the effective WGEI. Due to small enough impedance, EM waves 

incident from below on this boundary reflect effectively back. Therefore, the region 0 zz L£ £ indeed can be presented as an 

effective WGEI. Then such a waveguide includes not only lower up to LISO ~ (65-75) km with rather small losses, but also 

thin dissipative and anisotropic/gyrotropic layer between 75 and 85-90 km. 20

Finally, the main differences and at the same time advantages of the proposed tensor impedance method from the 

known method of the impedance recalculating, in particular invariant imbedding methods (Shalashov and Gospodchikov, 

2010; Kim and Kim, 2016) are the following. (i) In distinction to invariant imbedding method, our method is a direct method 

of the recalculation of tensor impedance, and the corresponding tensor impedance is determined analytically, see eqs. (22). 

(ii) Our method, for the media without non-locality, does not need a solution of integral equation(s), as in invariant 25

imbedding method. (iii) The proposed tensor impedance method does not need the revealing of forward and reflected waves. 

Moreover, even the conditions of the radiation (12) at the upper boundary z=Lmax are determined through the total field 

components Hx,y, what makes the proposed procedure technically much less cumbersome and practically much more 

convenient. (iv) At the same time, the procedure is very effective and computationally stable, as it is explained above in this 

subsection. As it is already mentioned, for the very low-loss systems, the required level of stability can be achieved with the 30

modification based on the choice of the maximal element for matrix inversion. 
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3.4 Propagation of the Electromagnetic Waves in the Gyrotropic Waveguide and the TIMEB Method

Use, as the independent functions, the transverse components Ey, Hy. The goal is to derive the equations for the slowly 

varying amplitudes A(x,y,z), B(x,y,z) of the VLF beams included corresponding field components:

                                        0 0
1 1( , , ) . ., ( , , ) . .
2 2

i t ik x i t ik x
y yE A x y z e c c H B x y z e c cw w- -= × + = × +                                          (23) 

Note that in this case it should be kx = k0, because the beam propagates in the WGEI, the main part of which is occupied by 5

the atmosphere and lower ionosphere (D region), rather closed to free space by its electromagnetic parameters. The presence

of a thin anisotropic and dissipative layer belonging to the E region of the ionosphere causes, altogether with the impedance 

boundary condition the proper z dependence of B(x,y,z). Using (21), (22), it is possible to write down the boundary 

conditions at the height z = Lz for the slowly varying amplitudes A(x,y,z), B(x,y,z) of the transverse components Ey, Hy. 

Namely, from the Maxwell equations in the method of beams it is possible to express the components Ex and Hx through Ey, 10

Hy: 

                                                         33
12 13

0 0

,y y
x x y y

E HiH E E i H
k z k z

b
g b

¶ ¶
» - » + +

¶ ¶

                                                       (24)

where 1 1 1
12 13 32 12 33 13 13 33 33 11 33 13 31( ),  ,  ;  .g e e e e b e b e e e e e- - -= D - = D = D D = -  The using of Eqs. (21) and (24) leads to the 

following form of the boundary conditions for A, B: 

                                  11 12 12 21 13 22 33
0 0 0

0, ( ) 0i A i A i BA Z Z B A Z Z B
k z k z k z

g b b
¶ ¶ ¶

- × + × » × + × + - × + × »
¶ ¶ ¶

                            (25)15

Let us derive the evolution equations for the slowly varying amplitudes A(x,y,z), B(x,y,z) of the VLF beams. Below 

the monochromatic beams are considered, so the frequency w is fixed and the amplitudes do not depend on time t. Search the 

solutions for the EM field as , ~ exp( ).x yE H i t ik x ik yw - -
 

The Maxwell equations are written down as 

                  
0 0 0

0 0 0

, ,

, ,

y x
y z x x z y x y y x z

y x
y z x x z y x y y x z

H H
ik H ik D ik H ik D ik H ik H ik D

z z
E E

ik E ik H ik E ik H ik E ik E ik H
z z

¶ ¶
- - = + = - + =

¶ ¶
¶ ¶

- - = - + = - - + = -
¶ ¶

                               (26)

Here 11 12 13x x y zD E E Ee e e= + + . From Eqs. (21) it is possible to get the expressions for Ex, Ez through Ey, Hy:20

                  

2 2

13 32 12 33 33 13 132 2 2 2
0 00 0 0 0

2 2 2

31 12 32 11 31 11 112 2 2 2 2
0 00 0 0 0 0

1 [ ( ) ( )] ( )

1 [ ( ) ( )] ( ) ( )

x y y y y y yx
x y y

x y y y y y y yx
z y y

k k k k H ik Eki
E E H

k z k zk k k k

k k k H k ik k Eki
E E H

k z k zk k k k k

e e e e e e e

e e e e e e e

ì ü¶ ¶ï ï
= × - + × - + - + × +í ý
D ¶ ¶ï ïî þ

¶ ¶
= × + - × - - - × - - × -
D ¶ ¶

ì üï ï
í ý
ï ïî þ

             (27)

In eq. (27), 
2 2

11 33 31 132 2
0 0

( ) ( ) .y yk k
k k

e e e eD º - × - - × The equations for Ey, Hy obtained from the Maxwell equations are: 
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2

2 2 2 2
0 0 0 02 0;  0xz

x y y y x x y y y x z y
EE

k k E ik ik E ik E k D ik k k E k H
z zz

æ ö ¶¶¶ æ ö
- - + - - + = - + + =ç ÷ ç ÷¶ ¶¶ è øè ø

      (28)

After substitution of expressions (27) for for Ex, Ez into Eqs. (28) the coupled equations for Ey, Hy only can be got. Namely, 

the expansion should be used: kx = k0+ dkx, |dkx| << k0, also |ky| << k0. Then the correspondence should be applied (Weiland 

and Wilhelmsson 1977):

                                                                     ,  x yi k i k
x y

d
¶ ¶

- × ® - × ®
¶ ¶

                                                                     (29)5

The expansions should be till the quadratic terms with respect to ky and the linear terms with respect to dkx. As a result, the 

parabolic equations (Levy 2000) for the slowly varying amplitudes A and B have been derived. In the atmosphere and the 

lower ionosphere, where the effective permittivity reduces to a scalar e(w,z), they are independent: 

                                                        

2 2
0

2 2
0

2
0

2
0

( 1) 0
2 2

1 ( ) ( 1) 0
2 2

ikA i A A
A

x k y z

ikB i B B
B

x k z z y

e

b e
b

æ ö¶ ¶ ¶
+ + + × - =ç ÷

¶ ¶ ¶è ø

æ ö¶ ¶ ¶ ¶
+ + + × - =ç ÷

¶ ¶ ¶ ¶è ø

                                                   (30a)  10

       

Here 1.b e -º Accounting for the presence of gyrotropic layer near the and the presence of tensor impedamce boundary 

conditions at the upper boundary z = Lz of the VLF waveguide, the equations for the slowly varying amplitudes in general 

case are coupled and possess a complicated form: 

                                                          15
2 2

0 021
22 232 2

0

2
0 31 0

33 12 13 322
0 11 11 11 11 11 11

( 1) 0
2 2 2 2

1 1 1( ) ( ) ( ) ( 1) 0
2 22 2 2 2

ik ikA i A A B
A B

x k zy z

ik ikB i B B i B
A B A B

x k z z z z zy

g
e g

b
b g b g

b b b b b b

æ ö¶ ¶ ¶ ¶
+ + + × - × + + × =ç ÷

¶ ¶¶ ¶è ø

æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + + + + + + × - × =ç ÷

¶ ¶ ¶ ¶ ¶ ¶¶è ø



 
     

            (30b)

In Eq. (30b),  

13 32 12 33 23 31 21 33 21 13 23 11 31 12 32 11 1311
12 21 23 32 11 13

31 33
31 33 11 33 13 31

, , , , , ,

, ; .

e e e e e e e e e e e e e e e e ee
g g g g b b

e e
b b e e e e

× - × × - × × - × × - ×
º º º º º º

D D D D D D

º º D º × - ×
D D

 

 

Eqs. (30b) reduce to Eqs. (30a) when the effective permittivity is scalar. At the Earth’s surface z = 0 the impedance 

conditions reduce, due to a finite conductivity of the Earth, to the form:20

                                                          
1/ 2

, ,
4y E x x E y E

E

iE Z H E Z H Z w
ps

æ ö
= = - º ç ÷

è ø
                                                       (31a)
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Here sE ~ 108 s-1 is the Earth’s conductivity. The boundary conditions (31a) at the Earth’s surface, where 22 21 EZ Z Z= º , 

12 21 0Z Z= = , 1
33 ( 0)zb e -= = , 12 0g = , 13 0b = , can be rewritten as

                                                   
0 0 0

0, 0
( 0)

y y
y E E y

E Hi i iE Z Z H
k z z k z ke

¶ ¶
+ = + =

¶ = ¶
                                              (31b)

The Eqs. (30) added by the boundary conditions (25) at the upper boundary of the VLF waveguide z=Lz and by the boundary 5

conditions at the Earth’s surface (31b) are used below to simulate the VLF wave propagation. The surface impedance of the 

Earth has been calculated from the Earth’s conductivity. The initial conditions to the problem (30), (25), (31b) are 

                  ( ) ( ) ( )( )( ) ( )( )( )2 2
0 0 1 00, ,   0,  0, ,  0.5 / / ,    2

n n
yA x y z B x y z B exp y L y exp z z z n= = = = - - - - =                  (32)

The size of the computing region along OY axis is Ly ~ 1000 km. Because the gyrotropic layer is relatively thin and is placed 10

at the upper part of the VLF waveguide, whereas the beams are excited near the Earth’s surface, the wave diffraction in this 

gyrotropic layer along OY axis is quite small, i.e. the terms with ¶2A/dy2, ¶2B/dy2 are small there. Contrary to this, the wave 

diffraction is very important in the atmosphere in the lower part of the VLF waveguide near the Earth’s surface. To solve the

problem of the beam propagation, the method of splitting with respect to physical factors has been applied (Samarskii 2001). 

Namely, the problem has been approximated by the finite differences: 15

                                                                 ˆ ˆ, 0y z

A CC L C L C
B x
æ ö ¶

º + + =ç ÷ ¶è ø

  
                                                             (33)            

In the terms ˆ
yL C


the derivatives with respect to y are included, whereas all another terms are included into ˆ
zL C


. Then the 

following fractional steps have been applied, the 1st one is along y, the 2nd one is along z: 

                                                  
1/2 1 1/2

1/2 1ˆ ˆ0, 0
p p p p

p p
y z

x x

C C C CL C L C
h h

+ + +
+ +- -

+ = + =

    
                                             (34)20

The region of simulation is 0 < x < Lx = 1000 – 2000 km, 0 < y < Ly = 2000 – 3000 km, 0 < z < Lz = 80 – 90 km.  The 

numerical scheme (34) is absolutely stable. Here hx is the step along OX axis, xp = p hx , p = 0,1,2,… . This step has been 

chosen from the condition of the independence of the simulation results on diminishing hx.
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Figure 2. The rotation of the local Cartesian coordinate frame at each step along the Earth’s surface hx. on a small angle dj ൎൎ Δx/RE, radians, while Δx=hx. The following strong inequalities are valid hx << Lz << RE. The Earth’s surface is at Z = 0. 

Under the simulations at each step along OX axis the correction due to the Earth’s curvature has been inserted in adiabatic 5

manner, namely the rotation of the local coordinate frame XOZ. Because the step along x is small hx ~ 1 km << Li, this 

correction of the C


results in the multiplier exp(-ik0·dx), where dx = z·(hx/RE), RE >> Li is the Earth’s radius, see Fig. 2 and 

the capture to this figure. At the distances x £ 1000 km the results of simulations do not depend on the insertion of this 

correction, whereas at higher distances some quantitative differences occur. Namely, the VLF beam propagates more closely 

to the upper boundary of the waveguide. 10

3.5 The Modes of the VLF Waveguide. Reflection from the Upper Effective Boundary of VLF Waveguide and 
Leakage Modes: Idea of Synthetic Full Wave Electromagnetic-Complex Geometrical Optics (FWEM-CGO) 
Approach  for Magnetized Plasma

Our model, in general, needs the consideration of the excitations of the waveguide modes by means of current sources such 

as dipole-like VLF radio source and lightning discahrges. Then, we will present the results of the reflection of the waves 15

incident on the upper boundary (z=Lz) of the effective WGEI demonsrtrating that this structure has indeed good enough 

waveguiding properties. Then, in the model described in the present paper, the VLF beam is postulated already on the input 

of the system. To understand, how such a beam is excited by the, say, dipole antenna near the lower boundary z=0 of the 

WGEI, the formation of the beam structure on the  basis of the mode presentation should be searched. Then the conditions of 

the radiation (absence of ingoing waves) (12) can be used as the boundary conditiuons for the VLF beam radiated to the 20

upper ionosphere/magnetosphere. Due to relatively large scale of the inhomogeneity in this region, the complex geometrical 

optics (Rapoport et al. 2014) would be quite suitable for the modeling a beam propagation, even accounting for the wave 

dispersion in magnetized plasma. The proper effective boundary condition, similarly to  (Rapoport et al. 2014) would allow 

to make relatively accurate matching between the regions, described by means of full wave electromagnetic approach (with 

Maxwell equations) and complex geometrical optics (FWEM-CGO approach). All of these material is not included into the 25

presenbt paper, but will be delivered in the two future papers, one of which will be dedicated, shortly spealking, to the mode 

prresentation of the VLF propagation in the WGEI, and the other one - to the leakege of VLF beams from the WGEI into 

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-46

Manuscript under review for journal Ann. Geophys.

Discussion started: 7 May 2019

c© Author(s) 2019. CC BY 4.0 License.



17

upper ionosphere and magnetosphere and the propagetion in theese media. But we should mention in the present paper only 

one result which concerns the mode excitation in the WGEI, because this result is principally important for the justification

of TIMEB method. Namely, it is shown that the ≥5 lowest modes of the WGEI  are strongly localized in the atmosphere-

lower ionosphere. Their longitudinal wavenumbers are close to the corresponding wavenumbers of EM waves in the 

atmosphere. This fact convinces that the TIMEB method can be applied to the propagation of VLF electromagnetic waves in 5

the WGEI. 

4.  The Results of Modeling

The dependencies of the components of the permittivity e1, e3, eh in the coordinate frame associated with the geomagnetic 

field 0H


are given in Fig. 3_2. The typical results of simulations are presented in Fig. 4_3. The parameters of the ionosphere 

correspond to Fig. 3_2. The inclination of the geomagnetic field is 45o. The VLF frequency is w = 105 s-1, f = w/2p » 15.9 10

kHz. The Earth’s surface is assumed as ideally conductive here: Z = 0. The values of EM field are given in absolute units, 

i.e. the magnetic field is measured in Oersteds (Oe), or Gauss (Gs), 1 Gs = 10-4 T, whereas the electric field is also in Gs, 1 

Gs = 300 V/cm there. 

Note that in the absolute (Gaussian) units the magnitudes of the magnetic field component |Hy| are the same as ones of the 

electric field component |Ez| in the atmosphere region where the permittivity is e » 1. Below in the figure captions the 15

correspondence between the absolute units and practical SI ones is given.  

It is seen that the absolute values of the components of the permittivity increase sharply just above z = 75 km. The behavior 

of the components of the permittivity is step-like, as seen from Fig. 3_2, a. Due to this, the results of simulations are tolerant 

to the choice of the position of the upper wall of the waveguide the Earth’s surface – ionosphere. The computed components 

of the tensor impedance at z = 85 km are:  Z11 = 0.087 + i0.097, Z21 = 0.085 + i0.063, Z12 = -0.083- i0.094, Z22 = 0.093 + 20

i0.98. So, a condition |Zab,| £ 0.15 is satisfied there, which is necessary for applicability of the boundary conditions (3). 

The maximum value of the Hy component is 0.1 Oe = 10-5 T in Fig. 3, a) for the initial VLF beam at x = 0. This corresponds 

to the value of Ez component of 0.1 Gs = 30 V/cm. At the distance x = 1000 km the magnitudes of the magnetic field Hy are 

of about 3×10-5 Oe = 3 nT, whereas ones of the electric field Ey are of about 3×10-6 Gs » 1 mV/cm.
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Figure 3. Part a) is the vertical dependencies of the components of modules of components of the permittivity in the frame 
associated with the geomagnetic field |e1|, |e3|, |eh|, the curves 1, 2, 3 correspondingly. Parts b) – g) are the real and imaginary parts 
of the components e1, e3, eh, general and detailed views. 

5
Figure 4. Part a) is the initial distribution of |Hy| at x = 0. Parts b), c) are |Ey| and |Hy| at x = 600 km. Parts d), e) are |Ey| and |Hy| at 
x = 1000 km. For the electric field it is 3·10-6 Gs » 1 mV/cm, for the magnetic field it is 3·10-5 Gs » 3 nT. At the altitudes z < 75 km 
it is |Ez| » |Hy|, so 3·10-5 Gs » 10 mV/cm there.

It is seen from Fig. 4, b) - e), that the wave beams are localized within the waveguide the Earth’s surface – ionosphere 0 < z 10

< 75 km mainly in the regions with the isotropic permittivity. The mutual transformations of the beams of different 
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polarizations occur near the upper boundary, due to the anisotropy of the ionosphere within the thin layer 75 km < z < 85 

km, Fig. 4, b), d). These transformations depend on the values of the components of the permittivity of the ionosphere at the 

altitudes z > 80 km and the components of the tensor impedance, so the measurements of the phase and amplitude 

modulations of different EM components near the Earth’s surface can yield the information on the properties of the lower 

and even middle ionosphere. 5

The qualitative effect is changing the polarization, i.e. an occurrence of Ey component of the electric field at small altitudes z 

~ 5 – 10 km near the Earth’s surface, due to these mutual transformations of EM beams, Fig. 4, parts b), de). Note that the 

case of the ideal conductivity of the Earth’s surface is considered here, Z = 0, so at z = 0 the component is Ey = 0. If this 

impedance is Z ¹ 0, then Ey component occurs also at the Earth’s surface.  

The magnitudes of Ey component depend essentially on the values of the electron concentration at the altitudes z = 75 - 100 10

km. In Fig. 5, parts a), b), there are different dependencies of the electron concentration n(z), three curves, solid (1), dash (2), 

and dot (3) ones. The corresponding dependencies of the absolute values of the components of the permittivity are in Fig. 4, 

parts c), d). 

Figure 5. Different profiles of the electron concentrations n used in simulations. The solid, dash, and dot curves correspond to 15
these different profiles. Part a) is the detailed view, b) is a general view. The corresponding profiles of the modules of the 
components of the permittivity |e3| and |eh| are given in parts c), d). 

The distributions of |Ey|, |Hy| on z, y at x = 1000 km are given in Fig. 6. Parts a), b) correspond to the solid (1) curve n(z) in 

Fig.  5; parts c), d) are for the dash (2) curve; parts e), f) are for the dot (3) curve in Fig. 5. The initial beams of Hy are the 20

same and are given in Fig. 4, a). The values of the tensor impedance for these 3 cases are presented in Table 1

Table 1. The values of the tensor impedance corresponding to the data shown in Fig. 5. Impedances presented in the lines 1,2 and 3 

in Table one correspond to the solid (1), dash (2) and dot (3) curves in Figs. 5 a)-d), respectively. 

Z11 Z21 Z12 Z22

0.088 + i0.098 0.085 + i0.063 -0.083- i0.094 0.093 + i0.098

0.114+i0.127 0.107+i0.079 -0.105-i0.127 0.125+i0.125

0.067+i0.0715 0.061+i0.051 -0.060-i0.070 0.069+i0.072

25
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Figure 6. Parts a), c), e) are dependencies of |Ey|, parts b), d), f) are dependencies of |Hy| at x = 1000 km. The initial beams are the 
same as in Fig. 4, a). Parts a), b) corresponds to the solid (1) curves in Fig. 5; parts c), d) are for the dash (2) curves; parts e), f) 
correspond to the dot (3) curves there. For the electric field it is 3·10-6 Gs » 1 mV/cm, for the magnetic field it is 3·10-5 Gs » 3 nT. 
At the altitudes z < 75 km it is |Ez| » |Hy|, so 3·10-5 Gs » 10 mV/cm there.5

Figure 7. The dependencies of EM components on the altitude z in the center of the waveguide y = 1500 km for the different 
profiles of the electron concentration. The solid (1), dash (2), and dot (3) curves correspond to the different profiles of the electron 
concentration in Fig. 5, a), b), the same kinds of curves. For the electric field it is 3·10-6 Gs » 1 mV/cm, for the magnetic field it is 
3·10-5 Gs » 3 nT. At the altitudes z < 75 km it is |Ez| » |Hy|, so   3·10-5 Gs » 10 mV/cm there.10

The distributions of |Ey|, |Hy| on z at x = 1000 km in the center of the waveguide y = 1500 km are given in Fig. 7. This and 

other (not presented here) simulations show that change in complex tensors of both volume dielectric permittivity and 

impedances at the lower and upper boundaries of effective WGEI influence remarkably on the VLF losses in the WGEI. The 

modulation of the electron concentration at the altitudes above z= 120 km affects weakly the excitation of Ey

component within the waveguide. 15
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5.  Discussion 

The observations presented in (Roznoi et al. 2015) demonstrated a possibility for seismogenic increasing losses of VLF 

waves in the WGEI (Fig. 8; see the details in (Roznoi et al. 2015)). We will discuss the correspondence to these experimental 

results qualitatively.

5
  

Figure 8. Averaged through night residual VLF/LF signals in the ground observation for the wave paths: JJY-Moshiri, JJI-
Kamchatka, JJY-Kamchatka, NWC-Kamchatka, and NPM-Kamchatka. Horizontal dotted lines show the 2σ level. The color filled 
zones highlight values exceeding the -2σ level.  Two panels below are Dst variations and earthquakes magnitude values (from 
Rozhnoi et al., 2015, but not including the DEMETER data). See other details in (Rozhnoi et al. 2015).10

Figure 9. Modification of the ionosphere by electric field of seismogenic origin. (a) – Geometry of the electrostatic problem on the 
penetration into the ionosphere of the electric field excited by near-ground seismogenic current source; I and II - isotropic and 
anisotropic regions of the system “atmosphere-ionosphere”. (b) Electric field in the mesosphere; in the presence of the current 
sources in the mesosphere  (curve 1), seismogenic current source in the lower atmosphere (curve 2) and both in the mesosphere15
and in the lower  atmosphere (curve 3); current sources in the mesosphere and lower atmosphere are of the same sign and coincide 
by the sign with fair weather current (directed vertically downward). ( c ) Relative perturbations (normalized on the 
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corresponding steady-state values in the absence of perturbing electric field, denoted by the index “0”) of electron temperature (
0/e eT T ), electron concentration ( 0/e eN N ), and electron collision frequency ( 0/e en n ).

                                                                       a                                                       b     
Figure 10. Altitude distributions of the normalized tangential (y) electric (a) and magnetic (b) VLF beam field components in the 5
central plane of the transverse beam distribution (y=0) at the distance z=1000 km from the input of the system. Curves 1 in Fig. a, 
b correspond qualitatively to the presence of only mesospheric electric current source (with relatively smaller value of eN and 
larger en ) and curves 2 – to   the presence of both mesospheric and near-ground seismogenic electric current sources (with 
relatively larger value of eN and smaller en ); curves 1 and 2 correspond to the identical input beams at z=0 (not shown here). 
Curves 1 and 2 in Fig. 10 a, b correspond qualitatively to the curves 1 and 3 in Fig. 9 b, respectively  (see also Fig. 9 c and the 10
caption to that figure).

To do this, account for the modification of the ionosphere due to electric field excited by the near-ground seismogenic 

current source.  In the model (Rapoport et al. 2006), the presence of the mesospheric current source,  which reflects the 

observations (Martynenko 2004; Meek 2001; Bragin 1974) is taken into account, and curve 1 in Fig. 9 b the corresponding 

vertical field distribution in the mesosphere. It is supposed that the mesospheric current has only Z component and is 15

positive, what means that it is directed vertically downward, as well as fair-weather current (curve 1, Fig. 8).  Then suppose 

that near-ground seismogenic current is directed in the same way, as mesospheric current. If the mesospheric current is equal 

to zero and only corresponding seismogenic near-ground current is present. Corresponding mesospheric electric field, under 

the condition of given difference of the potentials between the Earth and the ionosphere (curve 2, Fig. 9 b), is directed 

oppositely to those excited by the corresponding mesospheric current (curve 1, Fig.  9 b). As a result, in the presence of both 20

mesospheric and seismogenic near-ground current, the total mesospheric electric field (curve 3, Fig. 8 b) is less by the 

absolute value, than those in the presence of only mesospheric current (curve 1, Fig. 9 b). As it is shown in (Rapoport et al. 

2006), the decrement of losses |k’’| for VLF waves in the WGEI is proportional to | '' |~| '' |~ /e ek Ne n . Accounting for that in 

the external electric field in the mesosphere eN and en decreases and increases, respectively, due to the appearance of 

seismogenic near-ground electric current, in addition to the mesospheric current  (curve 3, Fig. 9 b), losses increases25

comparatively to the case, when the seismogenic current is absent and electric field is larger by absolute value (curve 1, Fig.

9 b).  An increasing in VLF beam losses, shown in Fig  10 corresponds to increasing losses with increasing absolute value of 

imaginary part of the dielectric permittivity when near-ground seismogenic current source (curves 2 in Fig. 9 a, b) appear, 

additionally to the pre-existing mesospheric current source (curves 1 in Fig. 9 a, b, see also caption to the Fig. 9). This 

corresponds qualitatively to the results presented in (Roznoi et al. 2015), see also Figs. 8. Note that the above mentioned 30
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estimations concern only volume losses in the WGEI. Losses connected with the modification of effective impedance are not 

included  in the course of these elementary estimations, and the more detailed consideration  of both the modification of the 

ionosphere by means of electric-photochemistry mechanism and the variation of losses due to all mechanisms including 

volume and effective impedance effects will be a subject of the subsequent papers.       

The closest approach to a direct investigation of the profile of VLF electromagnetic field in the Earth-Ionosphere 5

waveguide was a series of sounding rocket campaigns at mid- and high-latitudes [Wallops Is., VA, and Siple Station, 

Antarctica - Kintner et al.,1983; Brittain et al., 1983; Siefring and Kelly, 1991; Arnoldy and Kintner, 1989] where single-axis 

E-field and three-axis B-field antennas, supplemented in some cases with in situ plasma density measurements were used to 

detect the far-field fixed-frequency VLF signals radiated by US Navy and Stanford ground transmitters.

The most comprehensive study of the WGEI will be provided by the ongoing NASA VIPER (VLF Trans-Ionospheric 10

Propagation Experiment Rocket) project (PI J. W. Bonnell, UC Berkeley, NASA Grant 80NSSC18K0782). The VIPER 

sounding rocket campaign is consist of a summer nighttime launch during quiet magnetosphere conditions from Wallops 

Flight Facility, VA, collecting data through the D, E, and F regions of the ionosphere with a payload carrying the following 

instrumentation: 2D E- and 3D B-field waveforms, DC-1 kHz; 3D ELF to VLF waveforms, 100 Hz to 50 kHz; 1D wideband 

E-field measurement of plasma and upper hybrid lines, 100 kHz to 4 MHz; and Langmuir probe plasma density and ion 15

gauge neutral density measurements at a sampling rate of at least tens of Hz. The VIPER project will fly a fully 3D EM field 

measurement, DC through VLF, and relevant plasma and neutral particle measurements at mid-latitudes through the 

radiation fields of (1) an existing VLF transmitter (the VLF transmitter Cutler with call sign NAA, the very low 

frequency (VLF) shore radio station at Cutler, Maine, USA, which transmits, at a frequency of 24 kHz an input power of up 

to 1.8 megawatts, see Fig. 11) and (2) naturally-occurring lightning transients through and above the leaky upper boundary 20

of the WGEI supported by a vigorous theory and modelling effort in order to explore the vertical and horizontal profile of 

the observed 3D electric and magnetic radiated fields of the VLF transmitter, and the profile related to the observed plasma 

and neutral densities. The VLF waves reflection, absorption, and transmission processes as a function of altitude will be 

searched making use of the data on the vertical VLF E- and B-field profile

25

Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-46

Manuscript under review for journal Ann. Geophys.

Discussion started: 7 May 2019

c© Author(s) 2019. CC BY 4.0 License.



24

Figure 11.  Proposed VIPER Trajectory

The aim of this experiment is the investigation of the VLF beams launched by the near-ground source/VLF transmitter with 
the known parameters and propagating both in the WGEI and leaking from WGEI into the upper ionosphere. Characteristics 5
of these beams will be compared with the theory proposed in the present paper and the theory on leakage of the VLF beams 
from WGEI, which we will present in the next papers.   

Conclusions

(1) We have devoloped the new and highly effective robust method of tensor impedance for the VLF electromagnetic 10

beam propagation in the inhomogeneous waveguiding media - “tensor impedance method for modelling 

propagation of electromagnetic beams (TIMEB)” in a multi-layered/inhomogeneous waveguide. 

(2) The main differences/advantages of the proposed tensor impedance method in comparison with the known method 

of the impedance recalculating, in particular invariant imbedding methods (Shalashov and Gospodchikov, 2010; 

Kim and Kim, 2016) are the following: (i) our method is a direct method of the recalculation of tensor impedance, 15

and the corresponding tensor impedance is determined analytically, see Eqs. (22). (ii) Our method, for the media

without non-locality, does not needs a solution of integral equation(s), as the invariant imbedding method does (iii) 

The proposed tensor impedance method does not need the revealing of forward and reflected waves. Moreover, 

even the conditions of the radiation (12) at the upper boundary z=Lmax is determined through the total field 

components Hx,y, what makes the proposed procedure technically less cumbersome and practically more convenient. 20

(3) The application of this method jointly with the previous results of the modification of the ionosphere by 

seismogenic electric field gives the results, which qualitatively are in an agreement with the experimental data on 

the seismogenic increasing losses of VLF waves/beams propagating in the WGEI. 

(4) The waveguide includes the region for the altitudes 0 < z < 80 - 90 km. The boundary conditions are the radiation 

conditions at z = 300 km, they can be recalculated to the lower altitudes as the tensor relations between the 25

tangential components of the EM field. In another words, the tensor impedance conditions have been used at z = 80 

– 90 km. 
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(5) The observable qualitative effect  is mutual transformations of different polarizations of the electromagnetic field 

occur during the propagation. This transformation of the polarizations depends on the electron concentration, i.e. the 

conductivity, of D- and E-layers of the ionosphere at the altitudes 75 – 120 km.

(6) Change in complex tensors of both volume dielectric permittivity and impedances at the lower and upper 

boundaries of effective WGEI influence remarkably on the VLF losses in the WGEI.5

(7) The proposed model and results on propagation of VLF electromagnetic beams in the WGEI will be useful to 

explore the characteristics of these waves as an effective instrument for diagnostics the influences on the ionosphere 

“from above” (Sun-Solar Wind-Magnetosphere-Ionosphere), “from below””(the most powerful meteorological, 

seismogenic and other sources in the lower atmosphere and lithosphere/Earth, such as hurricanes, earthquakes, 

tsunamis etc.), from inside the ionosphere (strong thunderstorms and lightning discharges) and even from the far 10

space (such as gamma-flashes, cosmic rays etc.).
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Appendix: the matrix coefficients included into eq. (16)

Here the expressions of the matrix coefficients are presented that are used in the matrix factorization to compute the tensor

impedance, see eq. (16).
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