
Semi-Clairvoyance in Mixed-Criticality Scheduling
Kunal Agrawal∗, Sanjoy Baruah∗, Alan Burns†

∗Washington University in St. Louis
†University of York

Abstract—In the Vestal model of mixed-criticality systems, jobs
are characterized by multiple different estimates of their actual,
but unknown, worst-case execution time (WCET) parameters.
Prior work on mixed-criticality scheduling theory assumes that
the execution duration of a job is only revealed by actually
executing the job through to completion. We consider a different
semi-clairvoyant model here, in which it is assumed that
upon arrival a job reveals which of its WCET parameters it
will respect. We identify circumstances under which this is a
reasonable model, and design and evaluate scheduling algorithms
appropriate for this model. We show that such semi-clairvoyance
yields a significant quantifiable benefit over non-clairvoyance, in
terms of both the complexity of schedulability analysis and the
speedup needed to ensure schedulability.

I. INTRODUCTION

A model for mixed-criticality workloads was proposed by
Vestal [1] as a means of achieving timing predictability upon
modern processors. The worst-case execution time (WCET)
parameters of pieces of code — the maximum duration of
time that a piece of code may take to complete execution —
play a crucial role in ensuring timing predictability. However,
the inherent unpredictability, variation, and uncertainty in the
execution duration of pieces of code upon modern processors
means that the true WCET of a piece of code is both very
difficult to determine exactly, and of relatively limited use
since it can be several orders of magnitude greater than the
execution duration under the vast majority of circumstances
— it typically takes a pathological and extremely unlikely
combination of run-time conditions (a “perfect storm”) for
the true worst-case timing behavior to be realized in practice.
In the Vestal model, individual pieces of real-time code are
modeled as schedulable entities called jobs that have deadlines
associated with them, and that are characterized by multiple
WCET parameters.1 These different WCET parameters repre-
sent different estimates, made at differing levels of assurance,
of the “true” (unknown) WCET of the code. Each job is also
assigned a criticality — in the two-criticality level model that
we will be considering in this paper, these are called HI and
LO, denoting greater and lesser criticality respectively, and the
two WCET parameters, one at a level of assurance consistent
with HI criticality and a second at a level of assurance
consistent with LO criticality, are determined for each job. The
correctness criterion in the Vestal mixed-criticality model is
that if all the jobs complete execution within a duration not
exceeding their LO-criticality WCET estimates then all the
jobs should complete execution by their respective deadlines,

1In this paper as in much of the current research on mixed-criticality
scheduling, we restrict our attention to two WCET estimates per job.

while if some jobs do not complete execution within their
LO-criticality WCET estimates (but all jobs would complete
execution if allowed to execute for as much as their HI-
criticality WCET), then at least the HI-criticality jobs should
complete execution by their respective deadlines.

Despite some very reasonable questions regarding its scope
and applicability [2], [3] that has given rise to an interesting
and intellectually engaging debate (see, e.g., [4], [5]), the
Vestal model has attracted a lot of attention in the real-time
scheduling theory community, and has engendered a large
body of research that explores various aspects of real-time
scheduling under the assumptions of this model (see, [6] for
a reasonably current and very comprehensive survey). In most
of this research it is assumed that the only way to find out
whether a job will complete execution within its LO-criticality
WCET is to actually execute it until it has either completed, or
has received an amount of execution equal to its LO-criticality
WCET without completing. In this paper, we consider a
somewhat different model: we assume that it becomes known
when a job arrives (i.e., it is released for execution) whether it
will complete execution within a duration ≤ its LO-criticality
WCET or not. There are several kinds of mixed-criticality
systems for which such an assumption makes sense from
a pragmatic perspective. First, the system developer may
provide alternative implementations of a job: upon arrival,
the job knows which implementation is the correct one to
execute under the current circumstances. (E.g., there may
be an implementation for execution under regular conditions,
and another for execution under unexpected – HI-criticality
– conditions: presumably the HI-criticality implementation
incorporates crisis-mitigation functionalities for dealing with
the critical conditions.). Additionally, the execution time of a
piece of code typically depends upon the state of the system
at the time the code is executing; since the system state is
better known during run-time when a job arrives (than during
job-design time), one can presumably obtain a more accurate
estimation of the actual duration of execution for the just-
arrived job.2

Semi-clairvoyance. In the context of mixed-criticality work-
loads, we will refer to the property of knowing, upon a job’s
arrival, whether it will complete execution within a duration
not exceeding its LO-criticality WCET estimate as semi-
clairvoyance. This terminology is derived from the previously-

2This is particularly true if parametric WCET analysis techniques [7], [8]
had previously been used to obtain parametrized expressions for the WCET,
the values of these parameters being determined at run-time.

introduced concept of clairvoyant schedulers [9], which are
assumed to know beforehand the precise actual duration for
which each job will execute. While clairvoyant schedulers are
an idealized abstraction that are unlikely to exist for any but the
most deterministic actual systems, semi-clairvoyant schedulers
are, as we have argued above, realizable for a variety of
kinds of workloads. In addition to its potential practical
applicability, we believe that the study of semi-clairvoyance
is interesting from a theoretical perspective since it helps
provide a better understanding as to the benefits of fore-sight:
it provides an additional data-point for exploring the tradeoff
between knowing the exact actual execution time beforehand
(as clairvoyant algorithms do) and knowing nothing other than
the two WCET estimates (as most previously-proposed mixed-
criticality scheduling algorithms assume).
Contributions. The main contribution of this paper is to mo-
tivate and initiate the exploration of semi-clairvoyant schedul-
ing for mixed-criticality systems. To this end we propose
a scheduling-theoretic framework for the consideration of
semi-clairvoyance, and derive several results concerning semi-
clairvoyant scheduling (the results we have obtained are enu-
merated in Section II-D, after the appropriate background
definitions and concepts are introduced); these results provide
an illustration of the capabilities and limitations of semi-
clairvoyant scheduling.
Organization. The remainder of this document is organized
in the following manner. In Section II we introduce a formal
framework for discussing semi-clairvoyance in the context
of mixed-criticality scheduling, and provide some additional
background to help us better appreciate this context. Sec-
tions III–VI provide a thorough exploration of the semi-
clairvoyant scheduling of collections of independent mixed-
criticality jobs (specific contents of these individual sections
are listed in Section II-D). Section VII briefly explores the
application of the idea of semi-clairvoyance to systems of
recurrent tasks: we show here that the concepts and ideas are
directly applicable, and present some preliminary results indi-
cating that there are considerable benefits to semi-clairvoyance
in scheduling such systems (as was the case for collections of
independent jobs). We conclude in Section VIII with some
context, and a few directions for future research.

II. MODEL

In this section we (i) present the model for mixed-criticality
workloads that is widely adopted in the mixed-criticality
scheduling literature and that we use in this work (Sec II-A);
(ii) propose a classification, based upon the degree of clair-
voyance that is available to them, of mixed-criticality schedul-
ing algorithms (Sec II-B); (iii) briefly review some prior
results from mixed-criticality scheduling theory (Sec II-C);
and (iv) enumerate the contributions contained in this paper
(Sec II-D).

A. Our workload model

We will, for the most part, restrict our attention here to dual-
criticality systems: systems with two distinct criticality levels

depicted LO (for low) and HI (for high) respectively. A problem
instance is specified as a collection of n dual-criticality jobs
J = {J1, J2, ..., Jn} that are to execute upon a single share
preemptive processor. Each job Ji is characterized by a tuple
of parameters: Ji = (χi, ai, [c

L
i , c

H
i], di), where

• χi ∈ {LO, HI} denotes the criticality of the job;
• ai ∈ R+ denotes its release time;
• cLi and cHi denote LO-criticality and HI-criticality esti-

mates of the job’s worst-case execution time (WCET)
parameter respectively such that cLi ≤ ciH ; and

• di ∈ R+ denotes its deadline.
System behavior. This dual-criticality workload model has
the following semantics. Each job Ji of an instance J =
{J1, J2, ..., Jn} is released at time ai, has a deadline at di,
and needs to execute preemptively upon the single shared
processor for some duration γi. The values (γ1, γ2, . . . , γn)
are said to define the behavior of the instance:
• if γi ≤ cLi for all i, then the behavior is said to be a LO-

criticality one;
• else if γi ≤ cHi for all i, then the behavior is said to be a

HI-criticality one;
• else (i.e., γi > cHi for some i) the behavior is said to be

erroneous.
Observe that the same instance may exhibit different behaviors
during different invocations (runs); indeed, it is this timing
non-determinism exhibited by systems executing upon mod-
ern processors that motivated the introduction of the Vestal
workload model [1].

Correctness criteria. An algorithm for scheduling mixed-
criticality instances is said to schedule the instance J correctly
if
1) in every LO-criticality behavior of J , each Ji ∈ J

completes execution by its deadline; and
2) in every HI-criticality behavior of J , all HI-criticality jobs

in J (i.e., each Ji ∈ J with χi = HI) complete execution
by their respective deadlines. (Note that LO-criticality jobs
are not required to complete execution by their deadlines
–or indeed, at all– upon HI-criticality behavior.)

If mixed-criticality scheduling algorithm A schedules instance
J correctly, we say that J is A-schedulable.

B. Mixed-criticality schedulability: A classification

As stated above, the behavior of an instance is defined
by the durations γi for which each job Ji in the instance
needs to execute in order to complete; furthermore, different
invocations of the instance may result in different behaviors.
Mixed-criticality scheduling algorithms (and hence, mixed-
criticality schedulability) may be classified according to when
the exact values of the γi’s become revealed to the algorithms.

MC-schedulability. Most mixed-criticality scheduling algo-
rithms that have been studied thus far impose the restriction
that the values of the γi’s are revealed on-line during run-
time: the only way for the scheduler learns the value of γi is

by actually executing job Ji to completion. Algorithms satis-
fying this restriction are called MC-scheduling (for “mixed-
criticality scheduling”) algorithms. Most of the algorithms
such as OCBP [10]–[12] and MCEDF [13], [14] that have
been developed for scheduling mixed-criticality instances, as
well as algorithms such as EDF-VD [15], [16], AMC [17], and
MC-Fluid [18], [19] that have been proposed for scheduling
systems of mixed-criticality recurrent tasks, fall into this
category.

An instance is said to be MC-schedulable if it can be
scheduled correctly by some MC-scheduling algorithm.

Clairvoyant schedulability. When scheduling an instance J ,
a clairvoyant scheduler is assumed to know the precise values
of the γi parameters prior to the arrival of any of the jobs
in J . An instance that can be correctly scheduled by some
clairvoyant scheduler is said to be clairvoyant schedulable.
Since the clairvoyant scheduler knows beforehand whether the
behavior is a LO-criticality or a HI-criticality (or erroneous)
one, observe that clairvoyant schedulability can be easily
checked in polynomial time:
1) Determine whether all the jobs can be scheduled using

EDF3 if each executes for its LO-criticality WCET; and
2) Determine whether all the HI-criticality jobs can be sched-

uled using EDF if each executes for its HI-criticality
WCET.

Clairvoyant schedulability is an idealized abstraction that is not
realizable for any but the most time-deterministic systems; it
is studied primarily as a baseline lower bound against which
to compare the performance of schedulers that can actually
be implemented in practice (such as the ones that define MC-
schedulability).

Semi-clairvoyant schedulability. As mentioned in the intro-
duction, we believe that there is an interesting middle ground
between clairvoyant and MC-scheduling algorithms, that we
are seeking to represent in the capability required of semi-
clairvoyant scheduling algorithms: the ability to know, upon
the arrival of job Ji, whether γi ≤ cLi will hold or not. Note
that semi-clairvoyance does not require that the actual value
of γi become known when job Ji arrives: all that is required is
that the truth or falsehood of the statement “γi ≤ cLi ” become
known. We believe that this is a far less onerous requirement
than that the exact value of γi become known (indeed within
the wider context of mixed-criticality scheduling in which
different pieces of information are only required to hold at
appropriate levels of assurance rather as absolute truths, such a
boolean condition can typically be established to a far greater
level of assurance than the assurance with which the actual
value of γi can be determined).

While both MC-schedulability and clairvoyant schedulabil-
ity have previously been considered in the mixed-criticality
scheduling theory literature, to our knowledge the concept of

3Here as elsewhere in this paper, we are using the well-known result
that EDF –the Earliest Deadline First scheduling algorithm– is optimal for
executing collections of independent jobs to completion upon a preemptive
uniprocessor [20], [21].

semi-clairvoyant schedulability is new – the definition of this
concept, and its analysis in the sections that follow, constitute
the main contribution of this paper.

C. Some Prior Results

As mentioned above, the idealized abstraction of clairvoy-
ant schedulability for mixed-criticality instances was intro-
duced [9], [10] primarily to serve as a baseline against which to
compare the performance of realizable scheduling algorithms.
Such comparison has traditionally been quantified via the
speedup factor metric: an algorithm A has speedup factor f ,
f ≥ 1, if, given any instance that is clairvoyantly schedulable
upon a particular processor, it is able to schedule the same
instance upon a processor that is f times as fast. (Thus smaller
values of f are better: an algorithm with speedup 1 is said to
be speedup optimal.)

The following prior results concerning MC-schedulability
are of interest to us:
1) [9, Theorem 1]: Determining whether an instance is MC-

schedulable is NP-hard in the strong sense.
2) [9, Proposition 2]: No MC-schedulable algorithm may

have a speedup factor smaller than
(√

5 + 1
)
/2 ≈ 1.618.

(This bound is known to be tight: it was shown in [22] that
the algorithm OCBP [10]–[12] has a speedup factor equal
to
(√

5 + 1
)
/2.)

D. Summary of Results

We now provide a summary of the findings reported in this
paper regarding semi-clairvoyant schedulability:
1) In Section III, we show that no semi-clairvoyant scheduling

algorithm may have a speedup factor smaller than 3
2 .

2) In Section IV, we derive a semi-clairvoyant scheduling
algorithm that we call LPSC; in Section V, we prove that
this algorithm is optimal in the following sense: if an in-
stance can be scheduled correctly by any semi-clairvoyant
scheduling algorithm, then it is scheduled correctly by
LPSC.

3) In Section VI we show that the speedup bound of LPSC
is 3

2 , this result, in conjunction with the lower bound of 3
2

shown in Section III, establishes that 3
2 is in fact a tight

bound on the speedup of any semi-clairvoyant algorithm.
These results provide stark evidence of the benefits of semi-
clairvoyance over MC-scheduling: the speedup bound vis-à-
vis clairvoyant schedulability falls from ≈ 1.618 for MC-
schedulability to 1.5, and semi-clairvoyant schedulability can
be determined in polynomial time while determining MC-
schedulability is intractable — NP-hard in the strong sense.
In Section VII, we will extend these results to tasks and
show that semi-clairvoyant scheduling of recurrent implicit
deadline tasks can also be determined in polynomial time and
that the speedup factor for implicit deadline semi-clairvoyant
tasks is 1 (as opposed to 4/3 for MC-schedulability speedup).
Hence when practical considerations are favorable and permit
the use of semi-clairvoyance, semi-clairvoyant algorithms are
recommended for use in scheduling mixed-criticality systems.

III. A LOWER BOUND ON SPEEDUP FACTOR

We now show that no semi-clairvoyant scheduler may have
a speedup factor smaller than 3/2’s. Consider the instance J
comprising the following three jobs:

Job χi ai cLi cHi di
J1 LO 0 1 - 1
J2 HI 0 1 1 2
J3 HI 1 0 1 2

It is evident that this instance is clairvoyantly schedulable upon
a unit-speed processor:
1) If γ3 = 0, then the instance is exhibiting LO-criticality

behavior and the scheduler executes J1 over the interval
[0, 1) and J2 over the interval [1, 2).

2) If γ3 > 0, then the instance is exhibiting HI-criticality (or
erroneous) behavior. The scheduler drops J1 and executes
J2 over the interval [0, 1) and J3 over the interval [1, 2).

Let us now consider the execution of J by a semi-clairvoyant
scheduler upon a speed-f processor, for some f ≥ 1. We
argue by the following reasoning that J1 must receive one
unit of execution over the interval [0, 1): If it receives < 1
unit of execution and then upon J3’s arrival it is revealed that
γ3 = 0 (i.e., the instance is exhibiting LO-criticality behavior),
the scheduler would have violated the correctness criteria by
missing the deadline of the LO-criticality job J1 in a LO-
criticality behavior. Hence J2 receives at most (f − 1) units
of execution over [0, 1), and has at least (1− (f − 1)) units
of execution remaining. Suppose now that upon J3’s arrival
it is revealed that γ3 = 1 —i.e., the instance is exhibiting
HI-criticality behavior. The remaining (1 − (f − 1)) units of
J2’s execution requirement, and all one unit of J3’s execution
requirement, must be accommodated over the interval [1, 2);
since the processor is of speed f , we need that

(1− (f − 1)) + 1 ≤ f
⇔ 2− f + 1 ≤ f
⇔ 3 ≤ 2f

⇔ f ≥ (3/2)

We have thus shown that this particular 3-job instance J ,
which is clairvoyantly schedulable upon a unit-speed proces-
sor, cannot be scheduled correctly by any semi-clairvoyant
scheduler upon a processor of speed < 3

2 . Hence, 3
2 is a

lower bound on the speedup factor for any semi-clairvoyant
schduling algorithm.

IV. LPSC: A SEMI-CLAIRVOYANT SCHEDULER

We now present, and prove the correctness of, LPSC, a
semi-clairvoyant algorithm for scheduling dual-criticality in-
stances.4 In Section V we will prove that LPSC is an optimal
semi-clairvoyant algorithm: if any semi-clairvoyant scheduler
can schedule an instance, then LPSC can as well. In Sec-
tion VI, we will determine LPSC’s speedup factor.

4The name LPSC stands for Linear-Programming based Semi-Clairvoyant,
and alludes to the fact that the algorithm is based on formulating and solving
a linear-program (LP) representation of semi-clairvoyant schedulability.

Prior to detailing the algorithm, we start out providing
some intuition behind our approach towards determining semi-
clairvoyant schedulability.
Intuition. The intuition behind semi-clairvoyant algorithm de-
sign is as follows. Until (and unless) a behavior is recognized
as being of HI criticality, we have to ensure that each job
Ji receives enough execution in order to be able to receive
cLi units of execution by its deadline. However, each arrival
of a HI-criticality job may signal that the behavior is a HI-
criticality one — if this happens, the scheduler is not required
to meet any LO-criticality job deadlines, which implies that all
the prior execution that LO-criticality jobs had received before
this instant is “wasted”. (We saw in the example of Section III
that if the scheduler had known that J3 would be released with
execution time of 1, then it need not have scheduled J1 at all.)
Therefore, until and unless HI-criticality behavior is signalled,
we want to maximize the execution accorded to HI-criticality
jobs while also ensuring that we remain capable of meeting
all LO-criticality jobs’ deadlines (in case the behavior remains
a LO-criticality one).

In the remainder of this section we will detail the linear
programming (LP) based schedulability test that builds upon
this intuition. The test can be thought of as comprising the
following steps: given a dual-criticality instance J
1) We define a linear program that is feasible (has a non-

empty feasible region) if and only if all LO-criticality
behaviors of J are schedulable.

2) We specify an objective function for this linear program
that enforces the intuition discussed above: as long as HI-
criticality behavior has not been signaled, the execution
of HI-criticality jobs is maximized while ensuring that it
remains possible to complete all LO-criticality jobs by their
deadlines if the behavior remains a LO-criticality one.

3) We describe a run-time algorithm for LO-criticality be-
haviors, that implements the solution that is obtained by
solving the optimization problem formulated in the steps
above.

4) Finally, we validate correctness in all HI-criticality behav-
iors by multiple simulations of this run-time algorithm;
in each simulation, we consider the possibility that a
different HI-criticality job’s arrival has signaled that the
behavior is to be a HI-criticality one, and show that we
can then subsequently meet all HI-criticality deadlines (by
discarding all remaining LO-criticality jobs that have not
yet completed execution).

§1. Linear Program for Schedulability Test. We first sort the
release times and deadlines of all the jobs in J : we call these
key instants. Without loss of generality, let us assume that the
earliest arrival time of any job is 0; there are 2n−1 other key
instants for the n jobs in J . Let us label these instants from
t0 to t2n−1. We define (2n − 1) variables : li is the variable
that represents the duration that is reserved by the scheduler
for executing LO-criticality jobs over the interval [0, ti).

We now state the constraints that define feasible schedules.
For all ti and tj where j > i, define SHij to be the collection

of all HI-criticality jobs Jk ∈ J with arrival time ak ≥ ti and
deadline dk ≤ tj . Similarly, we define SLij to be the collection
of all LO-criticality jobs Jk with arrival time ak ≥ ti and
deadline dk ≤ tj .

For all values of 0 ≤ i ≤ 2n − 1 and for i < j ≤ 2n − 1,
define the following constraints:

lj − li ≥
∑

Jk∈SLij

cLk (1)

(tj − ti)− (lj − li) ≥
∑

Jk∈SH ij

cLk (2)

li ≤ li+1 (3)

The first constraint encodes schedulability of LO-criticality
jobs: it requires that within each interval [ti, tj), there is
enough time reserved for LO-criticality jobs to satisfy their
computational requirements. The second constraint encodes
schedulability of HI-criticality jobs in LO-criticality mode —
once we have reserved appropriate amount of time for LO-
criticality jobs, there is enough time left in the schedule to
satisfy the LO-criticality WCETs of all the HI-criticality jobs.
The third constraint simply says that li’s are well-defined and
we have no negative execution. There are O(n2) constraints.

It should be clear that any assignment of values to the
li variables satisfying these constraints yields a schedule for
all LO-criticality behaviors of the instance J . Conversely, if
this set of constraints is infeasible, then some LO-criticality
behaviors of J are not schedulable.

§2. An optimization criterion. Now we specify an objective
function to ensure that, in any prefix of the schedule, we
reserve as little time as possible for LO-criticality jobs —
by reserving less time for LO-criticality jobs, we allocate
more time to HI-criticality jobs (as discussed above, when
introducing the intuition behind the algorithm). Therefore, the
objective function is:

minimize
2n−1∑
i=1

li (4)

Note that this function minimizes for all prefixes simultane-
ously; this can be seen from the following reasoning. Since
li is the reservation for LO-criticality jobs over the interval
[0, ti), it includes the reservations over intervals [0, tj) for
all tj < ti. Therefore, the allocations to LO-criticality jobs
over earlier intervals (i.e., the li’s for smaller values of i) are
counted multiple times in the objective functions and hence
the LP places more emphasis on minimizing them.

Since all constraints and the optimization function are linear
and there are a polynomial number of constraints, this linear
program can be solved in time that is polynomial in the size of
J , and it has a solution if and only if the instance is feasible
in all LO-criticality behaviors. Let us suppose that it does
indeed have a solution, and let l̂i denote the value assigned
to the variable li in this solution. Below, we describe how
these values are used during run-time to schedule the instance

as long as instance behavior is not indicated as being of HI
criticality.

§3. Run-time scheduling in LO-criticality behaviors. An
obvious run-time implementation of the schedule suggested
by the solution to the linear program would have us reserve,
for each i, 1 ≤ i ≤ 2n−1, an interval of duration

(
l̂i − l̂i−1

)
at the end of the interval [ti−1, ti) for LO-criticality jobs,
and to execute HI-criticality jobs (ordered amongst themselves
according to EDF) in the reminder of the intervals. However,
such an implementation may not be work-conserving since
there may not be enough execution pending for HI-criticality
jobs to use up all of the interval that is allocated to them.
So we instead have the scheduler keep track of the amount
of actual LO-criticality execution that happens up to each key
instant: let program variable Li denote the amount of actual
LO-criticality execution that occurs over [0, ti). L0 ← 0. At
key instant ti−1 we know the value of Li−1, and reserve
an interval of duration max

(
l̂i − Li−1, 0

)
at the end of the

interval [ti−1, ti) for LO-criticality jobs; the rest of the interval
is available for the execution of HI-criticality jobs. Within
their own allocated intervals, the execution order of the LO-
criticality and HI-criticality jobs is determined according to
EDF. If the HI-criticality jobs do not use up the entirety of their
interval, additional LO-criticality execution may be scheduled
(again, according to EDF).

§4. Checking Schedulability for HI-criticality behaviors.
Now to verify whether all HI-criticality behaviors are also
scheduled correctly, we simply simulate the work-conserving
schedule described above multiple times. We repeat the follow-
ing procedure for each key instant ti defined by the arrival of
a HI-criticality job: Run the LO-criticality schedule described
above until time ti, assuming that γj = cLj for all jobs Jj ∈ J .
At this point, we know exactly which jobs are pending and
how much work has been done on each pending job. Assume
now that the HI-criticality job that arrives at ti indicates that
it will execute for its HI-criticality WCET; hence, it is now
known that this is a HI-criticality behavior, and all remaining
LO-criticality jobs are dropped. In addition, all HI-criticality
jobs that have not yet arrived are also assumed to execute
for a duration equal to their respective HI-criticality WCETs.
We then simply simulate EDF starting from time ti for all
the HI-criticality jobs (pending and the future arrivals). If all
jobs complete by their deadlines in all these simulations, then
we declare that the instance J is schedulable using LPSC.
Otherwise, we conclude that J is not schedulable using LPSC.

Since we must simulate for O(n) values of ti, we run O(n)
simulations. Each simulation takes O(n2) time if we run it
naively, for the total time of O(n3) to check schedulability
in HI-criticality mode. (We can of course speed things up –
e.g., the individual simulations could be implemented to have
O(n log n) run-time complexity by using priority queues [23],
but the naive O(n3) algorithm suffices to establish that LPSC
has polynomial running time since the linear program can be
solved in polynomial time.)

V. THE OPTIMALITY OF LPSC

We will now prove that if a set of jobs J is schedulable by
any semi-clairvoyant scheduler, then LPSC also successfully
schedules it.

The following observation should be relatively obvious from
the constraints of the linear program since the linear program
simply checks that for every interval, there is sufficient time
in the interval to satisfy the demand in this interval.

Observation 1. If the linear program described in Section IV
is infeasible, then no scheduler can schedule the set J of jobs
in low-criticality behavior.

Therefore, in particular, if the linear program is infeasible,
then no semi-clairvoyant or clairvoyant scheduler can schedule
J in low-criticality behavior. We must now argue that if
LPSC declares that a set of jobs J is infeasible (while
checking schedulability in HI-criticality mode via simulations
as described in Section IV), then no other semi-clairvoyant
schedule can guarantee that it can schedule J . In the future,
we will refer to LPSC when used in mathematical notation
as A — in other words, li(A) are the values of variables
calculated by the linear program described in Section IV; the
actual LO-criticality work done by a LPSC by time ti for J
is Li(A); and the actual high-criticality work done by LPSC
at time ti is Hi(A).

We will compare LPSC with a hypothetical scheduler B
which, when running with LO-criticality behavior, executes
Li(B) work from LO-criticality jobs and Hi(B) work from
HI-criticality jobs by time ti (between time 0 and ti) for all
i. Since all feasible schedulers must satisfy the constraints of
the linear program described above, we can state the following
observation about Li(B)s.

Observation 2. For any scheduler B that can schedule a set
of jobs J in low-criticality mode, the LP constraints described
in Inequalities 1, 2, and 3 must be satisfied if we substitute
li’s in the constraint with the corresponding Li(B)’s.

Without loss of generality, we will only consider work-
conserving schedulers for B, since for preemptive, single
processor scheduling, work-conserving schedulers dominate
non-work-conserving schedulers.

Recall that, given a set of jobs J , the linear program
generates a solution li(A) for all ti.

Lemma 1. Say we have a feasible schedule B. For all i, we
have li(A) ≤ Li(B).

Proof. From Observation 2, we know that Li(B)’s constitute
a feasible solution to the LP constraints described above.
Assume for contradiction that there is some feasible solution
B with Lk(B) < lk(A) for some values of k. Now we claim
that we can generate a new solution A′ which is feasible and
we have

∑2n−1
i=1 li(A

′) <
∑2n−1
i=1 li(A). If we show this, we

will reach a contradiction since, by definition, A is the solution
of the LP; therefore the optimization function must take the
minimum value for A.

We set li(A′) = min{li(A), Li(B)} for all i. Since there
is at least one k for which Lk(B) < lk(A), it is clear that∑2n−1
i=1 li(A

′) <
∑2n−1
i=1 li(A). We now argue that A′ is

feasible — that is, all constraints are satisfied for li(A′)’s.
We first consider the Inequality 1: we must show that this

constraint is satisfied for all values of i and j. We have two
cases:

Case 1: li(A′) = li(A) and lj(A
′) = lj(A). The con-

straint is clearly satisfied since li(A) and lj(A) satisfy the
corresponding constraint. The case where li(A

′) = Li(B)
and lj(A

′) = Lj(B) is similar since B also satisfies all the
constraints of the linear program and therefore Li(B) and
Lj(B) satisfy the corresponding constraint.

Case 2: li(A′) = li(A) ≤ Li(B) and lj(A
′) = Lj(B) ≤

lj(A). Lets look at the LHS of the corresponding constraint
for A′: lj(A′) − li(A′) = Lj(B) − li(A) ≥ Lj(B) − Li(B).
Therefore, this constraint is satisfied for A′ since the same
constraint is satisfied in B. The case where li(A′) = Li(B) ≤
li(A) and lj(A′) = lj(A) ≤ Lj(A) is symmetric.

We can show that the constraint in Inequality 2 is satisfied
using a similar case analysis. Again, as in Case 1 above, if both
li(A

′) and lj(A′) for some values of i and j take their value
from the same solution, either A or B, then the constraint is
clearly true since the constraint is true for A and B. For Case
2: say li(A′) = li(A) ≤ Li(B) and lj(A′) = Lj(B) ≤ lj(A).
Then we get lj(A′)−li(A′) = Lj(B)−li(A) ≤ lj(A)−li(A).
Therefore, the left hand side of the constraint is (tj − ti) −
(lj(A

′)− li(A′)) ≥ (tj− ti)− (lj(A)− li(A)). Therefore, this
constraint is satisfied in A′ since it is satisfied in A. The case
where li(A′) = Li(B) ≤ li(A) and lj(A′) = lj(A) ≤ Lj(B)
is symmetric.

The Constraints generated from Inequality 3 are clearly
satisfied since both A and B are well-formed.

Recall that the actual LO-criticality work and HI-criticality
work done by a scheduler S by time ti is Li(S) and Hi(S)
respectively. We now argue that LPSC does the minimum
possible low-criticality work for a work conserving scheduler
and therefore, maximum possible high-criticality work for any
prefix. This is not directly implied by the previous lemma,
since recall that, the actual low-criticality work done by the
work-conserving scheduler in LPSC, Li(A) can exceed the
values computed by the linear program li(A)

Lemma 2. Say A does Li(A) work by time ti and B does
Li(B) work by time ti. Li(A) ≤ Li(B).

Proof. If Li(A) = li(A), then the result is a direct conse-
quence of Lemma 1.

Now we prove it by induction on time — in particular, on
key instants t0, t1, The statement is trivially true for L0.
Assume, as the inductive hypothesis, that by time ti−1, we
have Li−1(A) ≤ Li−1(B). Now let us look at interval ti−1 to
ti. There are a few cases:

1) At the end of this interval Li(A) = li(A) — then we are
done.

2) A spent the entire interval doing work on HI-criticality
jobs. In this case, we have Li(A) = Li−1(A) ≤ Li−1(B)
by the inductive hypothesis. Since, Li−1(B) ≤ Li(B),
we are done.

3) Recall how the work-conserving scheduler described in
Section IV works. It will reserve li(A) − Li−1(A) time
at the end of the interval for LO-criticality jobs and try
to schedule HI-criticality jobs in the remaining interval.
Therefore, if Li(A) > li(A) and A did not spend the
entire interval on HI-criticality jobs, then at some point in
this interval, there were no pending HI-criticality jobs for
A. Therefore, at time ti, no HI-criticality jobs were pend-
ing (since all job arrival times are key instants, a new job
cannot arrive between consecutive key instants ti−1 and
ti). Therefore, since A has completed all available high-
criticality work by time ti, we have Hi(A) ≥ Hi(B).
Since A and B are both work-conserving, the total work
done by each is equal — that is, Hi(A) + Li(A) =
Hi(B) + Li(B). Therefore, we have Li(A) ≤ Li(B).

The following corollary is obvious from the Lemma 2 since
both A and B are work conserving and therefore, we have
Hi(A) + Li(A) = Hi(B) + Li(B).

Corollary 1. For all ti, we have Hi(A) ≥ Hi(B).

We can now prove the main theorem which shows that if
any semi-clairvoyant scheduler can schedule a set of jobs, then
LPSC can also schedule them.

Theorem 1. Say LPSC declares a set of jobs J unschedulable.
Then no semi-clairvoyant scheduler can guarantee that it will
correctly schedule this set of jobs.

Proof. Consider the low-criticality mode. Observation 1 says
that if the linear program is infeasible, then no scheduler can
schedule J in low-criticality behavior.

Now consider the high-criticality mode. Say that there is
a set of jobs such that LPSC finds the solution A to the
linear program, but when it simulates the algorithm to check
high-criticality schedulability, it declares failure. Therefore,
the following must be true. There is some transition time tj
such that all high-criticality jobs released before time tj had
γi = cLi and all high-criticality jobs released at or after time tj
had γi = cHi and when LPSC simulated its scheduler for this
scenario, some HI-criticality job missed its deadline. Consider
for contradiction that some other semi-clairvoyant scheduler
B can schedule this set of jobs.

Say this deadline miss occurred at time tk. From Corol-
lary 1, we know that Hj(A) ≥ Hj(B). In addition, say that
Hj(A, k) (and correspondingly Hj(B, k)) is the work done by
A on jobs with deadlines before time tk. Since A uses EDF
for HI-criticality jobs within their allocated intervals, we can
still see that Hi(A, k) ≥ Hj(B, k). Therefore, at the transition
time A has less pending work to do before time k than B. After
transition, A and B both get identical work to do in the worst
case, since they must both be able to schedule all subsequent

HI-criticality jobs assuming they all have γi = cHi . Therefore,
if A cannot complete all its pending work by the deadline tk,
then neither can B.

VI. A SPEEDUP BOUND FOR LPSC

We will now compare our scheduler to the clairvoyant
scheduler and prove a speedup bound. In particular, we will
show that LPSC has the optimal speedup bound of 3/2. In Sec-
tion III, we showed via an example that all semi-clairvoyant
schedulers require speedup of at least 3/2. Therefore, this
shows that no semi-clairvoyant scheduler is better than LPSC
with respect to speedup.

We first state a structural property about LPSC.

Lemma 3. A job Jl with deadline tl > tk can not interfere
with a HI-criticality job Jk with deadline tk.

Proof. First consider an HI-criticality job Jl. LPSC schedules
all HI-criticality jobs using EDF in their allocated intervals.
Therefore, a job with later deadline should not interfere with
a job with earlier deadline. Now say Jl is an LO-criticality job.
Assume for contradiction that, in A, job Jl interferes with Jk
— that is, Jl executes after Jk was released but before Jk
completes. Lets say that Jl executes at some time t to t + 1
and Jk executes at some time t′ to t′ + 1 where t′ > t. We
will do an exchange argument. In particular, we can generate
another feasible scheduler B where Jk executes from t to t+1
and Jl executes from t′ to t′+1. After this swap, new scheduler
has Lt+1(B) < Lt+1(A). However, this is a contradiction due
to Lemma 2.

Note that we are abusing notation here a little since Lt’s
are only defined for key instants, and t + 1 may not be a
key instant. However, recall that within each interval between
key instants — ti to ti+1, all HI-criticality jobs execute earlier
in the interval than all LO-criticality jobs. Therefore, t and t′

must be in different intervals to have the sort of interference
described above. Say t is in interval ti to ti+1 and t′ is in
interval tj to tj+1 for j > i. In this case, after we swap
execution for Jl and Jk, we have Li+1(B) < Li+1(A), which
is now really a contradiction from Lemma 2.

We now prove a useful structural lemma about LPSC.
Again, the notation is the same: li(A) is the solution computed
by the linear program for time ti while Li(A) is the actual
execution completed by the LPSC work-conserving scheduler
based on solution A at time ti. We give different speeds s ≥ 1
to LPSC; therefore, we can generalize Li(A, s) is the amount
of work done on LO-criticality jobs by time ti by the work-
conserving scheduler LPSC described in Section IV. We know
that Li(A, s) ≥ li(A) for all i since Li(A) ≥ li(A) and the
scheduler should only be able to do more work with higher
speed.

Lemma 4. Consider a key instant tj and consider any key
instant ti such that: (1) ti ≤ tj; and (2) between time ti and
tj , there are always some pending HI-criticality job(s). That
is, there is some HI-criticality work that has arrived but not
completed at every instant between time ti and tj . Then, at

least one (or both) of the following is true:(1) Li(A, s) =
Lj(A, s) or (2) Lj(A, s) = lj(A).

Proof. We prove this by induction on key instants starting
from ti — that is, we start with tj = ti and then keep
incrementing tj . If ti = tj , the statement is trivially true since
the first condition holds. For inductive hypothesis, say that the
statement is true for tj−1 — that is, Li(A) = Lj−1(A, s) or
Lj−1(A, s) = lj−1(A) or both.

Recall the scheduling algorithm. Within an interval tj−1
to tj , it reserves max{lj(A) − Lj−1(A, s), 0} time for LO-
criticality jobs and allocates the remaining time to HI-
criticality jobs. It only gives more time LO-criticality jobs
if there are no pending HI-criticality jobs. However, be-
tween time tj−1 and tj , there are definitely pending HI-
criticality jobs by definition of ti. Therefore, if max{lj(A)−
Lj−1(A, s), 0} > 0, then the scheduler will allocate exactly
lj(A) − Lj−1(A, s) time to LO-criticality jobs and therefore,
Lj(A, s) = lj(A). If max{lj(A) − Lj−1(A, s), 0} = 0,
then the scheduler will not allocate any time to LO-criticality
jobs, and we will have Lj(A) = Lj−1(A, s) = Li(A, s) by
inductive hypothesis.

We now start comparing A with some speed s with an
optimal scheduler O with speed 1. Note that even with
speed s, LPSC will compute li’s using the linear program
assuming speed 1. The speed comes into play only while
LPSC is checking HI-criticality schedulability via simulation.
Therefore, Lemma 1 still holds. However, since O has a
different speed than A, Lemma 2 and Corollary 1 no longer
directly apply since Li and Hi quantities are based on actual
execution and not only on the quantities computed by the
linear program.

Therefore, we first define a specific period when a version
of the lemma does apply. In order to do so, we first generalize
L and H quantities to intervals. In particular Lij(S, s) and
Hij(S, s) for any scheduler S is the amount of work of low-
criticality and high-criticality jobs respectively done by S
between time instants ti and tj by S with speed s. If the
s parameter is omitted, the speed is 1.

We now define an important quantity for our proof. For any
key instant tj while running LPSC scheduler A with speed s,
we define a pivotal instant pivot(tj) as ti ≤ tj if the following
are true:

1) The scheduler A remains busy from time ti to tj .
2) No high-criticality job is pending at time ti.
3) Between time ti and tj , we have Lij(A, s) ≤ Lij(O)

when A is in low-criticality mode and O is scheduling
the jobs in the low-criticality behaviour.

If these three properties are true for multiple instants, we can
pick any of them as the pivot — all we care about is that we
can find some instant ti ≤ tj when all these properties are
true. The following lemma shows that for any key instant tj ,
there exists a pivotal instant ti.

Lemma 5. For any key instant tj , we can find pivot(tj) ≤ tj .

Proof. If there are no pending HI-criticality jobs at time
tj , then the pivot(tj) = tj since all three properties hold.
Otherwise, consider time ti which is the latest time before tj
when A with speed s had an idle instant — since A is work-
conserving, this means that no job was pending at the time.
Therefore, properties 1 and 2 from the above definition are
automatically satisfied since, by definition, the scheduler has
no pending jobs (therefore, no pending HI-criticality jobs) at
time ti and this was the last such instant. We must consider
two cases:
Case 1: Lj(A, s) = lj(A): Recall that lj(A) is the solution
computed by the linear program. In this case, from Lemma 1
we know that Lj(A, s) = lj(A) ≤ Lj(O). In addition,
since there are no pending jobs for A at time ti, we know
that Li(A, s) ≥ Li(O). Therefore, Lij(A, s) = Lj(A, s) −
Li(A, s) ≤ Lj(O) − Li(O) = Lij(O). In this case, we have
found the pivotal instant pivot(tj) = ti.

Case 2:Lj(A, s) > lj(A) Now we find a different pivotal
instant — in particular, we consider the latest time tl before
tj but potentially after ti when no high-criticality jobs were
pending (but low-criticality jobs may be pending). Again,
properties 1 and 2 of pivotal instant are satisfied by definition.
In this case, from Lemma 4, since we have Lj(A, s) > lj(A),
we know that Lj(A, s) = Ll(A, s). Therefore, we have
Llj(A, s) = 0 ≤ Lij(O). We can then pick the pivotal instant
as pivot(tj) = tl.

Since we have demonstrated how to find the pivotal instant
for all time key instants tj , a pivotal instant always exists for
all key instants.

We can now prove the speedup bound. We will do so by
showing that if O can meet all deadlines under both LO-
criticality and HI-criticality behaviors, then A with speed 3/2
can meet all deadlines also no matter what the behavior of the
system.

Theorem 2. Our algorithm has a speedup factor of 3/2
against a clairvoyant optimal.

Proof. If the system never enters high-criticality mode A can
schedule anything that O can schedule even with speed 1 since
they both have to obey the LP constraints.

Assume for contradiction that, there is some job set J which
is clairvoyant schedulable but A with speed 3/2 transitions to
HI-criticality mode at the release time of some HI-criticality
job at time tj and subsequently misses a deadline at time
tk > tj . This deadline miss must be for a high-criticality
job since we have discarded all LO-criticality jobs at the time
of transition. In addition, A with speed s must remain busy
between time tj and tk — if it finishes all pending work at
some time tl where tj ≤ tl < tk, then between tl and tk, A
has to only complete the jobs that arrive after tl using EDF
and O has to also (at least) do this. Therefore, if O can meet
all deadlines, so can A even with speed 1.

We know, by Lemma 3, that no low- or high-criticality job
with a later deadline can interfere with a high-criticality job
with an earlier deadline. Therefore, we need only consider jobs

with deadlines before tk. Therefore, we will assume that J
only contains jobs with deadlines before tk and not consider
any jobs with deadline after tk either for O or for A.

We first define ti as the pivotal instant for tj . Therefore, by
definition of pivotal instant, we have

Lij(A, s) ≤ Lij(O) (5)

In addition, since O executes Lij(O) work between times
ti and tj , we have, by definition

Lij(O) ≤ tj − ti (6)

Now we generate some constraints on the work done by O
with speed 1. Note that O must be able to schedule J under
both low- and high-criticality behaviors of the system. Note
that the system transitions at time tj . Therefore, all the high-
criticality jobs that are released before tj execute for their low-
criticality execution time. Say HL

ij is the total low-criticality
work of all the high-criticality jobs that were released between
time ti and tj . (Note that they all have deadlines before tk
since we do not need to consider any jobs with deadlines
after.) In the low criticality mode, O has to schedule all this
work between time ti and tk. Therefore, we have

Lij(O) +HL
ij ≤ tk − ti (7)

Now we consider O’s schedule in high-criticality behavior
— recall that O does not schedule any low-criticality jobs at all
in this behavior. Now say HH

jk is the total high-criticality work
of all the jobs released between time tj and tk (with deadline at
most tk, since we ignore all jobs with later deadlines entirely).
In the high-criticality mode O must schedule these jobs within
time tj and tk even if they all execute for their high-criticality
executions. Therefore, we have

HH
jk ≤ tk − tj (8)

In addition, in high-criticality mode, O ignores all low criti-
cality jobs, but must still schedule all the high criticality jobs.
Therefore, we have

HH
jk +HL

ij ≤ tk − ti (9)

Therefore, if we add the Inequalities 6, 7, 8 and 9, we get

2(Lij(O) +HL
ij +HH

jk) ≤ 3(tk − ti) (10)

Substituting from Inequality 5

Lij(A, s) +HL
ij +HH

jk ≤ 3/2(tk − ti) (11)

Since no HI-criticality work is pending at time ti by
definition of pivotal instant, the LHS of the above equation
represents the maximum total amount of work A may have
to complete between time ti and tk. Therefore, if the system
remains busy for this entire interval, then it can complete all
this work in time and therefore, it can not miss a deadline.
By definition, since ti is the pivotal instant for tj , the system
remains busy between ti and tj . In addition, as we argued
before, it also remains busy between tj and tk. Hence, we have
reached a contradiction and A with speed 3/2 can not miss a
deadline if the set of jobs is clairvoyant schedulable.

1) Each τi initially executes at a rate θLi .
2) If a job of task τi has not completed upon receiving CL

i units
of execution (i.e., having executed for (CL

i /θ
L
i) time), then

• All LO-criticality tasks are immediately discarded, and
• Each HI-criticality task henceforth executes at a rate θHi .

Fig. 1. The run-time scheduling strategy used by Algorithm MC-Fluid [18],
[19].

VII. SEMI-CLAIRVOYANT SCHEDULING OF
DUAL-CRITICALITY TASKS

In this section we briefly consider the scheduling of systems
of independent dual-criticality implicit-deadline sporadic tasks
upon a shared preemptive processor. As with jobs, the MC-
schedulability (i.e., non-clairvoyant schedulability) of such
systems has been extensively studied; in particular, it is known
that (i) checking MC-schedulability of implicit-deadline peri-
odic and sporadic task systems is NP-Hard [22]; and (ii) 4/3
is a lower bound on the speedup factor of any MC-scheduling
algorithm [16].

A. Model and Definitions

We assume that a dual-criticality implicit-deadline sporadic
task τi is characterized by the parameters (Ti, C

L
i , C

H
i , χi),

where χi ∈ {LO, HI} denotes its criticality, CLi and CHi its
LO and HI criticality WCETs, and Ti its period. We require
that CLi ≤ CHi . We let τ denote a collection of n tasks that
are to be scheduled upon a preemptive unit-speed processor.

The correctness of algorithms for scheduling mixed-
criticality task systems is defined analogously to the correct-
ness of algorithms for scheduling jobs: a correct algorithm
must meet deadlines of all the jobs in all LO-criticality system
behaviors, and deadlines of all HI-criitcality jobs in all HI-
criticality system behaviors.

B. Fluid scheduling of dual-criticality systems

The MC-Fluid scheduling algorithm [18], [19] is a non-
clairvoyant scheduling (i.e., MC-scheduling) algorithm that
was designed for scheduling dual-criticality implicit-deadline
sporadic task systems upon identical multiprocessor platforms
under the fluid scheduling model, which allows for schedules
in which individual tasks may be assigned a fraction ≤ 1
of a processor (rather than an entire processor, or none) at
each instant in time. MC-Fluid operates in the following
manner. Prior to run-time, it computes LO-criticality and HI-
criticality execution rates θLi and θHi for each task τi ∈ τ such
that the run-time scheduling algorithm depicted in Figure 1
constitutes a correct scheduling strategy for τ . An algorithm
for computing suitable values for the θLi and θHi parameters
is presented in [18], and a somewhat simpler algorithm sub-
sequently derived in [19], and shown to have a speedup factor
of 4

3 .

1) Each job of LO-criticality task τi initially executes at a rate θLi .
2) When a job of a HI-criticality task τi arrives

• If it indicates that it needs ≤ CL
i units of execution, then it

executes at a rate θLi .
• Else (i.e., it indicates a need for > CL

i units of execution)
– it executes at a rate θHi
– all LO-criticality jobs are immediately discarded, and none

will be admitted in the future

Fig. 2. Semi-clairvoyant scheduler: run-time scheduling

C. An Optimal Semi-Clairvoyant Algorithm

We now show that the ideas behind MC-Fluid are easily
adapted to give us an optimal semi-clairvoyant algorithm
for dual criticality implicit-deadline tasks upon uniprocessors.
Observe first that for an implicit-deadline sporadic task system
τ to be schedulable by any scheduler (including a clairvoyant
one), it is necessary that the following conditions hold:∑

τi∈τ

CLi
Ti

≤ 1 (12)

∑
τi∈τ

∧
χi=HI

CHi
Ti

≤ 1 (13)

The schedulability test associated with our semi-clairvoyant
scheduling algorithm is straightforward: any task system τ
satisfying the conditions of Inequalities 12 and 13 will be
correctly scheduled by our algorithm. The associated run-time
strategy is depicted in Figure 2. Our algorithm assigns the θLi
and θHi execution rates as follows:

θLi ← CLi /Ti

θHi ← CHi /Ti

D. Proof of Correctness and Optimality

We now show that this is a correct semi-clairvoyant algorithm:
if the schedulability test admits a task system τ (i.e., as long
as τ satisfies the conditions in Inequalities 12 and 13), then it
will schedule τ correctly.

Lemma 6. All jobs meet their deadlines in all LO-criticality
behaviors.

Proof. This is relatively obvious from the manner in which the
θLi execution rates are assigned. Between their arrival time and
their deadline, all jobs of task τi receive θLi × Ti = CLi exe-
cution, which is sufficient to meet their execution requirement
in any LO-criticality behavior.

Lemma 7. All HI-criticality jobs meet their deadlines in all
HI-criticality behaviors.

Proof. All jobs of HI-criticality task τi that are released with
execution demand larger than CLi are assigned an execution
rate of θHi . Therefore, they receive an execution of θHi ×Ti =

CHi between their arrival time and their deadline, which is
sufficient to complete their high-criticality work.

Lemma 8. At all instants, the execution rates assigned to all
the jobs in the system sum to at most 1.

Proof. As long as no job has indicated, upon its arrival,
that the current behavior is a HI-criticality one, we have the
total execution rate of

∑
θLi ≤ 1. Once some job indicates

upon arrival that that the behavior is of HI criticality, the
system “transitions” and all jobs of low-criticality tasks are
discarded. At this point, some high-criticality jobs may still
have execution rates θLi (those with execution demand ≤ CLi).
However, we know that θLi ≤ θHi . Therefore, the sum of all
execution rates can not be larger than

∑
χi=H

θHi ≤ 1.

Combining Lemmas 6, 7 and 8 gives us the proof of
correctness. Optimality is obvious since the schedulability test
admits all task sets that an optimal clairvoyant scheduler can
schedule.

VIII. CONCLUSIONS

In this paper, we have introduced the notion of semi-
clairvoyant scheduling for mixed-criticality workloads, and
have contrasted it with both clairvoyant scheduling and on-
line or MC-scheduling. While clairvoyant scheduling is an
idealized abstraction that is not really implementable, we have
argued that some form of semi-clairvoyance may be realizable
in many circumstances, (including when a job is implemented
in multiple versions with a choice of which specific version to
execute upon invocation being made upon job arrival, or when
a job with a single implementation has its WCET characterized
parametrically and the parameters are only known at the time
of the job’s release). We have shown that in general semi-
clairvoyant scheduling offers superior performance to MC-
scheduling: the speedup factor vis-à-vis is smaller (1.5 versus
(
√
5 + 1)/2 ≈ 1.618) and schedulability analysis is easier

(in polynomial time versus NP-hard in the strong sense).
These benefits of semi-clairvoyant scheduling, in conjunction
of the possibility of the realization of such algorithms, argues
in favor of designing mixed-criticality systems in a manner
that enable semi-clairvoyant scheduling, by possibly using
parametric WCET-analysis tools and/ or providing multiple
implementations of jobs to deal with situations of different
criticalities.

We have also briefly explored the applicability of the idea of
semi-clairvoyance to systems of recurrent tasks. For implicit
deadline dual criticality tasks, we provide an optimal fluid
scheduler which can schedule any set of tasks that a clair-
voyant algorithm can schedule — again, we see a separation
from non-clairvoyant (i.e., MC) scheduling since optimal MC-
scheduling is known to be NP-Hard, and 4/3 has been shown
to be a lower bound on the speedup factor of any MC-
scheduling algorithm.

There are many open questions in semi-clairvoyant schedul-
ing that merit further study. One concerns generalization to
more than two criticality levels: it is not at all clear how the

linear-programming based techniques we used in LPSC can
be extended to deal with > 2 criticality levels. Additionally,
there are many interesting questions concerning the applica-
bility of semi-clairvoyance upon mixed-criticality workloads
comprising recurrent tasks — we have only considered fluid
scheduling. Fluid scheduling is not a particularly practical al-
gorithm and it appears to be non-trivial to adapt our algorithm
to obtain non-fluid schedules. Finally, this paper addresses uni-
processor platforms and addressing multiprocessor platforms
and parallel jobs/tasks remains part of future work.

ACKNOWLEDGEMENTS

This research was supported, in part, by the the Na-
tional Science Foundation (USA) under Grant Numbers CNS-
1618185, CNS-1911460, CCF-1337218 and CCF-1439062,
and in part by EPSRC grant MCCps (EP/P003664/1).

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of the
Real-Time Systems Symposium. Tucson, AZ: IEEE Computer Society
Press, December 2007, pp. 239–243.

[2] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “How realistic is the
mixed-criticality real-time system model?” in Proceedings of the 23rd
International Conference on Real Time and Networks Systems, ser.
RTNS ’15. New York, NY, USA: ACM, 2015, pp. 139–148. [Online].
Available: http://doi.acm.org/10.1145/2834848.2834869

[3] R. Ernst and M. D. Natale, “Mixed criticality systems - A history of
misconceptions?” IEEE Design & Test, vol. 33, no. 5, pp. 65–74, 2016.
[Online]. Available: http://dx.doi.org/10.1109/MDAT.2016.2594790

[4] S. Baruah, “Mixed-criticality scheduling theory: Scope, promise, and
limitations,” IEEE Design Test, vol. 35, no. 2, pp. 31–37, April 2018.

[5] A. Burns, R. Davis, S. Baruah, and I. Bate, “Robust mixed-criticality
systems,” IEEE Transactions on Computers, vol. 67, no. 10, pp. 1478–
1491, 10 2018.

[6] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv., vol. 50, no. 6, pp. 82:1–82:37, Nov.
2017. [Online]. Available: http://doi.acm.org/10.1145/3131347

[7] G. Bernat and A. Burns, “An approach to symbolic worst-case execution
time analysis,” IFAC Proceedings Volumes, vol. 33, no. 7, pp. 43 – 48,
2000, 25th IFAC Workshop on Real-Time Programming (WRTP’2000),
Palma, Spain, 17-19 May 2000.

[8] B. Lisper, “Fully automatic, parametric worst-case execution time anal-
ysis,” in Proceedings of the 3rd International Workshop on Worst-Case
Execution Time Analysis, WCET 2003 - a Satellite Event to ECRTS
2003, Polytechnic Institute of Porto, Portugal, July 1, 2003, 2003, pp.
99–102.

[9] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie, “Scheduling real-time mixed-
criticality jobs,” IEEE Transactions on Computers, vol. 61, no. 8, pp.
1140–1152, 2012.

[10] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proceedings of the IEEE Real-Time Tech-
nology and Applications Symposium (RTAS). IEEE, April 2010.

[11] ——, “Mixed-criticality scheduling: improved resource-augmentation
results,” in Proceedings of the ICSA International Conference on Com-
puters and their Applications (CATA). IEEE, April 2010.

[12] H. Li, “Scheduling mixed-criticality real-time systems,” Ph.D. disserta-
tion, Department of Computer Science, The University of North Carolina
at Chapel Hill, 2013.

[13] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga, “Mixed critical
earliest deadline first,” in Proceedings of the 2013 25th Euromicro
Conference on Real-Time Systems, ser. ECRTS ’13. Paris (France):
IEEE Computer Society Press, 2013.

[14] D. Socci, “Scheduling of certifiable mixed-criticality systems,” Ph.D.
dissertation, University Joseph Fourier (Grenoble), 2016.

[15] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in Proceed-
ings of the 2012 24th Euromicro Conference on Real-Time Systems, ser.
ECRTS ’12. Pisa (Italy): IEEE Computer Society, 2012.

[16] S. Baruah, V. Bonifaci, G. D’angelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie, “Preemptive uniprocessor scheduling
of mixed-criticality sporadic task systems,” Journal of the ACM,
vol. 62, no. 2, pp. 14:1–14:33, May 2015. [Online]. Available:
http://doi.acm.org/10.1145/2699435

[17] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in Proceedings of the IEEE Real-Time Systems
Symposium (RTSS). Vienna, Austria: IEEE Computer Society Press,
2011.

[18] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee,
“MC-Fluid: Fluid model-based mixed-criticality scheduling on multi-
processors,” in Real-Time Systems Symposium (RTSS), 2014 IEEE, Dec
2014, pp. 41–52.

[19] S. Baruah, A. Easwaran, and Z. Guo, “MC-Fluid: simplified and
optimally quantified,” in Real-Time Systems Symposium (RTSS), 2015
IEEE, Dec 2015.

[20] M. Dertouzos, “Control robotics : the procedural control of physical
processors,” in Proceedings of the IFIP Congress, 1974, pp. 807–813.

[21] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[22] K. Agrawal and S. Baruah, “Intractability issues in mixed-criticality
scheduling,” in 2018 30th Euromicro Conference on Real-Time Systems.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, July 2018.

[23] A. Mok, “Task management techniques for enforcing ED scheduling on
a periodic task set,” in Proceedings of the 5th IEEE Workshop on Real-
Time Software and Operating Systems, Washington D.C., May 1988, pp.
42–46.

