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ABSTRACT 

EML4 is a microtubule-associated protein that promotes microtubule stability. We investigated 

its regulation across the cell cycle and found that EML4 was distributed as punctate foci along 

the microtubule lattice in interphase but exhibited reduced association with spindle 

microtubules in mitosis. Microtubule sedimentation and cryo-electron microscopy with 3D 

reconstruction revealed that the basic N-terminal domain of EML4 mediated its binding to the 

acidic C-terminal tails of α- and β-tubulin on the microtubule surface. The mitotic kinases 

NEK6 and NEK7 phosphorylated the EML4 N-terminal domain at Ser144 and Ser146 in vitro, 

and depletion of these kinases in cells led to increased EML4 binding to microtubules in 

mitosis. An S144A-S146A double mutant not only bound inappropriately to mitotic 

microtubules but also increased their stability and interfered with chromosome congression. 

Meanwhile, constitutive activation of NEK6 or NEK7 reduced EML4 association with 

interphase microtubules. Together, these data support a model in which NEK6- and NEK7-

dependent phosphorylation promotes dissociation of EML4 from microtubules in mitosis in a 

manner that is required for efficient chromosome congression. 
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INTRODUCTION 

Dynamic instability is an essential property of microtubules that allows them to play diverse 

roles in intracellular trafficking, organelle positioning, cell migration and cell division (1). 

Furthermore, the capacity to switch between relatively stable and unstable states is key to the 

reorganization of the microtubule network that occurs between interphase and mitosis, and 

which enables assembly of the mitotic spindle upon which chromosomes are segregated. 

Microtubule dynamics are dependent on the intracellular concentration of tubulin, the rate of 

guanosine triphosphate (GTP) hydrolysis by the tubulin heterodimers, and the activity of 

numerous microtubule-associated proteins (MAPs) that bind the tips and lateral surface of 

microtubules (2-5). 

 

One family of MAPs that remains relatively poorly characterized is the EMAP-like, or EML, 

proteins. EMAP (for echinoderm MAP) was first identified in unfertilized sea urchin eggs as 

the major non-tubulin component of the mitotic spindle (6, 7). However, EMLs are highly 

conserved and have been described in a variety of organisms, including flies, worms and 

humans (8-10). Although their association with microtubules has been shown in different 

systems, their function in regulating microtubule dynamics remains unclear with studies to 

date suggesting that different family members might contribute to stabilization and/or 

destabilization of microtubules (11-13). Nevertheless, a delay in mitotic chromosome 

congression observed upon depletion of EML3 or EML4 in human cells confirms their 

importance for cell division and supports roles for members of the EML family in spindle 

organization (14, 15). 

 

Six human EMLs have been described (EML1 to EML6), with EML1 to EML4 sharing a similar 

organization of an N-terminal domain (NTD) of approximately 175-200 residues 

encompassing a coiled-coil motif and a C-terminal domain of approximately 650 residues 

consisting of WD (Trp-Asp) repeats (16) (Fig. 1A). Crystallographic studies have revealed that 

the coiled-coil motif forms a homotrimer, referred to as the trimerization domain (TD), while 

the WD-repeats assemble into two juxtaposed seven-bladed β-propellers, named the TAPE 

domain for tandem atypical β-propellers in EMLs (17, 18). A strongly conserved HELP 

(hydrophobic EMAP-like protein) motif located towards the start of the TAPE domain provides 

key residues at the interface between the two β-propellers necessary for proper folding. The 

TAPE domain in isolation does not localize to microtubules although it does bind tightly to 

soluble tubulin. Inter-digitation of the two β-propellers generates a curved sheet with a 

concave and convex surface; the concave surface shares considerable homology between 

the different EMLs and point mutations in this region disrupt tubulin binding (17). Microtubule 

binding is conferred by the NTD and requires both the TD and a basic region that lies 

between the TD and start of the TAPE domain. Interestingly, EML5 and EML6 lack the NTD 
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but have three contiguous copies of the TAPE domain. Hence, whereas EML1 to EML4 can 

assemble into trimeric complexes that together contain three TAPE domains, EML5 and 

EML6 contain three copies of the TAPE domain encoded within a single polypeptide. 

However, because they lack the NTD, it remains unclear whether EML5 and EML6 can bind 

microtubules.  

 

EML proteins have attracted considerable interest from the cancer community since discovery 

of translocations involving the genes encoding EML1 and EML4. An EML1-ABL1 fusion 

protein has been identified in T-cell acute lymphoblastic leukaemia although the frequency 

appears rare (19). In contrast, the EML4-ALK fusion protein is present in a substantial 

proportion (~5%) of lung adenocarcinoma patients, as well as breast and colorectal tumors 

(20-22). Both ABL1 (Abelson 1) and ALK (anaplastic lymphoma kinase) are tyrosine kinases 

and fusion of the C-terminal catalytic domain of the kinases to the N-terminal region of the 

EMLs leads to constitutive kinase activation as a consequence of TD-mediated 

oligomerization (23). Intriguingly, different breakpoints in the EML4 gene lead to distinct 

EML4-ALK variants that are associated with variable disease progression and therapeutic 

response in different patients (24). EML1 is also implicated in the pathology of an inherited 

developmental brain disorder where point mutations in the EML1 TAPE domain that 

potentially destabilize the protein cause neuronal heterotopia in both rodents and humans 

(25). 

 

The microtubule cytoskeleton undergoes dramatic reorganization upon entry into mitosis with 

a switch from long, relatively stable microtubules to short, unstable microtubules. This switch 

is largely driven through a change in the complement of MAPs associated with microtubules 

and significant changes in microtubule nucleation capacity (26). Observations that both sea 

urchin EMAP and human EML4 undergo phosphorylation during mitotic progression suggest 

that regulation of EML proteins may contribute to these changes in the microtubule network 

(27, 28). EML2, EML3 and EML4 were identified in a large-scale proteomic analysis of human 

NEK6 binding proteins (29). NEK6, and the closely related protein NEK7, are cell cycle-

dependent serine/threonine kinases that are activated in mitosis, downstream of another 

member of this kinase family, NEK9 (30-33). NEK9 is a dimeric protein that is phosphorylated 

in its non-catalytic C-terminal domain by the mitotic kinase, CDK1. This creates a binding site 

for another mitotic kinase, PLK1, which phosphorylates the catalytic domain of NEK9 

activating it in mitosis. Activated NEK9 then undergoes autophosphorylation at a different site 

in its non-catalytic domain that allows direct binding of NEK6 or NEK7. NEK9 can 

subsequently activate NEK6 and NEK7 through both direct phosphorylation, and through 

promoting their dimerization and autophosphorylation. The use of catalytically inactive 

mutants has shown that activation of NEK6, NEK7 and NEK9 in mitosis is essential for bipolar 

spindle assembly and efficient chromosome congression (14, 34-36). 
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Here, using antibodies against the endogenous protein, we set out to explore how EML4 

might be regulated through the cell cycle. We not only show that the microtubule affinity of 

EML4 is reduced in mitosis but also that this results from phosphorylation by the NEK6 and 

NEK7 kinases in the N-terminal microtubule-binding region. We present biochemical and 

structural data to show that association of EML4 with microtubules occurs through 

electrostatic interactions between a basic region within EML4 and the acidic tubulin C-

terminal tails. Finally, we demonstrate that EML4 is a microtubule stabilizing protein and its 

displacement from spindle microtubules is essential for chromosome congression in mitosis. 

 

RESULTS 

Association of EML4 with microtubules is reduced in mitosis 

To examine whether the subcellular localization of EML4 is regulated in a cell cycle-

dependent manner two different EML4 antibodies were used. The first detects the N-terminal 

region between residues 150 and 200, whereas the second detects the C-terminus between 

residues 951 and 981 (Fig. 1A). Antibody specificity was confirmed by detection of a band at 

the expected size for EML4 (120 kDa) by Western blot analysis and loss of this band upon 

depletion of EML4 with two distinct small interfering RNA (siRNA) oligonucleotides (Fig. 1B). 

Likewise, confocal microscopy with these two antibodies revealed cytoplasmic staining that 

co-localised with microtubules in human U2OS osteosarcoma cells and that was lost upon 

depletion of EML4 (Fig. 1C, D). Strikingly, comparison of EML4 localization in interphase and 

mitotic cells with these antibodies revealed that although the protein was strongly detected on 

the microtubule network in interphase, it was difficult to detect on spindle microtubules in 

mitosis (Fig. 1E, F). Quantification revealed an approximate two-fold reduction in co-

localization of EML4 with microtubules in metaphase compared to interphase (Fig. 1G, H). A 

similar loss of association with microtubules was observed for recombinant EML4 upon 

transition from interphase to mitosis in U2OS cells stably expressing YFP-tagged EML4 (Fig. 

1I, J), supporting the hypothesis that affinity of EML4 for microtubules is reduced in mitosis. 

 

The EML4 NTD is phosphorylated in mitosis 

To explore how this cell cycle-dependent change in microtubule affinity is regulated, we first 

examined whether the endogenous EML4 protein was modified upon mitotic entry. Although 

Western blot analysis revealed no change in abundance of EML4 between extracts prepared 

from interphase and mitotic HeLa and U2OS cells, there was a distinct reduction in 

electrophoretic mobility in mitosis compared to interphase in both cell types (Fig. 2A). We 

then tested which region of the EML4 protein was required for microtubule binding and, as 

previously shown for EML1 (18), confirmed that this property is conferred by the NTD 

(residues 1-207) and not the TAPE domain (residues 208-878) of EML4 (Fig. 2B, C). Notably, 
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the isolated EML4 NTD not only co-localised very efficiently with microtubules, but also led to 

formation of extensive microtubule bundles in the cytoplasm, a phenotype not seen upon 

expression of the full-length (FL) EML4 protein. As microtubule association is dependent on 

the EML4 NTD, we asked whether a similar cell cycle-dependent change in gel mobility was 

detected upon expression of the isolated NTD. Whereas no change in migration was 

observed for YFP alone, the YFP-tagged EML4-NTD migrated as two distinct bands in 

lysates prepared from mitotic cells as compared to a single band in interphase cell lysates 

(Fig. 2D). This suggests that a substantial proportion (~25-30%) of the EML4 NTD is modified 

upon entry into mitosis. To confirm that this gel-shift was the result of phosphorylation, we 

treated lysates taken from mitotic cells expressing the YFP-EML4-NTD protein with λ-protein 

phosphatase and observed a dose-dependent loss of the slower migrating form confirming 

that this is a phosphorylated version of the EML4-NTD protein (Fig. 2E). The fact that only a 

fraction of the recombinant protein is phosphorylated is consistent with ectopic expression of 

the EML4-NTD saturating the cellular kinase(s) responsible for this modification. 

 

Phosphorylation of EML4 by NEK6 and NEK7 regulates its microtubule affinity 

To determine which kinase(s) may be responsible for this phosphorylation, we took 

advantage of the previous observation of an interaction between EML4 and the mitotic NEK6 

and NEK7 kinases (29).  We incubated full-length human EML4 protein purified from insect 

cells with recombinant NEK6 or NEK7 kinase and ATP. The EML4 proteins were then excised 

from an SDS-polyacrylamide gel and subjected to mass spectrometry. This revealed four 

sites that were phosphorylated by NEK6 (Ser144, Thr490, Thr609, Ser981) and four sites 

phosphorylated by NEK7 (Ser134, Ser146, Thr609, Ser981) (Fig. 3A, and fig. S1). Analysis of 

published phosphoproteome data on EML4 through PhosphoSitePlus® revealed clustering of 

phosphorylation within the NTD and at the extreme C-terminus. Of the three sites within the 

NTD phosphorylated by NEK6 and NEK7, Ser134, Ser144 and Ser146, the latter two were by far 

the most commonly reported serine/threonine phosphorylation sites based on high throughput 

proteomic discovery mass spectrometry. Moreover, Ser144 and Ser146, but not Ser134, are 

conserved across vertebrate species and, in most cases, have a hydrophobic residue at 

position -3, typical of NEK6 and NEK7 phosphorylation sites (37, 38) (Fig. 3B). We therefore 

focused on the potential importance of these two sites and generated single S144A and 

S146A phosphonull mutants, as well as a combined S144/146A double mutant, in constructs 

expressing YFP-tagged EML4 NTD. Western blot analysis of lysates from transfected U2OS 

cells revealed no substantial change in migration of the upper band with the single mutants in 

cells arrested in mitosis. However, the S144/146A double mutant exhibited a much reduced 

gel-shift confirming that phosphorylation of these two sites is likely to be responsible for the 

reduced gel mobility in mitotic cells (Fig. 3C). An S144/146A double mutant was therefore 

also generated in a construct expressing YFP-tagged full-length EML4. Notably, whereas the 

wild-type EML4 protein did not obviously localise to spindle microtubules, the S144/146A 
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double mutant very clearly did (Fig. 3D, E). Conversely, a double phosphomimetic EML4-

S144/146D mutant associated less well with microtubules than the wild-type protein in 

interphase cells (fig. S2A, B).  Hence, we conclude that phosphorylation at S144 and S146 

reduces the affinity of EML4 for microtubules. 

 

To determine if NEK6 and NEK7 can regulate the association of EML4 with microtubules, 

these kinases were depleted from U2OS cells and the migration of YFP-EML4-NTD analysed 

in mitotic lysates by Western blot. This revealed that depletion of NEK6, NEK7 or the 

upstream NEK9 kinase that is responsible for activating NEK6 and NEK7, or chemical 

inhibition of CDK1 that operates upstream of NEK9, all led to substantial loss of the slower 

migrating form of the EML4-NTD protein (Fig. 3F, and fig. S2C). Furthermore, analysis of 

endogenous EML4 by immunofluorescence microscopy revealed that depletion of NEK6, 

NEK7 or NEK9 led to increased association of EML4 with spindle microtubules (Fig. 3G, H). 

Depletion of NEK9 led to an increase above that of NEK6 or NEK7 depletion alone. 

Conversely, expression of constitutively active mutants of NEK6 (Y108A), NEK7 (Y97A) or 

NEK9 (ΔRCC1) in U2OS cells led to a significant reduction in association of endogenous 

EML4 with interphase microtubules (fig. S2D, E). However, the reduction of EML4 association 

with interphase microtubules upon expression of constitutively active NEK9 was unaffected 

by addition of the CDK1 inhibitor supporting the notion that NEK9 acts downstream of CDK1 

(fig. S2F). Together, these data provide persuasive evidence that NEK6 and NEK7, acting 

downstream of NEK9 and CDK1, regulate microtubule association of EML4 through 

phosphorylation of residues in its NTD. 

 

The EML NTD binds microtubules through interaction with tubulin C-terminal tails 

In EML1, it was shown that the TD and a basic sequence that lies between the TD and TAPE 

domain confers microtubule binding to EMLs (18). The region between the TD and TAPE 

domain is also highly basic in the EML4 protein (residues 64-207; pI=10.23) and so we 

hypothesized that association may depend upon electrostatic interaction between this basic 

region and the acidic surface of the microtubule created by the C-terminal tails of α- and β-

tubulin. These C-termini protrude on the exterior surface of the microtubule and are rich in 

glutamate (E) residues. A number of MAPs associate, at least in part, through interaction of 

basic domains with these so-called tubulin “E-hooks”, including MAP2 and tau (39). To seek 

evidence that the basic nature of the EML4 NTD mediates microtubule association, the 

tubulin C-terminal tails of microtubules were removed by limited proteolysis with subtilisin. 

SDS-PAGE analysis confirmed that tubulin now migrated as a doublet following subtilisin 

treatment indicative of partial cleavage of the C-terminal tails (Fig. 4A). When incubated with 

two different concentrations of purified EML4-NTD protein, there was a marked reduction in 

sedimentation of this protein with the subtilisin-treated microtubules as compared to untreated 
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microtubules (Fig. 4A-C). We planned to use TIRF microscopy of fluorescently labelled 

proteins to confirm this dependence on the tubulin C-terminal tails. However, it proved 

impossible to generate a purified version of fluorescently tagged EML4-NTD protein. We 

therefore undertook this analysis with a purified YFP-EML1-NTD fragment (residues 1-174). 

Using a mixed population of untreated microtubules labelled with a 561 nm fluorophore and 

subtilisin-treated microtubules labelled with a 640 nm fluorophore, we found that the EML1-

NTD protein bound strongly to untreated microtubules but not to microtubules treated with 

subtilisin (Fig. 4D, E). Together, these data are consistent with the basic N-terminal region of 

EML proteins associating with the acidic tubulin C-terminal tails on the microtubule surface. 

 

Cryo-electron microscopy reveals binding of EML4 to C-terminal tubulin tails 

To examine this interaction of the EML4 NTD with microtubules in more detail, we first 

performed structured illumination microscopy (SIM) of endogenous EML4 in U2OS cells. This 

revealed small, evenly sized puncta of EML4 distributed along the surface of the cytoplasmic 

microtubules (Fig. 5A, B). There was no obvious concentration at microtubule ends as has 

been seen for plus-tip tracking proteins, such as the EBs or ch-TOG proteins (5). We then 

used cryo-electron tomography to directly visualize purified EML4-NTD bound to microtubules 

in vitro. Low-resolution reconstructions showed density corresponding to EML4-NTD bound 

along the microtubule outer surface consistent with the SIM analysis of endogenous EML4 in 

cells (Fig. 5C). It also revealed that while there is occasional evidence of evenly spaced 

interactions with the microtubules every 4 nm (corresponding to tubulin monomers), binding 

of EML4-NTD is overall rather disordered. We processed images of EML4-NTD bound to MTs 

using single particle averaging algorithms, and revealed additional density on both α- and β-

tubulin due to bound EML4-NTD (Fig. 5D, E, and fig. S3A-D). Although the resolution of 

tubulin in our reconstruction is better than 4 Å (Table 1) and shows clear evidence of 

discrimination between α- and β-tubulin, density corresponding to EML4-NTD is present at 

substantially lower resolution. This EML4-NTD density lies above the C-terminal helices H11 

and H12 of each tubulin monomer, next to where the C-terminal tails of each monomer 

emerge from the microtubule wall. This confirms the biochemical evidence for involvement of 

tubulin C-terminal tails in EML4-NTD binding. The low resolution of the EML4-NTD density 

and the limited extent of density that is visualized is likely due to the flexible nature of its 

interaction with the tubulin C-terminal tails, which themselves are unstructured and rarely 

visualised in cryo-EM reconstructions. 

 

Depletion of EML4 reduces stability of interphase microtubules 

As microtubules exhibit reduced stability in early mitosis, the loss of EML4 from microtubules 

at this time could be important for these altered dynamics. This would be consistent with a 

previous report that overexpression of EML4 stabilises microtubule in Cos7 monkey cells 
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(11). To test whether endogenous EML4 promotes microtubule stability in human cells, we 

first examined the consequences of depleting EML4 in U2OS cells on the sensitivity of 

microtubules to the depolymerizing agent, nocodazole. Incubation of mock-depleted cells with 

75 nM nocodazole did not affect microtubule organization; however, this dose led to loss of 

an intact microtubule network in EML4-depleted cells (Fig. 6A). Furthermore, EML4 depletion 

led to reduced sedimentation of microtubules in the presence of 10 µM taxol, also suggestive 

of impaired stability (Fig. 6B, C). Stable microtubules are subject to more post-translational 

modifications, including acetylation and detyrosination. Indeed, depletion of EML4 led to 

significant reduction of both these markers as measured by Western blot or 

immunofluorescence microscopy (Fig. 6D-F, and fig. S4). Conversely, time-lapse imaging of 

live cells incubated with the fluorescent SiR-tubulin probe demonstrated that mitotic spindle 

microtubules were more resistant to nocodazole-induced depolymerisation upon transient 

expression of YFP-EML4-S144/146A as compared to wild-type YFP-EML4 protein (Fig 6G, 

H). Together, these data confirm that binding of EML4 promotes microtubule stabilization and 

provide a rationale for why it is removed from microtubules upon mitotic entry. 

 

Phosphorylation of the EML4 NTD is required for efficient chromosome congression 

To directly test the importance of EML4 displacement from microtubules by phosphorylation 

in mitosis, we undertook time-lapse confocal imaging of HeLa cells expressing either the wild-

type or phosphonull EML4 mutant. These cells also stably express an EGFP-lamin A 

construct that labels the nuclear envelope and an mCherry-histone H2B construct that labels 

the chromatin enabling visualization of nuclear envelope breakdown and chromosome 

dynamics. Whereas in untransfected cells, nuclear envelope breakdown (NEBD) was quickly 

followed by chromosome congression and anaphase onset (as indicated by sister chromatid 

separation), these events were delayed in cells expressing the wild-type EML4 protein (Fig. 

7A-C). Again this can be explained by overexpression of EML4 saturating the machinery 

required to regulate its localization. However, expression of the phosphonull S144/146A 

double mutant protein led to notable failure of both chromosome congression and anaphase 

onset with less than 30% cells successfully completing cell division after 4 hours in mitosis 

(Fig. 7A-C). Fixed imaging of U2OS cells arrested in mitosis with MG132 to prevent anaphase 

onset revealed that 90% of untransfected cells and 75% of cells transfected with wild-type 

EML4 had condensed chromosomes that were fully aligned on the metaphase plate; in 

contrast, only 20% of cells transfected with the EML4-S144/146A mutant had fully 

congressed chromosomes (Fig. 7D, E). Moreover, staining for the microtubule network 

revealed that the spindle microtubules in these cells were unusually long (Fig. 7D). Finally, we 

tested whether the mitotic delay in cells expressing the phosphonull EML4 mutant was the 

result of activation of the spindle assembly checkpoint (SAC). Increased recruitment of the 

SAC component, BUBR1, to chromatin-associated foci and loss of the mitotic delay upon 

treatment of cells with an inhibitor of the MPS1 kinase that is essential for SAC activity 
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confirmed SAC activation in cells expressing the phosphonull EML4 mutant (Fig. 7F-H). Thus, 

the kinase-dependent displacement of EML4 from microtubules in mitosis is necessary for 

assembly of a functional mitotic spindle capable of efficient chromosome congression and 

satisfaction of the SAC. 

 

DISCUSSION 

Human EML4 is phosphorylated on serine/threonine residues in mitosis (27). Here, we show 

that EML4 undergoes phosphorylation at Ser144 and Ser146 in the N-terminal microtubule-

binding region in mitosis and that this reduces its affinity for microtubules. This 

phosphorylation is catalysed by the NEK6 and NEK7 kinases and perturbs electrostatic 

binding of the EML4 protein with the tubulin C-terminal tails that extend from the surface of 

the microtubule lattice (Fig. 8A). Confocal and super-resolution microscopy indicate the 

presence of EML4 foci that are distributed along the length of polymerised microtubules. 

However, the molecular details of how EML proteins bind microtubules had remained unclear. 

Our data suggest that this interaction most likely occurs through electrostatic interaction of the 

basic N-terminal domain of EML4 with the acidic tubulin C-terminal tails (so-called E-hooks) 

that are exposed on the surface of the microtubule. This conclusion is based not simply on 

the fact that phosphorylation - the addition of negative charge - weakens the interaction, but 

on the observation that limited proteolysis of the microtubules with subtilisin that cleaves off 

these C-terminal tails, abrogated binding. Indeed, cryo-electron microscopy and image 

reconstruction provided definitive evidence that the EML4 NTD binds at the site on the 

microtubule where the C-terminal tails emerge on both α- and β-tubulin. Furthermore, spacing 

of the EML4 NTD foci suggests that the protein can bind to both tubulin monomers within an 

individual heterodimer. It will be intriguing to further explore the way in which the acidic C-

terminal tails from tubulin interact with the trimerised EML4 NTD and how variations in tubulin 

isoforms and/or post-translational modifications affect this interaction (Fig. 8B). What is also 

not yet clear is whether the full-length EML4 protein binds in an identical manner and how the 

TAPE domain, which binds soluble tubulin heterodimers, is oriented with respect to the 

microtubule. 

 

The mechanism by which EML4 stabilizes microtubules in cells, either directly or indirectly, 

also remains enigmatic. However, EML4 shares many features with the ch-TOG (XMAP215) 

family of MAPs in that both proteins have separable domains for binding the microtubule 

lattice and soluble tubulin. ch-TOG acts as a processive microtubule polymerase by binding 

to the microtubule with a basic region and then using its multiple TOG domains to add soluble 

tubulin to the growing microtubule plus-ends (40, 41). However, although EML4 has a basic 

NTD that binds the microtubule polymer and a TAPE domain that binds soluble tubulin, there 

was no detectable concentration of EML4 at plus ends of microtubules where it could promote 
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growth through acting as a microtubule polymerase. Interestingly, like tau, EML4 is abundant 

in the nervous system suggesting that it may have a major function in stabilizing the long 

microtubules present in neurons (11). At the molecular level, proteins of the tau family bind to 

more than one tubulin dimer, thereby preventing catastrophe, slowing shrinkage and 

promoting rescue, while also being displaced from the microtubule lattice by phosphorylation 

(3, 4). The fact that EML4 exists as a trimer could allow it to bind to more than one tubulin 

dimer, thereby increasing its overall avidity for the microtubule surface, and potentially directly 

stabilising the polymer. However, in contrast to tau (42), EML4 does not interact precisely 

with the microtubule surface but it rather loosely and flexibly associates with the tubulin C-

terminal tails. Also in contrast to tau and its relatives, EML2 and the echinoderm EMAP have 

been reported to destabilise microtubules by increasing the catastrophe rate and decreasing 

the rescue rate, respectively (12, 13). In this regard, it is interesting that the non-neuronal 

isoform of EML2 used in that study, as well as EMAP, lack the trimerization domain raising 

the possibility that trimerization is necessary for EMLs to stabilise microtubules. Conversely, a 

longer isoform of EML2 that does have a trimerization domain is found in the brain and spinal 

cord (43), where it could also stabilize microtubules. 

 

Another key finding of this study is the discovery of a new role for the mitotic NEK6 and NEK7 

kinases. Depletion of NEK6 or NEK7, or the upstream kinase NEK9 that activates NEK6 and 

NEK7 upon mitotic entry, leads to increased association of EML4 with spindle microtubules. 

This provides compelling evidence that these enzymes play a central role in regulating the 

microtubule binding affinity of EML4. This hypothesis is supported by the observation that 

expression of constitutively active mutants of NEK6, NEK7 or NEK9 reduces binding of EML4 

to microtubules in interphase. Interestingly, previous depletion and overexpression studies 

have shown that NEK7 increases the overall dynamicity of interphase microtubules 

supporting a role for NEK7 in regulating microtubule dynamics in interphase as well as 

mitosis (44). We found that NEK6 and NEK7 were capable of phosphorylating EML4 in vitro, 

including at Ser144 and Ser146, whereas mutation of these two sites or depletion of NEK6, 

NEK7 or NEK9 led to loss of a gel-mobility shift of the EML4-NTD in mitosis. Together with 

the fact that EML4 is present in a complex with NEK6 and NEK7 in cells (29), this strongly 

suggests that EML4 is a direct physiological substrate for these kinases. However, we do not 

exclude the possibility that EML4 may also be subject to additional phospho-dependent 

regulation by other mitotic, as well as non-mitotic, kinases. Indeed, the sea-urchin EMAP 

protein was found to be efficiently phosphorylated by CDK1 (28). We also observed loss of 

the gel-mobility shift of the EML4-NTD in mitosis upon addition of a CDK1 inhibitor, but this 

result can be explained by CDK1 acting upstream of NEK9. Indeed, the CDK1 inhibitor did 

not prevent activated NEK9 displacing EML4 from interphase microtubules adding weight to 

the conclusion that EML4 can be regulated in human cells by the NEK9-NEK6-NEK7 module. 

Interestingly, analysis of the PhosphoSitePlus® database suggests that while Ser144 and 

Ser146 are the two most commonly detected serines or threonines phosphorylated in EML4, 
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there is even more frequent detection of phosphorylation at Tyr226. This residue sits at the 

junction of the NTD and TAPE domain and it will be interesting in the future to test the role of 

this phosphorylation on EML4 function. 

 

Depletion of NEK6 or NEK7 disrupts spindle formation in mitosis and both the kinesin Eg5 

and the chaperone HSP72 have been reported as mitotic substrates of NEK6 (35, 45). Our 

work here indicates that EML4 should be added to that growing list of substrates for these 

kinases and that, like CDK1, PLK1 and Aurora-A, the mitotic NEKs phosphorylate multiple 

substrates to drive robust spindle assembly. Removal of EML4 from microtubules appears to 

be crucial for the decrease in stability that accompanies assembly of a highly dynamic mitotic 

spindle. Live cell imaging demonstrated not only that microtubules were more stable but also 

that the ability of condensed chromosomes to congress to the metaphase plate was severely 

hampered in cells expressing a phosphonull EML4 mutant. This was accompanied by a delay 

in anaphase onset that was mediated by persistent activity of the SAC as evidenced by 

kinetochore recruitment of the SAC component, BUBR1, and loss of this delay upon addition 

of an MPS1 inhibitor, which abrogates the SAC. Interestingly, EML4 is nevertheless required 

for mitotic progression arguing that, despite the reduced microtubule binding affinity, it still 

plays an important role at this stage of the cell cycle. EML4 was found to bind the nuclear 

distribution C (NUDC) protein via its TAPE domain and target NUDC to the spindle promoting 

kinetochore capture by microtubules (15). Whether this requires the microtubule binding 

activity of EML4 is not known. Of course, while microtubule stability initially drops upon mitotic 

entry during the process of search-and-capture, specific populations of microtubules, notably 

K-fibres, become highly stabilised upon bi-orientation of chromosomes (46). Indeed, residual 

staining of spindle microtubules was detected and it is plausible that EML4 could yet 

contribute to K-fibre stability if a localized fraction of EML4 was dephosphorylated. 

 

Many proteins specifically interact with microtubules during mitosis. These fulfil a variety of 

important functions that include the regulation of microtubule stability, the trafficking of 

checkpoint complexes, and the motility of the condensed chromosomes (47). Collectively, 

these proteins enable the assembly of a dynamic and finely tuned mitotic spindle. In contrast, 

EML4 preferentially interacts with microtubules during interphase, and the regulated 

disruption of this interaction through phosphorylation is what is necessary for proper mitotic 

spindle assembly and function. This raises the question of how many other proteins might 

dissociate from microtubules during mitosis. Indeed, it seems likely that the electrostatic 

interactions that other microtubule-associated proteins depend on might also be disrupted 

through phosphorylation, as protein phosphorylation peaks during this phase of the cell cycle.  

This mode of regulation could therefore be relevant to other proteins, including potentially 

other members of the EML family, that interact with the negatively charged tubulin C-terminal 

tails.  
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MATERIALS AND METHODS 

Plasmid construction, mutagenesis and recombinant protein expression 

Generation of YFP-EML4-FL and YFP-EML1-NTD constructs was previously described (18), 

while YFP-EML4-NTD and YFP-EML4-TAPE were generated by PCR-based amplification of 

the NTD and TAPE domain fragments from the YFP-EML4-FL plasmid and subcloning into 

pLEICS-12 (PROTEX, University of Leicester). Generation of Flag-NEK6-Y108A, Flag-NEK7-

Y97A, and Flag-NEK9-ΔRCC1 constructs were as described (31, 32, 34). Mutations were 

introduced into the YFP-EML4-FL and NTD constructs using the GeneTailor Site-Directed 

Mutagenesis Kit (Invitrogen), and all constructs confirmed by Sanger sequencing at the 

University of Leicester. The YFP-EML1-NTD and YFP-EML4-NTD proteins were expressed 

and purified as described (18), while Flag-Strep-EML4-FL protein used for phosphomapping 

was expressed in insect cells and purified as described(17). 

 

Cell culture, transfection and drug treatment 

U2OS, HeLa and HEK 293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, 

Invitrogen) supplemented with 10% heat-inactivated foetal bovine serum (FBS), 100 IU/ml 

penicillin and 100 µg/ml streptomycin at 370C in a 5% CO2 atmosphere. HeLa Kyoto H2B-

mCherry/EGFP-Lamin A cells were maintained in DMEM containing 10% FBS, 100 IU/ml 

penicillin, 100 µg/ml streptomycin, 500 µg/ml G418 and 0.5 µg/ml puromycin. Transient 

transfections were performed with Lipofectamine 2000 (Invitrogen) according to 

manufacturer’s instructions. Cells were synchronized in M-phase either by incubation for 16 

hours with 500 ng/ml nocodazole, or by incubation with 10 µM RO-3306 (Enzo Life Science) 

for 16 hours followed by transfer into fresh media with 20 µM MG132 (EMD Millipore) for 2 

hours. M-phase arrested cells were collected by mitotic shake-off after 16 hours treatment. 

SAC inactivation was achieved through incubation with the MPS1 inhibitor, AZ3146 (Sigma), 

for 4 hours. 

 

Western blotting 

Cells were lysed in ice-cold RIPA or NEB lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 

1% v/v Nonidet P-40, 0.1% w/v SDS, 0.5% w/v sodium deoxycholate, 5 mM NaF, 5 mM β-

glycerophosphate, 30 µg/ml RNase, 30 µg/ml DNase I, 1x Protease Inhibitor Cocktail, 1 mM 

PMSF) and subjected to SDS-PAGE and analysis by Western blotting. Primary antibodies 

were rabbit NEK6 (1 µg/ml; (32), goat NEK7 (1:250; Aviva Systems), rabbit NEK9 (0.4 µg/ml; 

Atlas Antibodies), mouse α-tubulin (0.3 µg/ml; Sigma), mouse acetylated tubulin (1:2000; 

Sigma), rabbit GAPDH (1:500; Cell Signaling), rabbit EML4 (N-term, A301-908A; C-term, 

A301-909A; both 1:500, Bethyl Laboratories), rabbit green fluorescent protein (GFP; 0.5 
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µg/ml; Abcam), mouse pHistone H3 (1:1000, Abcam) and mouse cyclin B1 (0.5 µg/ml; Santa 

Cruz). Secondary antibodies were horseradish peroxidase (HRP)-labelled secondary 

antibodies (1:1000; Amersham). 

 

RNAi 

Cells at 30–40% confluency were cultured in Opti-MEM Reduced Serum Medium with 10% 

heat-inactivated foetal bovine serum (FBS), and transfected with 50 nM ON-TARGETplus 

siRNA duplexes using Oligofectamine (Invitrogen) according to manufacturer’s instructions. 

siRNA duplexes were as previously described for NEK6 and NEK7 (34), NEK9 (AM51334-

1113, Ambion) and EML4 (HSS120688 and HSS178451, Dharmacon). Cells were fixed or 

lysed for analysis after 72 hours transfection. 

 

In vitro kinase assay and mass spectrometry 

Kinase assays were carried out using 0.1 µg purified NEK6 or NEK7 kinase (Millipore). 

Proteins were incubated with 5 µg substrate and 1 µCi of [γ-32P]-ATP in 40 µl kinase buffer 

(50 mM Hepes.KOH pH 7.4, 5 mM MnCl2, 5 mM β-glycerophosphate, 5 mM NaF, 4 µM ATP, 

1 mM DTT) at 300C for 30 mins. Reactions were stopped with 50 µl of protein sample buffer 

and analysed by SDS-PAGE and autoradiography. Phosphomapping was performed using an 

LTQ-Orbitrap-Velos-ETD (ThermoFisher Scientific) as previously described (35). 

 

Fluorescence microscopy 

For immunofluorescence microscopy, cells were grown on acid-etched glass coverslips, fixed 

with ice-cold methanol or methanol: acetone (1:1) and processed as previously described 

(34). In brief, media were aspirated and cells fixed with ice-cold methanol at -200C for 30 

mins. Cells were blocked in 1x PBS supplemented with 3% BSA and 0.2% Triton X-100 

before incubation with antibodies in 1x PBS supplemented with 3% BSA. Primary antibodies 

used were mouse α-tubulin (0.3 µg/ml; Sigma-Aldrich), rabbit Flag (1:1000; Sigma-Aldrich), 

rabbit green fluorescent protein (GFP) (1 µg/ml; Abcam), rabbit EML4 (N-term, A301-908A; 

C-term, A301-909A; both 1:500, Bethyl Laboratories), mouse acetylated tubulin (1:2000; 

sigma), goat Flag (1:1000; Abcam), and rat α-tubulin conjugated 647 (1:200; Abcam). 

Secondary antibodies used were Alexa Fluor 488, 594 and 647 donkey anti-rabbit, donkey 

anti-mouse and donkey anti-goat IgGs (1 µg/ml; Invitrogen). DNA was stained with 0.8 µg/ml 

Hoechst 33258. Fixed and time-lapse imaging were performed on a Leica TCS SP5 confocal 

laser scanning microscope fitted on a Leica DMI 6000B inverted microscope using a hcx plan 

apo 63x oil objective (numerical aperture, 1.4). For fixed images, Z stacks comprising 30–50 

0.3 µm sections were acquired using LAS-AF software (Leica), and deconvolution of 3D 

image stacks performed using Huygens Essential software (Scientific Volume Imaging). For 
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time-lapse fluorescence imaging, cells were cultured in glass-bottomed culture dishes 

(MatTek Corporation) and maintained on the stage at 37°C in an atmosphere supplemented 

with 5% CO2 using an environmental chamber (Life Imaging Services). Z-stacks comprising of 

0.5 µm sections were acquired every 10 min for a minimum of 16 h. Stacks were processed 

into maximum intensity projections using LAS-AF software (Leica) and movies prepared using 

ImageJ. To quantify colocalization, ImageJ software was used to draw five lines across the 

cytoplasmic regions of a cell on a single z-section of an image. A total of 10 cells from three 

independent experiments were used to calculate the mean Pearson's correlation coefficient 

(R-value). 

 

For structured illumination microscopy (SIM), cells were grown on acid-etched high 

performance coverslips, fixed in ice-cold methanol and stained for immunofluorescence 

microscopy with EML4 and α-tubulin antibodies as described above. However, following 

incubation with the secondary antibody, cells were subjected to a second, post-fixation step in 

which cells were incubated with 4% paraformaldehyde for 10 mins, prior to coverslips being 

mounted onto microscope slides with Citifluor mounting medium (Electron Microscopy 

Sciences). Imaging was performed using a Zeiss PS1 super resolution microscope and 

images processed using Zen software (Zeiss). 

 

For TIRF imaging, microtubules were prepared from a mixture of 2 µM biotin-labelled, 2 µM 

Hilyte647-labelled and 20 µM unlabelled tubulin, 1 mM GMP-CPP in MRB80 (80 mM K-

PIPES, 4 mM MgCl2, 1 mM EGTA, pH 6.9). Microtubules were then treated with subtilisin (25 

µg/ml) or left untreated and incubated for 20 mins at 37°C. To terminate digestion 2 mM 

PMSF was added and the reaction mix centrifuged for 5 mins at 150,000 xg. The supernatant 

was removed and microtubules re-suspended in MRB80 buffer. Microtubules were attached 

to the surface of a flow cell using PLL-PEG-biotin and streptavidin, and binding of 100 nM 

recombinant EML1 (1-174) was assessed using TIRF microscopy as described (18). 

 

In vitro microtubule binding and sedimentation assays 

Microtubules were assembled from 40 µM tubulin in the presence of 5 mM GTP in MRB80 for 

1 h at 37ºC, diluted 1:3 in MRB80 + 2 µM Taxol. 3/5 of the sample was treated with 25 µg/ml 

subtilisin (Sigma P5380) and the remainder left untreated and incubated at 37ºC for 10 min. 

To terminate digestion 5 mM PMSF and complete protease inhibitors (Roche) were added 

and the reaction mix loaded onto a 30% sucrose cushion and centrifuged in a TLA55 rotor at 

100,000 xg for 45 mins at 30ºC. The microtubule pellets were re-suspended in BRB25 (25 

mM PIPES pH 6.8, 1 mM MgCl2, 1 mM EGTA, 2 mM DTT) supplemented with complete 

protease inhibitors and 2 µM Taxol and incubated with EML4(1-207)-Avi on ice for 15 mins 

before pelleting through a 30% Sucrose cushion in a TLA55 rotor at 100,000 xg for 45 mins at 
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4ºC. The pellet was taken up in equal volume to supernatant and samples analysed on 12% 

SDS-PAGE gels, stained with Instant Blue (Expedion), imaged on a G-Box (Syngene) and 

quantified using ImageJ. 

 

For microtubule sedimentation assays, cells were lysed at room temperature in RIPA lysis 

buffer, including 5 mM NaF, 5 mM β-glycerophosphate. Samples were loaded on the top layer 

of 30% sucrose in tubulin stabilization buffer (TSB; 1 mM EGTA, 5 mM MgCl2, 80 mM PIPES 

at pH 7.0) before centrifugation at 100,000 g for 40 mins at 21oC. Supernatants were 

collected and pellets washed with TSB for 10 mins at 21oC. Pellets were diluted into a volume 

equal to that of the supernatants. Samples were subjected to SDS-PAGE and analysis by 

Western blot. 

 

Live-cell microtubule stability assays 

For measurement of microtubule stability in live cells, U2OS cells were transfected with YFP-

EML4-WT or S144/146A for 24 hours prior to being grown in µ-well 8 well chamber slides 

(Ibidi). Cells were incubated with 25 nM SiR-Tubulin (Cytoskeleton Inc) for 4 hours and 

MG132 was added to the media 30 min prior to imaging. Fields of view containing transfected 

cells with bipolar mitotic spindles were selected and media supplemented with 200 µg/ml 

nocodazole along with MG132 and SiR tubulin, and image capture immediately commenced.  

Z stacks comprising 29x 0.5 µm sections were captured every 60 s for 15 minutes using a 

VisiTech infinity 3 confocal microscope fitted with a Hamamatsu C11449-22CU Flash 4.0 V2 

sCMOS camera and Nikon Plan Apo 100x objective (NA 1.47). Images were cropped to 

single cells and deconvolved prior to analysis for Si-R tubulin intensity in Matlab. 

 

Sample preparation for cryo-electron microscopy 

Lyophilized tubulin purified from HeLa cells was purchased from Cytoskeleton Inc. (Denver, 

CO, USA) and reconstituted to 2.5 mg/ml in BRB80 (80 mM PIPES, 1.5 mM MgCl2, 1 mM 

EGTA, 1 mM DTT) containing 1 mM GMPCPP at 4°C. After 10 mins incubation at 4°C the 

tubulin was transferred to a water bath and polymerised at 37°C for 45 mins. In order to 

increase GMPCPP occupancy, microtubules were double-cycled by pelleting at 13,000 rpm 

on a desktop centrifuge at room temperature, removing the supernatant and re-suspending 

the microtubule pellet to ~2.5 mg/ml at 4°C in BRB80 + 1 mM GMPCPP. Microtubules were 

then repolymerised by incubation at 37°C for 45 mins. Stabilised microtubules were left at 

room temperature for 3 hours then diluted in room temperature BRB25 + 1 mM GMPCPP to 

0.5 mg/ml before use (25 mM PIPES, 1.5 mM MgCl2, 1 mM EGTA, 1 mM DTT). 4 µl of 

microtubules were pre-incubated on glow-discharged holey C-flatTM carbon EM grids 

(Protochips, Morrisville, NC) at room temperature for 1 min, excess buffer manually blotted 

away, then 4 µl of 2.2 mg/ml EML4-NTD in BRB25 + 30 mM NaCl and 1 mM GMPCPP added 
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for 45 sec. Excess buffer was again manually blotted away, followed by another 4 µl 

application of EML4-NTD. In an additional step for cryo-electron tomography only, excess 

buffer was again blotted away after 45 sec incubation and 4 µl of 10 nm nanogold fiducial–

BSA solution (Sigma), concentrated 2-fold in BRB25 + 30 mM NaCl and 1 mM GMPCPP, 

added to the grid. Grids were then placed in a Vitrobot Mark IV (FEI Co., Hillsboro, OR) at 

room temperature and 80% humidity, incubated for a further 45 sec, then blotted and vitrified 

in liquid ethane. 

 

Single-particle cryo-electron microscopy data collection and processing 

Low dose movies were collected automatically using EPU software on a K2 summit direct 

electron detector (Gatan) installed on a FEI Titan Krios (Astbury Biostructure Laboratory, 

University of Leeds) operating at 300kV with a quantum post-column energy-filter (Gatan), 

operated in zero-loss imaging mode with a 20-eV energy-selecting slit. A defocus range of 

0.5-2.5µm and a calibrated final sampling of 1.37Å/pixel was used with the K2 operating in 

counting mode at 6e-/pixel/second. The total exposure was 48e-/Å2 over 30 frames (1.6e-

/Å2/frame). Movie frames were aligned using MotionCor2 (48) with a patch size of 5 to 

generate full dose and dose-weighted sums. Full dose sums were used for CTF 

determination in gCTF (49), then dose-weighted sums used in particle picking, processing 

and generation of the final reconstructions. Particle processing was performed with helical 

methods in RELION v2.1.0 (50), using a custom pipeline and scripts to account for 

microtubule pseudo-helical symmetry. Briefly, microtubules were boxed manually in RELION 

with a box separation distance of 82Å (roughly the microtubule dimer repeat distance). The 

protofilament number of all segments within each microtubule was assigned according to the 

modal class of those segments after one iteration of 3D classification to 12 Å low-pass filtered 

references of undecorated 11-16-protofilament microtubules built from multiple asymmetric 

units of the GMPCPP microtubule atomic model (PDB: 6DPU (51)). Once the protofilament 

number of each microtubule had been established, the main 13-protofilament microtubule 

class was selected for further processing. Rough alignment parameters of each microtubule 

to its corresponding 7 Å low-pass filtered 13-protofilament reference were assigned. On the 

basis of φ angles determined for each segment, median φ angles were assigned to all 

segments in a given microtubule. Assigned φ angles for each microtubule were checked by 

3D classification against 7 Å low-pass filtered undecorated 13-protofilament microtubule 

references rotated and translated to represent all possible seam positions and αβ-tubulin 

registers. For all references used in this step, pixel values were doubled for atoms within the 

S9-S10 and H1-S2 loops, being the main distinctive features between α- and β-tubulin. 

Rough final φ angles were assigned according to the modal 3D class of all segments within 

each microtubule. Finer local refinement was then performed, with or without applied helical 

symmetry. Final displayed reconstructions were sharpened to local resolutions as determined 

in Relion, unless stated. 4 x binned data were used for the protofilament number assignment 
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3D classification, unbinned data for the final local refinements and 2x binned data for all other 

steps. The atomic models of 6 dimers of undecorated GMPCPP MTs (PDB: 6DPU) with 

incorporated taxol (taken from PDB: 5SYF (52)) were fitted into symmetrized density and 

used as starting models for iterative rounds of model building in Coot (53) and Phenix (54). 

Extra density contributed by EML4-NTD had low resolution, presumably due to the flexible 

nature of the MT-EML4-NTD interaction; therefore EML4-NTD was not modelled into density.   

 

Cryo-electron tomography data collection and processing 

Single-axis cryo-electron tomography of EML4-NTD decorated microtubules was performed 

using a Tecnai G2 Polara at 300 kV with a Quantum post-column energy filter (Gatan) 

operated in zero-loss imaging mode with a 20-eV energy-selecting slit. Data at 5–6 µm 

defocus were collected on a K2 Summit direct electron detector operating in counting mode at 

9e-/pixel/second (measured without sample obstructing the beam) with a final sampling of 

5.39Å per pixel. Tilt series of total dose 114e-/Å2 from -60 to +60˚ tilt were collected in 3˚ 

increments using the Hagen dose-symmetric tilt scheme (55). For each tilt, movies of 9 

seconds exposure at four subframes per sec were aligned using MotionCor2 (48). Dose 

weighting of tilt series was performed using custom scripts calling functions in SumMovie 

(56). Fiducial-based alignment of tilt series was performed in the Etomo graphical user 

interface to IMOD (v.4.9.0). CTF determination on each aligned tilt series without dose-

weighting was performed with CTFFIND4 (57) and three-dimensional CTF correction and 

tomogram reconstruction was performed by weighted back-projection of dose-compensated 

and aligned tilt series with novaCTF (58). Final tomograms displayed were 4xbinned using 

IMOD and a B-factor of 35000 applied to amplify low-frequency information. 

 

Statistical analysis 

All quantitative data represent means and standard deviation of at least three independent 

experiments. Statistical analyses were performed using a one-tailed unpaired Student’s t test 

assuming unequal variance; *, p<0.05; **, p<0.01; ***, p<0.001. n.s., non-significant.  For live-

cell microtubule stability assays the area under the curve for each data set was calculated 

and statistical analysis on these values was performed using a one-tailed unpaired Student’s 

t-test assuming unequal variance.    

 

SUPPLEMENTARY MATERIALS 

See Supplementary Materials for Supplementary Figures. 
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FIGURE LEGENDS 

 

Figure 1. EML4 exhibits reduced affinity for microtubules in mitosis 

(A) Schematic representation of full-length human EML4 indicating the trimerisation (TD, 

pink), basic region (brown) and TAPE (blue) domains. Epitopes recognised by the two 

commercial EML4 antibodies (red) map to residue 150-200 (N-term Ab) and 951-981 (C-term 

Ab). (B) Lysates prepared from U2OS cells that were either mock-depleted or depleted of 

EML4 for 72 hours were analysed by Western blot with antibodies indicated. (C & D) U2OS 

cells were either mock-depleted or depleted of EML4 for 72 hours before being stained with 

the EML4 antibodies indicated (green) and α-tubulin (red) antibodies. Scale bars, 5 µm. 

Images are representative of three independent experiments. (E & F) U2OS cells were 

stained with the EML4 antibodies indicated (green) and α-tubulin (red) antibodies and imaged 

by confocal microscopy. Magnified views (zoom) are shown as merges. Scale bars, 5 µm. 

Images are representative of three independent experiments. (G & H) Co-localization 

between EML4 and microtubules for cells shown in (E and F) are shown with the y-axis 

indicating the mean Pearson's correlation coefficient (R) from 5 lines per cell in 10 cells per 

experiment showing means ± SD from three independent experiments. (I) U2OS cells were 

mock transfected or transfected with YFP-EML4 24 h before being stained with GFP and α-

tubulin antibodies. DNA was stained with Hoechst 33258 (blue). Scale bars, 5 µm. (J) Co-

localization between the GFP and microtubules for cells shown in I was calculated as in G 

and H. Data are means ± SD from 30 cells pooled from three independent experiments. 

 

Figure 2. The EML4 NTD binds microtubules and is phosphorylated in mitosis 

(A) HeLa and U2OS cells were either untreated (I, interphase) or treated with nocodazole for 

16 hours to arrest them in mitosis (M) before being lysed and analysed via Western blot with 

antibodies indicated (pHH3, phospho-histone H3). (B) U2OS cells were transfected with the 

EML4 constructs indicated before being fixed and stained with antibodies against GFP 

(green), α-tubulin (red). DNA was stained with Hoeschst 33258 (blue). Scale bar, 5 µm. 

Images are representative of three independent experiments. (C) Co-localization between the 

GFP and microtubules for cells shown in B was calculated, with the y-axis indicating the 

mean Pearson's correlation coefficient (R) from 5 lines per cell in 10 cells per experiment 

showing means ± SD from three independent experiments. (D) U2OS cells were transfected 

with YFP alone or YFP-EML4-NTD for 24 hours before being treated and analysed by 

Western blot as in A. (E) U2OS cells were transfected with YFP-EML4-NTD for 24 hours 

before lysates were treated with λ-PPase (enzyme units indicated) for 30 mins and analysed 

by Western blot with antibodies indicated. Images are representative of three independent 

experiments. M. wts (kDa) are indicated in A, D & E. 
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Figure 3. NEK6 and NEK7 regulate association of EML4 with microtubules 

(A) Schematic representation of full-length EML4 with TD and TAPE domains for reference, 

indicating the phosphorylation sites detected by mass spectrometry following incubation in 

vitro with NEK6 (blue) or NEK7 (green). Sites phosphorylated by both kinases are indicated in 

red. (B) Sequence alignment from species across the five vertebrate classes of the EML4 

NTD region spanning the three identified phosphorylation sites (in red). (C) U2OS cells were 

transfected with YFP-EML4-NTD (wild-type, WT, and point mutants) for 24 hours before 

treating with nocodazole for 16 hours to arrest cells in mitosis. Cell lysates were analysed by 

Western blot with antibodies indicated. (D) U2OS cells were transfected with YFP-tagged full-

length EML4 that was either WT or an S144/146A double mutant for 24 hours before being 

stained with GFP (green) and α-tubulin (red) antibodies. Merge images include DNA stained 

with Hoechst 33258 (blue). Scale bars, 5 µm. Images are representative of three independent 

experiments. (E) The mean Pearson's correlation coefficient for co-localization between 

EML4 and microtubules for cells shown in D was calculated from 5 lines per cell in 10 cells 

per experiment showing means ± SD from three independent experiments. (F) U2OS cells 

transfected with YFP-EML4-NTD were either mock-depleted or depleted of NEK6, NEK7 or 

NEK9 48 hours before being treated with nocodazole for 16 hours to arrest cells in mitosis. 

Cell lysates were analysed by Western blot with the antibodies indicated. (G) Untransfected 

U2OS cells were either mock-depleted or depleted of NEK6, NEK7 or NEK9 for 72 hours 

before being stained with EML4 (green) and α-tubulin (red) antibodies. DNA was stained with 

Hoechst 33258 (blue in merge). Scale bars, 5 µm. Images are representative of three 

independent experiments. (H) The mean Pearson's correlation coefficient for co-localization 

between EML4 and microtubules for cells shown in G was calculated from 5 lines per cell in 

10 cells per experiment showing means ± SD from three independent experiments. 

 

Fig. 4. Subtilisin treatment of microtubules leads to loss of association of EML4 and 

EML1 in vitro 

(A) Microtubules purified from HeLa cells were either untreated or incubated with subtilisin 

before re-purification to remove the enzyme. These were then incubated with purified EML4-

NTD before sedimentation to generate a supernatant (S) and pellet (P) fraction. Samples 

were then analysed by SDS-PAGE and Coomassie Blue stain. Data are means ± SD from 

three independent experiments. (B & C) The mean relative fraction of the EML4-NTD protein 

present in the pellet fraction represented in (A) is shown for two different concentrations of the 

EML4-NTD protein. Data are means ± SD from three independent experiments. (D) TIRF 

image of fluorescently labelled microtubules (left panel) treated with (purple) or without 

(green) subtilisin before incubation with YFP-EML1-NTD (residues 1-174) (right panel). 

Images are representative of three independent experiments. (E) Box plots reveal YFP 

intensity (a.u., arbitrary units) associated with untreated (561 nm) or subtilisin-treated (640 
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nm) microtubules. Boxes represent quartiles; whiskers show 10/90% data ± SD (n>200 

microtubules). 

 

Figure 5. Super-resolution and cryo-electron microscopy reveal EML4-NTD binding 

microtubules through a flexible interaction with α- and β-tubulin C-terminal tails 

(A) U2OS cells were stained with EML4 (C-term Ab; magenta) and α-tubulin (green) 

antibodies and imaged by SIM. Arrowheads indicate examples of clusters of EML4 foci that 

co-localise with microtubules and are shown as magnified images in (b). Scale bar, 5 µm. 

Images are representative of three independent experiments. (B) Magnified views of 

endogenous EML4 bound to microtubules as taken from (A). (C) Section through a cryo-

tomogram of an EML4 decorated microtubule. The microtubule lumen is indicated in light blue 

false colour. Red arrows indicate clear microtubule-bound densities, with sizes consistent with 

EML4-NTD trimers. Red arrowhead: in some regions, a periodicity of 4 nm for extra densities 

was observed, consistent with binding to both α- and β-tubulin. Scale bar, 30 nm. (D) 4.4 Å 

resolution C1 single-particle cryo-electron microscopy reconstruction of EML4-NTD decorated 

13 protofilament microtubules, low pass filtered to 20 Å. Density within 9 Å of the fitted α- and 

β-tubulin atomic models is indicated with light and dark grey respectively; and defined, 

connected density >9Å away is indicated with red. (E) 3.6 Å resolution symmetrised 

reconstruction, showing two tubulin dimers within a single protofilament. Local resolution 

filtered α-tubulin and β-tubulin density is shown as transparent light and dark grey density 

respectively. The fitted H12 atomic model is shown as ribbons, with the flexible C-terminal 

tails indicated by dashed lines. The reconstruction low-pass filtered to 20 Å is also shown as 

mesh, with extra densities associated with α- and β-tubulin coloured in red and orange 

respectively. 

 

Figure 6. Displacement of EML4 from microtubules reduces their stability in mitosis 

(A) U2OS cells were either mock-depleted or depleted of EML4 with one of two siRNAs 

(siEML4.1 or siEML4.2) for 72 hours before being either left untreated or treated with 75 nM 

nocodazole for 2 hours. Cells were stained with α-tubulin antibodies. Scale bars, 5 µm. 

Images are representative of three independent experiments. (B) Microtubule sedimentation 

assay performed with lysates prepared from U2OS cells that were either mock- or EML4-

depleted before Western blotting the pellet (P) and supernatant (S) fractions for α-tubulin. (C) 

Quantification of the % tubulin in the pellet fraction represented in (B). Data are means ± SD 

from three independent experiments. (D) Western blot analysis with antibodies indicated of 

lysates from U2OS cells that were either mock- or EML4-depleted. (E & F) Quantification of 

the acetylated or detyrosinated tubulin bands, respectively, after EML4 depletion relative to 

mock-depletion from blots represented in (D). Data are means ± SD from three independent 

experiments. (G) U2OS cells were transfected with YFP-EML4-WT or YFP-EML4-S144/146A, 
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incubated with SiR-Tubulin to visualise microtubules and SiR-Tubulin intensity measured 

every 60 s following addition of nocodazole. Stills from representative movies are shown with 

time since addition of nocodazole (min) indicated. Scale Bar, 5 µm. (H) The relative SiR-

Tubulin intensity of cells in G is shown. Data represent means from 3 separate experiments 

with a minimum of 10 positions per condition. 

 

Figure 7. A phosphonull EML4 mutant interferes with chromosome congression and 

activates the SAC 

(A) HeLa:EGFP-LaminA/mCherry-H2B cells were either untransfected (left column) or 

transfected with YFP-EML4 wild-type protein (WT, middle column) or YFP-EML4-S144/146A 

(right column) for 24 hours before time-lapse confocal imaging. Stills from representative 

movies are shown with time (mins) indicated from mitotic entry. Scale bar, 7.5 µm. Images 

are representative of three independent experiments. (B & C) Quantification of cells from A 

indicating time from nuclear envelope breakdown (NEBD) to last chromosome congressed 

(left graph) and time from last chromosome congressed to anaphase onset (right graph). Data 

are means of cumulative frequencies ± SD; n=20. (D) U2OS cells were either untransfected 

or transfected with YFP-EML4-FL, EML4-WT or EML4-S144/146A, for 24 hours before being 

treated with RO-3306 for 16 hours, followed by 4 hours with MG132. Cells were then fixed 

and stained with GFP and α-tubulin antibodies. Merged images include DNA stained with 

Hoechst 33258 (blue). Scale bars, 5 µm. Images are representative of three independent 

experiments. (E) Quantification of the percentage of cells with normal or uncongressed 

chromosome in mitosis from at least 30 cells represented in (D). Data are means ± SD from 

30 cells pooled from 3 independent experiments.  (F) U2OS cells were either untransfected or 

transfected with EML4-S144/146A for 24 hours before being fixed and stained with antibodies 

against GFP (green) and BUBR1 (red). Merged images include DNA stained with Hoechst 

33258 (blue). Scale bars, 5 µm. Images are representative of three independent experiments. 

(G) The relative intensity of BUBR1 was quantified and plotted relative to that in control 

samples. Data are means ± SD from 30 cells pooled from three independent experiments. (H) 

Histogram shows the mitotic index upon MPS1 inhibition (MPS1i) in U2OS cells transfected 

with either EML4-WT or -S144/146A constructs. Data are means ± SD from three 

independent experiments. 

 

Figure 8. Phospho-dependent regulation of EML4 microtubule binding affinity 

(A) Schematic model illustrating how the NEK9-NEK6-NEK7 kinases regulate affinity of EML4 

for microtubules at the G2/M transition. Phosphorylation of two sites within the EML4 NTD as 

a result of activation of these kinases reduces electrostatic interaction of this basic region of 

EML4 for the acidic microtubule surface. (B) Cartoon showing electrostatic interaction of the 

basic NTD of the trimeric EML4 protein with the acidic tubulin C-terminal tails (green). 
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Table 1. Cryo-EM data collection, refinement and validation statistics 

Data collection and processing information for the EML4-NTD bound 13-protofilament HeLa 

cell tubulin microtubule dataset, and refinement statistics for the HeLa cell tubulin dimer 

model asymmetric unit built into to the symmetrized electron density map. 

*Microtubules exhibit pseudo-helical symmetry due to a symmetry break at the seam. 13-fold 

pseudo-helical symmetry was applied to the 13 protofilament microtubule reconstructions. 
†The resolution value at the gold-standard Fourier Shell Correlation (FSC) 0.143 criterion 

between independently refined half-maps is shown for the central 15% of the reconstruction 

along the helical axis (isolated with a soft mask). 
‡Average Fourier Shell Correlation (FCS) between the model and the symmetrized electron 

density map of the asymmetric unit (calculated around model atoms only). 
§Root-mean-square (rms) deviations of bond lengths or angles in the model. 
#As defined by the MolProbity validation server (59). 

 

 

  (EMD-0331, PDB 6I2I) 

Data collection and 
processing 

 

Pixel size (Å) 1.37Å 

Symmetry imposed*      Pseudo-helical         
Number of micrographs 1967 
Initial particle images (no.) 44,946 
Final particle images (no.) 19,542 
Symmetrised Map resolution (Å) 

FSC threshold† 
3.58Å 

Independent half-map 
FSC 0.143 

Map resolution range (Å)             3.5-4.3Å 
  
Refinement  
Initial models used  6DPU, 5SYF 

Refinement resolution (Å) 
FSCaverage

‡ 
              3.7 

0.84 

Map local sharpening B-factor 
(Å2) 

-90 

Model composition 
    Non-hydrogen atoms 
    Protein residues 
    Ligands 

 
41,058 
5,256 

18 
rms deviations§ 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.01  
1.20 

 Validation# 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)   

 
1.91  
8.24 
0.5% 

Ramachandran plot# 
    Favored (%) 
    Allowed (%) 
    Outliers (%) 

 
92.73 
7.27 

0 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Figure S1. Mass spectrometry profiles of EML4 phosphorylation sites 

Purified EML4 protein was phosphorylated with NEK6 and NEK7 in vitro. Mass spectrometry 

profiles are presented of peptides isolated following incubation with NEK6 (A-D) or NEK7 (E-

H). Phosphorylated amino acids are indicated in red in the identified peptide. 

 

Adib et al. Figure S1

826.7?

y14-H2O+2Hparent+2H-NH3-98

parent+2H+1-98

y2 y3 y4 b6

y6

y8 b10y9 b11

y10

b12y11 b13
y12

y13b14 b15

A S+80 P S P Q P S S Q P L Q I H R
R H I Q L P Q S S P Q P S P S+80 A

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

1,808.86 AMU, +2 H (Parent Error: 0.52 ppm)

AsPSPQPSSQPLQIHR

A
S144

m/z

parent+2H-98

b2
y3
b3

b4
y6

y7

y8

y9

b9

b10 y10 b11 y11

T T V E P T+80 P G K G P K
K P G K G P T+80 P E V T T

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200

1,290.62 AMU, +2 H (Parent Error: -0.20 ppm)

TTVEPtPGKGPK

B
T490

m/z

606.8?

y8+2H

y6-98
parent+2H-NH3-98

parent+2H-98

b2

y2

b3

y3
b4

y4
y5

y6

y7

b8
y8

b9
y9

D L L L T+80 C+57 A Q D R
R D Q A C+57 T+80 L L L D

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200

1,283.56 AMU, +2 H (Parent Error: -1.6 ppm)

DLLLtcAQDR

C
T609

m/z

b9+1

parent+2H-NH3-98

parent+2H-98

b3

y3

b4 y4

b5

y5

b6

y6

b8

y8

b9

y9

b10

y10

b11

y11

b13

A T L L E D Q Q D P S P S S+80
S+80 S P S P D Q Q D E L L T A

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200 1400

1,566.64 AMU, +2 H (Parent Error: -0.22 ppm)

ATLLEDQQDPSPSs

D
S981

a6+1

parent+2H-H2O-98

parent+2H-NH3-98

parent+2H-98

y2

y4

y5

y6

b6
y7

b7 y8
b8 b9

y9
b12

E E S H S+80 N D Q S P Q I R
R I Q P S Q D N S+80 H S E E

m/z

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200 1400 1600

1,605.64 AMU, +2 H (Parent Error: -0.19 ppm)

EESHsNDQSPQIR

E
S134

y12+2H

y13+2H

y14+2H

parent+2H-NH3-98

parent+2H+1-98

y2 y3 y4 b6

y6

y8 b10y9 b11

y10

b12y11 b13
y12

b14 y13 b15

A S P S+80 P Q P S S Q P L Q I H R
R H I Q L P Q S S P Q P S+80 P S A

m/z

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200 1400 1600 1800

1,808.86 AMU, +2 H (Parent Error: 0.65 ppm)

ASPsPQPSSQPLQIHR

F
S146

606.9?

607.5?

y8+2H

y6-98

parent+2H-98

b2

y2

b3

y3
b4

y4
y5

y6

y7

b8
y8

b9

D L L L T+80 C+57 A Q D R
R D Q A C+57 T+80 L L L D

m/z

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200

1,283.56 AMU, +2 H (Parent Error: -1.0 ppm)

DLLLtcAQDR

G
T609

b9+1

parent+2H-NH3-98

parent+2H-98

b3

y3

b4 y4

b5

y5

b6

y6

b8

y8

b9

y9

b10

y10

b11

y11

b13y12

A T L L E D Q Q D P S P S S+80
S+80 S P S P D Q Q D E L L T A

m/z

R
el

at
iv

e 
In

te
ns

ity

0%

25%

50%

75%

100%

0 200 400 600 800 1000 1200 1400

1,566.65 AMU, +2 H (Parent Error: -0.067 ppm)

ATLLEDQQDPSPSs

H
S981

m/z



Adib et al. Supplementary Information 

! 2 

 

 

 

 

 

 

U
n
tr

a
n
sf

e
ct

e
d

N
E

K
6
-Y

1
0
8
A

N
E

K
7
-Y

9
7
A

N
E

K
9
-Δ

R
C

C
1

EML4 α-Tubulin MergeFlag

A B

U
nt

ra
ns

fe
ct
ed

N
E
K
6-

Y
10

8A

N
E
K
7-

Y
97

A

N
E
K
9-
ΔR

C
C
1

C
o
lo

c
a
lis

a
tio

n
 E

M
L
4
:M

T
s

*** ***

****

0.0

0.2

0.4

0.6

0.8

1.0

Adib et al. Figure S2

W
T

S
14

4/
14

6D

0.0

0.2

0.4

0.6

0.8

1.0

C
o
lo

c
a
lis

a
tio

n
 E

M
L
4
:M

T
s

**
WT S144/146D

G
F

P
/α

-t
u
b
u
lin

C

0.0

0.2

0.4

0.6

0.8

1.0

C
o
lo

c
a
lis

a
tio

n
 E

M
L
4
:M

T
s

****

ns

ns

***

- -+ +CDK1 inhibitor

Untransfected NEK9-ΔRCC1

E

F

C
on

tro
l

30
 m

in

60
 m

in

CDK1 inhibitor

D

GFP

a-Tubulin

- 50

- 50



Adib et al. Supplementary Information 

! 3 

Supplementary Figure S2. Activated NEK6, NEK7 and NEK9 reduce association of 

EML4 with interphase microtubules 

(A) U2OS cells were transfected with YFP-tagged full-length EML4 that was either wild-type 

(WT) or an S144/146D double mutant for 24 hours before being stained with GFP (green) and 

α-tubulin (red) antibodies. Scale bars, 5 µm. Images are representative of three independent 

experiments. (B) The mean Pearson's correlation coefficient for co-localization between 

EML4 and microtubules for cells shown in A was calculated from 5 lines per cell in 10 cells; 

data are means ± SD from 30 cells pooled from 3 independent experiments. (C) U2OS cells 

were transfected with YFP-EML4-NTD for 24 hours before being treated with nocodazole for 

16 hours to arrest cells in mitosis followed by treatment with the CDK1 inhibitor, RO-3306, for 

0 (control), 30 or 60 min. Cell lysates were analysed by Western blot with the antibodies 

indicated. (D) U2OS cells were mock-transfected or transfected with Flag-NEK6-Y108A, Flag-

NEK7-Y97A, or Flag-NEK9-ΔRCC1 for 24 hours before being stained with EML4, α-tubulin 

and Flag antibodies. Images are representative of three independent experiments. (E) The 

mean Pearson's correlation coefficient for co-localization between EML4 and microtubules 

was calculated from 5 lines per cell in 10 cells. Data are means ± SD from 30 cells pooled 

from 3 independent experiments. (F) U2OS cells were untransfected or transfected with Flag-

NEK9-ΔRCC1 for 24 hours before being treated with or without the CDK1 inhibitor, RO-3306, 

as indicated. The mean Pearson's correlation coefficient for co-localization between EML4 

and microtubules was calculated from 5 lines per cell in 10 cells per experiment showing 

means ± SD from 3 independent experiments.   
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Supplementary Figure S3. Cryo-electron microscopy diagnostics and resolution 

estimation 

(A) Gold-standard Fourier Shell Correlation (FSC) curve for the symmetrized 13 protofilament 

EML4-microtubule reconstruction. (B) Gold-standard FSC curve for the C1 13 protofilament 

EML4-microtubule reconstruction. The central 15% of the microtubule along the helical axis 

was isolated from the independently refined half-maps (using a soft-mask) for FSC 
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calculations. (C) An asymmetric unit in the symmetrized reconstruction viewed from the 

microtubule lumen, showing α- and β-tubulin in light and dark grey, respectively. Densities for 

GTP, GMPCPP and paclitaxel (included in the tubulin purification protocol) are indicated in 

cyan, magenta and yellow, respectively. Density for the S9-S10 and H1-S2 loops exhibit 

expected differences in α- and β-tubulin, indicating successful seam determination during the 

image alignment. Because of the reference used for alignment, the central, best region of the 

reconstruction spans across an inter-dimer longitudinal contact encompassing α- and β-

tubulin from separate dimers. (D) Local resolution calculated in Relion for an asymmetric unit 

of the symmetrized reconstruction, showing lumenal (left) and outer (right) faces. A B-factor of 

-90 was applied to sharpen the reconstructions shown in panels C and D, up to local 

resolution cut-offs as displayed in panel D. 
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Supplementary Figure S4. EML4 depletion leads to reduced microtubule acetylation 

U2OS cells were either mock or EML4-depleted for 72 hours before staining with acetylated 

tubulin (green) and α-tubulin (red) antibodies. Merge images include DNA stained with 

Hoechst 33258 (blue). Scale bar, 5 µm. Images are representative of three independent 

experiments. 
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