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ABSTRACT
Although the pathogenic mechanisms underlying 
axial spondyloarthritis (axSpA) and psoriatic arthritis 
(PsA) are not fully elucidated, several lines of evidence 
suggest that immune responses mediated by interleukin 
17A (IL-17A) play a pivotal role in both diseases. This 
is best highlighted by the significant clinical efficacy 
shown with inhibitors of IL-17A in treating axSpA and 
PsA. Nevertheless, a number of knowledge gaps exist 
regarding the role of IL-17A in the pathophysiology of 
spondyloarthritis in man, including its cellular origin, its 
precise role in discrete disease processes such enthesitis, 
bone erosion, and bone formation, and the reasons for 
the discrepant responses to IL-17A inhibition observed 
in certain other spondyloarthritis manifestations. In 
this review, we focus on the latest data from studies 
investigating the role of IL-17A in ankylosing spondylitis 
(AS) and PsA that build on existing and emerging 
scientific knowledge in the field. Key remaining research 
questions are also highlighted to guide future research.

INTRODUCTION
The spondyloarthritides (SpA) comprise related 
but phenotypically distinct inflammatory diseases 
including psoriatic arthritis (PsA), non-radiographic 
axial spondyloarthritis (nr-axSpA) and radiographic 
axSpA (ankylosing spondylitis (AS)), arthritis asso-
ciated with inflammatory bowel disease (IBD), reac-
tive arthritis, juvenile idiopathic arthritis and acute 
anterior uveitis.1–3 The SpA diseases share common 
immunological and inflammatory components and 
present with overlapping clinical phenotypes.4–7 
Indeed, multiple genetic polymorphisms within the 
interleukin (IL)-23/17 axis have been implicated 
across SpA.8–11 Intriguingly, despite the clinical and 
genetic similarities, these disorders are showing 
emergent and unexpected heterogeneity with 
respect to IL-23/17 axis therapeutic manipulation, 
a topic addressed later in this article.

IL-17A, a member of the IL-17 superfamily of 
cytokines, is known to play an important role in 
SpA manifestations related to the skin, joints and 
entheses, as reflected by the suppression of disease 
activity seen with IL-17A inhibitors in psoriasis, PsA 
and AS.12–19 However, in other settings where IL-17 
family members have been found at sites of disease, 
such as gut inflammation and uveitis, IL-17A 
inhibition is not beneficial.20–22 These discrepant 
responses illustrate the need for clearer under-
standing of the aetiology of these inflammatory 
diseases, particularly the role of the IL-17 family in 
the context of the tissue(s) affected. IL-17 research 
has accelerated rapidly, with nearly 10 000 articles 
published on this topic in the last 5 years alone. In 

this article we highlight the latest breakthroughs 
that expand understanding of the role of IL-17A in 
both homoeostasis and in disease in axSpA and PsA.

IL-17A pRODUCTION AND SIgNALLINg
The IL-17 superfamily consists of six ligands 
(IL-17A to IL-17F), which can bind to five receptor 
subtypes (IL-17RA to IL-17RE). The basic biology 
of most of the IL-17 superfamily has been reviewed 
extensively elsewhere.23 24 IL-17A, the prototypical 
ligand, is by far the best characterised member of 
the IL-17 family and can exist as a homodimer or 
in a heterodimer with IL-17F and signals through 
an obligate dimeric IL-17RA and IL-17RC receptor 
complex.24 On binding to a receptor, IL-17A upreg-
ulates inflammatory gene expression either by 
inducing de novo gene transcription or by stabi-
lising mRNA of pro-inflammatory cytokines and 
chemokines.24

WeLL-DefINeD ROLe Of IL-17A IN HOST 
DefeNCe
In healthy individuals, IL-17A, as well as other 
members of the IL-17 family, functions in host 
defence against a range of bacterial and fungal 
pathogens at epithelial and mucosal barriers in the 
skin, colon and airways.25–27 Although the exact 
interplay between the various IL-17 family members 
is poorly understood, epithelial cell-derived (espe-
cially IL-17C) and haematopoietic cell-derived 
IL-17s (IL-17A and F) may have complementary 
functions in response to pathogens, with the former 
predominantly enhancing barrier function and the 
latter propagating the inflammatory response.28 
The IL-23/17 axis co-ordinates barrier function 
in the skin and the gut, both of which are sites of 
either physical or chemical stress and are also sites 
of complex microbiotal interactions. What might 
the common denominator be between the IL-23/17 
axis and inflammation at the sterile skeletal loca-
tions afflicted by SpA-associated pathology? We 
agree with the assertion that the IL-23/17 axis 
might be adapted to facilitate homoeostasis at these 
highly mechanically stressed entheseal sites that are 
prone to microinjury.29

An array of genetic defects in the IL-17 pathway, 
identified through human translational immu-
nology, collectively point towards a role in anti-
fungal immunity (table 1). Chronic mucocutaneous 
candidiasis (CMC) is a hallmark of individuals with 
genetic defects affecting IL-17 immunity, mani-
festing as recurrent or persistent infections of the 
skin, nails and mucosae with Candida albicans, 
with or without other clinical signs.30 As can be 
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Table 1 Diseases characterised by mutations and deficiencies in the IL-23/IL-17 pathway

Disease genes/proteins involved Common infections effect on IL-23/IL-17 signalling References

MSMD IL-12Rβ1 Mycobacterium
tuberculosis, salmonella, candida 
albicans

Impaired IFN-γ-mediated immunity
Decreased IL-17A-producing T cells
Impaired IL-12 signalling

176 181 183–187 189

IL-12β Mycobacterium
tuberculosis, salmonella

IFN-γR1 Mycobacterium
tuberculosis, salmonella, candida 
albicans

STAT1 Mycobacterium, candida albicans

IL-12/23 p40 Mycobacterium
tuberculosis, salmonella

Salmonella infection IL-23R Salmonella Th17 depletion, reduced production of IL-17A 188 190

IL-12/23p40

IL-12Rβ1

CMCD STAT1 Candida albicans, mycobacterium Reduced production of IL-17A, IL-17F, IL-22
No response to IL-17A; reduced response to 
IL-17F; IL-17E response maintained
Impaired neutrophil function

182 183 191 193 202

CARD9 Candida albicans

IL-17RA Candida albicans
Staphylococcus

IL-17RC Candida albicans

IL-17F Candida albicans

ACT1 Candida albicans
Staphylococcus

APECED AIRE Candida albicans Increased autoantibodies to IL-17A, IL-17F, 
and IL-22

194 197

HIES STAT3 Candida albicans, staphylococcus, 
aspergillus

Increased serum IgE
Eosinophilia
Impaired development of Th17 cells
Reduced IL-17A production

49 198 201 203

DOCK8 Candida albicans, staphylococcus, 
aspergillus

TYK2 Staphylococcus, mycobacterium, 
salmonella

The genes and proteins involved and the resultant effects on IL-17 signalling that lead to increased susceptibility to certain infections are listed.49 176–201 IL-12 and IL-23 share 
cytokine and receptor subunits and the association with mycobacterial disease is thought to represent an effect on dysregulated IFN gamma production in the IL-12 pathway. 
Therefore IL-17 blockers or IL-23 p19 subunit blockers are not expected to have a link with mendelian susceptibility to mycobacterial disease.
AIRE, autoimmune regulator; APECED, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; CARD9, caspase recruitment domain-containing protein 9; CMCD, 
chronic mucocutaneous candidiasis disease; DOCK8, dedicator of cytokinesis 8; HIES, hyper IgE syndrome; IFN, interferon; IFN-γR1, interferon gamma receptor 1; IL-12Rβ1, 
interleukin 12 receptor β1; MSMD, Mendelian susceptibility to mycobacterial disease; STAT, signal transducer and activator of transcription; TYK2, tyrosine kinase 2; Th-17, T 
helper 17 cell.

seen from table 1, these syndromes result from genetic defects 
affecting several immune processes, with the commonality being 
that the defects involve more than one cytokine or immune func-
tion. The genetic defects that are often shared between the IL-12 
and the IL-23 pathway that are upstream of the IL-17 pathway 
are not linked to fungal infection but may be linked to myco-
bacterial infections consequent to impaired interferon gamma 
signalling.31

Preclinical and ex vivo studies also implicate IL-17A in immu-
nity against a range of other pathogens including bacteria such as 
Escherichia coli, fungi such as Cryptococcus neoformans, para-
sites such as Trypanosoma cruzi, and viruses such as influenza 
(reviewed in Matsuzaki and Umemura).28 Although as with all 
drugs that modulate immune response there is the potential for 
an increased infection risk with IL-17A inhibitors, clinical data 
show no risk from specific pathogens, with the exception of 
candidiasis.18 19 32–35 Reassuringly, no association between myco-
bacterial disease and blockade of IL-17A biological activity has 
been observed in man.34

ROLe Of IL-17A IN SpA
Although IL-17A cytokine expression has been detected in a 
multitude of autoimmune and autoinflammatory diseases, a key 
role in psoriasis, PsA and axSpA is evident.

genetics
Although a detailed examination of the genetic basis of SpA is 
outside the scope of this article (reviewed in detail in Taams et 
al and Brown et al),11 36 the strongest association with genetic 
susceptibility to axSpA and PsA lies within the MHC class I 
region and in particular the HLA-B27 region.8–10 Multiple 
immunological functions can be altered by these genetic asso-
ciations, including several relevant to IL-17A signalling through 
activation of CD8+T cells and CD4+T cells.11 37–40 Several 
single nucleotide polymorphisms in genes directly involved in 
IL-17 signalling have also been linked to AS and PsA (figure 1), 
including variants in the IL-12 p40 subunit, the IL-23 p19 
subunit, the IL-23 receptor, IL-17A and IL-17RA.41–48 Additional 
susceptibility variants have been identified in genes encoding 
IL-17-related signalling molecules including TYK2, TRAF3IP2 
and STAT3.43 44 47 49–53

IL-17A production
There has been significant interest in identifying the sources of 
IL-17A in SpA and a number of innate and adaptive immune 
system cell types have been implicated (reviewed in Taams et 
al) (figure 2).11 Increased levels of type 3 innate lymphoid cells 
(ILC3) have been identified in blood and synovia of patients 
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figure 1 Single nucleotide polymorphisms identified in the IL-17 signalling pathway that have been linked to axial spondyloarthritis and psoriatic 
arthritis. aSignificant association shown in European but not Asian populations204; bNo risk associated with this SNP shown in certain studies204–206; 
cNo risk associated with this SNP shown in certain studies207; dSNP can be associated with risk or protection depending on the specific mutation. AS, 
ankylosing spondylitis; IL-1R2, interleukin 1 receptor; IL-6R, interleukin 6 receptor; IL17R, interleukin receptors; PsA, psoriatic arthritis; SNP, single 
nucleotide polymorphism.
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• Major source of IL-17A
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• Levels correlate with 
disease activity in AS
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skin lesions and blood 
of patients with 
psoriasis

• May contribute to 
IL-17A-induced 
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entheses and may 
produce IL-17A that 
drives enthesitis 

• May be involved in 
IL-23-independent 
production of IL-17A 
in spinal entheses

56,57,59,158,218–223

γδT

• Increased levels in 
blood of patients with 
AS/PsA 

• Contribute to IL-17A 
production in patients 
with psoriasis

• May contribute to 
IL-17A-induced bone 
formation/erosion

• Resident population 
in human enthesis 
might contribute to 
enthesitis

• Further research 
required to 
investigate potential 
migration of 
gut-derived ILC3 
cells to the joints 
in SpA   

54,55,58,164
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CD8+T
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blood correlate with 
disease activity in AS 
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of patients with 
AS/PsA
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correlate with 
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TRM

• Identified in skin from 
patients with psoriasis 

• Persist in clinically 
resolved psoriatic 
lesions; may be 
implicated in 
recurrence at sites of 
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• Identified as disease 
drivers in an 
experimental SpA
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required to 
understand the 
diversity of iNKT cells 
and the specific role 
of pathogenic 
subset(s) in SpA

60,61

iNKT

• Increased numbers 
of IL-17+ iNKT cells 
reported in SpA 
peripheral blood

• IL-17-expressing 
pathogenic subsets 
identified in synovial 
fluid samples

• Identified in skin and 
blood from patients 
with psoriasis

• Increased in the 
synovial fluid and 
blood of patients 
with AS

• Further research 
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80–82

MAIT

Innate cells Adaptive cells

figure 2 Key sources of IL-17A in spondyloarthritis. AS, ankylosing spondylitis; ILC3, type 3 innate lymphoid cell; iNKT, innate natural killer T cell; 
MAIT, mucosal-associated invariant T cell; PsA, psoriatic arthritis; SpA, spondyloarthritis; Th17, T helper 17 cell; TRM, resident memory T cell.

with SpA, and these levels correlate with PsA disease activity.54 55 
Recently, resident populations of both ILC3 and γδ T cells have 
been identified at the human enthesis for the first time where 
they may produce the IL-17A that drives enthesitis, a key early 
pathological lesion in SpA.56–59 Recent studies have also reported 

increased numbers of IL-17+invariant natural killer T (iNKT) 
cells and γδ T cells in SpA patient peripheral blood.60 Indeed, 
these RORγt+innate like T cells, and not conventional T cells, 
represented about half of all IL-17 producing blood circulating T 
cells and were further skewed towards IL-17 expressing subsets 
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in synovial fluid samples, as determined by both advanced cyto-
metric methodologies and intracellular cytokine IL-17 staining.60 
In vivo evidence for enrichment of pathogenic subsets in the 
joints was recently shown in mannan-induced arthritis in SKG 
mice, an IL-23/17 axis dependent disease.61

Tissue-resident memory T cells (TRM) represent approximately 
50%–70% of the pool of resident T cells in healthy skin, and can 
produce a variety of cytokines, including IL-17A.62–64 In patients 
with psoriasis, IL-17-producing CD8+TRM cells have been iden-
tified in non-involved skin and may be involved in recurrence 
of psoriasis at sites of prior resolution.62–64 Efforts are ongoing 
to investigate the role of TRM cells in tissues affected by SpA. 
A study in patients with PsA has shown the presence of IL-17 
expressing CD4- (CD8+) T cells in the synovium.65 However, 
no studies have been reported in axial disease to date.

Adaptive immune cells are key drivers of chronicity in SpA 
and as such, are also a major source of IL-17A. The presence of 
T helper 17 (Th17) cells in SpA is relatively well established.66 
Increased levels of both Th17 cells and IL-17A are found in 
skin lesions and the blood of patients with psoriasis as well as 
the blood and synovial fluid of patients with AS and PsA.67–75 
IL-17A initiates several feedback-loop mechanisms in SpA 
leading to increased expansion of Th17 cells and thereby further 
production of IL-17A.76 Evidence suggests that there are distinct 
subtypes of Th17 cells whose differentiation is dependent on 
specific combinations of cytokines.77 Furthermore, there is likely 
to be considerable plasticity between Th17 cells and FOXP3+-
regulatory T cells.78 Identification of the subtype(s) of Th17 
cells and their regulation and relevance to axSpA and PsA is an 
important topic of ongoing research.

Although not found in rheumatoid arthritis synovial fluid, 
IL-17A-producing conventional CD8+T cells are present in 
synovial fluid of inflamed joints in patients with AS and PsA where 
their levels correlate with disease activity.71 72 79 IL-17-producing 
mucosal-associated invariant T (MAIT) cells have been identi-
fied in skin and blood from patients with psoriasis80 and are also 
increased in the synovial fluid and blood of patients with AS, 
where they produce IL-17A in an IL-7-dependent fashion.81 82

It has been suggested that neutrophils contribute to the ampli-
fication of the inflammatory response in SpA by producing 
further IL-17A and although IL-17A-positive neutrophils have 
been reported in psoriatic skin, the synovium of patients with 
PsA, and in AS facet joints,83–88 the emerging consensus is that 
neutrophils do not produce IL-17A mRNA or protein, even after 
strong stimulation with various cytokine combinations.89 Simi-
larly, although IL-17A-positive mast cells have been found in 
synovial tissue from patients with SpA,90 the concept is of exog-
enous IL-17A capture and release, as opposed to synthesis.91 
A recent study indicated that levels of IL-17A were higher in 
joint-resident mast cells following IL-17A inhibition, which 
supports the concept of storage of this cytokine under normal 
tissue homoeostasis and mast cell release during inflammation.92

A key research question for the future will be identifying all 
IL-17A-producing populations, especially at the enthesis in SpA. 
It is noteworthy that measurement of serum levels of IL-17A is 
likely to be of minimal relevance due to the local tissue responses 
seen in SpA via IL-17A-producing resident cells.

enthesitis
Considerable recent developments have occurred in experi-
mental enthesitis research where high mechanical stressing at 
entheses is associated with local immune system activation.59 93 94 
Non-SpA-related enthesitis can result from repeated mechanical 

strain in healthy individuals (eg, tennis elbow) and usually 
resolves spontaneously, whereas inflammation in SpA shows 
chronicity.59 The underlying mechanisms behind this patho-
logically exaggerated immune response, which is driven by a 
combination of genetic factors and disturbed epithelial barrier 
function, are starting to be unravelled.59 95–97

Enthesitis is triggered predominantly by an innate immune 
response. Prostaglandin E2 (PGE2) and IL-23 may be important 
early mediators, activating resident immune cells to produce 
IL-17A and other inflammatory cytokines. Indeed, peri-en-
theseal bone involvement and the often excellent responses 
observed with NSAIDs incriminate PGE2 in axial disease.59 In 
mice, hepatic expression of IL-23 induces spondyloarthropathy 
by acting on ROR-γt+CD3+CD4-CD8- entheseal resident T 
cells to produce inflammatory mediators including IL-17A.98 
γ/δ T cells have been shown to constitute the large majority of 
murine IL‐17A producing cells, proliferating at the site of injury, 
and enhancing bone regeneration.99 100 However, although 
enthesitis appears to be a cardinal lesion in several IL-23/17 axis 
murine models of inflammatory arthritis,101–107 other models 
have indicated that disease can arise in a T-cell independent 
manner including that mediated by TNF production from enthe-
seal myeloid and stromal cells.94 108–110

In humans, IL-17A-producing enthesis-resident ILC3 and 
γδ T cells have recently been described.56–58 Resident myeloid 
cells that can locally produce IL-23 have also been described,111 
and their numbers in man may be linked to mechanical load.108 
IL-17A likely acts as an amplifier of enthesitis, inducing several 
other cytokines by resident mesenchymal cells.98 112 113 Prolonged 
entheseal inflammation leads to new bone formation and also, to 
a much lesser extent, bone erosion, and is subject to considerable 
research interest.59

Bone damage
Preclinical and clinical data suggest that bone erosion and new 
bone formation in SpA may occur simultaneously at different 
anatomical sites,114–117 with IL-17A playing a complex role in 
these processes.

Bone erosion
Numerous preclinical studies have indicated that IL-17A 
promotes bone resorption in experimental arthritis.118–121 Recent 
efforts have focused on elucidating the mechanisms behind 
these effects and indicate that IL-17A stimulates receptor acti-
vator of nuclear factor-kB ligand (RANKL) expression and inhi-
bition of Wnt signalling, thereby inhibiting osteoblast activity 
(figure 3).122–128

Clinical data in patients with PsA show a significant reduc-
tion in joint radiographic progression with IL-17A inhibitors 
versus placebo in the short-term and low long-term rates of 
radiographic progression.13 14 129 Furthermore, recent data from 
the PSARTROS study showed no progression of catabolic and 
anabolic bone changes in the joints of patients with PsA treated 
with secukinumab for 24 weeks.130

New bone formation
The precise role of IL-17A in new bone formation in axial SpA 
and PsA is currently unknown, with contradictory experimental 
findings observed. Studies favouring a role in new bone forma-
tion include data from both animal models and human primary 
cells (summarised in figure 3). IL-17A has been reported to boost 
osteogenesis via enhancing osteoblast differentiation from local 
mesenchymal stem cell populations,100 131–133 and the subsequent 
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figure 3 The role of IL-17A in bone erosion and bone formation in spondyloarthritis. Adapted from Schett et al and Gravallese et al[59 223 231]. 
BMP, bone morphogenetic protein; ILC3, type 3 innate lymphoid cell; RANKL, receptor activator of nuclear factor kappa-Β ligand; Th17, T helper 17 
cell.

activation of the osteoblasts via activation of the JAK2/STAT3 
signalling pathway, which is associated with osteogenesis.131 
IL-17A knockout models have been associated with impaired 
bone regeneration at both 14 and 21 days post a drill-hole 
fracture in the femur when compared with wild type mice.100 
Furthermore, in the mycobacterium tuberculosis-induced 
diseased HLA-B27 transgenic rat model of SpA, IL-17A blockade 
significantly suppressed pathological new bone formation.134 In 
humans, IL-17A levels are elevated in the days following frac-
ture, which in turn is associated with callus formation.135

In contradistinction, cutaneous-restricted overexpression 
of IL-17A was associated with bone loss in murine models.136 
Moreover, rat calvarial defects show impaired healing when 
exposed to IL-17A, combined with significant impairments in 
osteogenesis in the isolated cells when exposed to IL-17A.137 In 
vivo, IL-17A is associated with osteoclastogenic activation and 
systemic bone loss in rheumatoid arthritis.122 124 Thus, deter-
mining the role of IL-17A in new bone formation remains an 
important avenue of future research.

pain
The immune system plays a critical role in modulating acute 
and chronic pain in both the peripheral and central nervous 
systems.138 139 Although pain in SpA is often assumed to be 
a surrogate marker for inflammation, evidence is emerging 
to suggest a more complex picture. In axSpA, pain does not 
always correlate with inflammation or radiographic measures of 
disease.140 Furthermore, neuropathic pain as well as inflamma-
tory pain has been observed in patients with AS and PsA.141 142

IL-17A can modulate inflammatory pain by directly increasing 
nociceptor excitability and potentiating hyperalgesia through 
the induction of secondary factors.139 143–146 Both IL-17RA and 
IL-17RC are expressed in murine neuronal tissue where they 
contribute to inflammatory responses.147 148 Preclinical studies 
also suggests a role for IL-17A in neuropathic pain.149–152 Clin-
ical data with inhibitors of IL-17A in AS and PsA show rapid and 

significant pain reduction,153 154 but work to assess whether this 
represents a reduction in neuropathic as well as inflammatory 
pain is needed.

gut inflammation in SpA
The role of IL-17A in IBD and its potential link to the patho-
genesis of axSpA and PsA has been the subject of some contro-
versy. Historically, preclinical data investigating the outcome of 
IL-17A inhibition in mouse IBD models have been inconsistent, 
with some studies showing disease protection and others showing 
exacerbation.155 156 Clinically, IL-17A inhibition was ineffective in 
moderate-to-severe Crohn’s disease.20 Long-term clinical trial and 
postmarketing safety data in psoriasis, PsA and AS indicate that the 
overall incidence of IBD is low, within the expected range in these 
disorders, and not exacerbated by secukinumab treatment.157 This 
highlights one of the pitfalls of translating preclinical data to a 
clinical setting and has led researchers to reconsider the preclinical 
IBD models. Nevertheless, long-term data with IL-17A inhibitors 
in clinical practice are required to investigate this issue further.

The γδ T cell was the principal source of gut-derived IL-17A 
in a mouse model of colitis, where IL-17A-dependent regulation 
of the tight junction protein occludin during epithelial injury was 
shown to maintain barrier integrity.158 Mucosal tissues have also 
emerged as a key physiological site for the differentiation and 
regulation of Th17 cells.77 159 160 A role for ILC3 and innate-like 
T cells such as iNKT cells and MAIT cells in IBD is also postu-
lated based on their high representation at barrier sites.161–163 
Putative links have also been suggested between gut inflamma-
tion, migration and accumulation of IL-17A-producing ILC3 
cells in the joints of patients with AS.164 A recent study also found 
that pathogenic bacteria can induce intestinal barrier defects and 
translocate to systemic organs, triggering autoimmune disease.165

Uveitis
Like IBD, anterior uveitis in SpA shares common genetic risk 
factors and the involvement of certain pro-inflammatory 
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figure 4 Summary of clinical efficacy with IL-17A inhibitors in spondyloarthritis. aNo efficacy shown with secukinumab in non-infectious uveitis; 
not investigated in anterior uveitis, the form of the disease most common in patients with spondyloarthritis. AS, ankylosing spondylitis; PsA, psoriatic 
arthritis; SpA, spondyloarthritis.

cytokines. Clinical trials have demonstrated the efficacy of 
anti-TNF monoclonal antibody therapy in panuveitis or poste-
rior uveitis but clinical trials with inhibitors of IL-17A have failed 
to meet their primary endpoints for these forms of the disease 
that are pathophysiologically distinct from anterior uveitis.21 
Both IL-17A and IL-17F have been detected in anterior uveitis 
(reviewed in Weinstein and Pepple), but whether they play a 
critical role is unclear.166 In secukinumab-treated AS patients 
there was no evidence suggesting uveitis flares in patients with 
previous anterior uveitis.167 Further research is required to 
extend our understanding of the precise role of IL-17A in the 
pathogenesis of anterior uveitis.

TARgeTINg IL-17A IN SpA
The key role played by IL-17A in the pathogenesis of AS and PsA 
is highlighted by the efficacy shown by inhibitors of IL-17A in 
clinical trials. Secukinumab, a fully human anti-IL-17A mono-
clonal antibody, is approved for the treatment of psoriasis, 
PsA and AS based on the results of several large randomised 
controlled trials.12–16 168 Ixekizumab, a humanised anti-IL-17A 
antibody, is approved for the treatment of psoriasis and PsA 
and has shown significant efficacy in two large phase III trials 
in AS.17–19 169 170 The efficacy of IL-17A inhibitors across all 
manifestations of disease in AS and PsA, including skin, nails, 
peripheral arthritis, axial disease, dactylitis and enthesitis, 
highlights the utility of drugs targeting this pathway (figure 4). 
Inhibitors of IL-17A have also been shown to have an overall 
favourable long-term safety profile in clinical trials,32 33 35 
including low rates of serious infections, Candida infections 

and malignancy, with no evidence of increased suicidality 
or IBD exacerbation above expected background levels.157 
Nevertheless, the long-term safety of IL-17A inhibitors will 
need to be monitored in a real-world setting.

WHAT IS THe BASIS fOR DIveRgeNT IL-17A AND IL-23 
ReSpONSeS IN AxIAL DISeASe?
IL-23 plays a key role in amplifying and maintaining IL-17A 
production in many cells, so it was expected that IL-23 inhib-
itor therapy would have similar results to IL-17A inhibition 
in axSpA. Interestingly, clinical studies with ustekinumab, an 
IL-12/-23 inhibitor, in axial SpA were terminated due to lack 
of efficacy171 and the IL-23 p19 inhibitor risankizumab also 
failed to show efficacy in AS in a phase II proof of concept 
study.172 Conversely, the efficacy of IL-17A inhibition in AS 
suggests that IL-17A and not IL-23 is the major cytokine 
mediating disease pathogenesis in axSpA and in this context, 
IL-17A is likely to be produced in a largely IL-23-indepen-
dent manner. Understanding the reasons for these divergent 
roles of IL-23 and IL-17A in the pathophysiology of axSpA is 
one of the hottest topics in current IL-17A research. Emerging 
evidence suggests there may be anatomical and immunolog-
ical differences between axial and peripheral enthesitis and 
subsequent downstream disease manifestations (figure 5). For 
instance, there is generally more entheseal soft tissue inflam-
mation or synovio-entheseal complex disease in peripheral 
enthesitis in PsA,173 and more peri-entheseal osteitis in the 
spine in AS, with this bone proclivity being linked to carriage 
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figure 5 Emergent scheme to explain IL-23/–17 axis pathway divergence in PsA and AS. IL-23 pathway blockade is highly effective in psoriasis but 
not in AS, which is unexpected given the IL-23 SNPs and related gene SNPs associated with AS. Anatomical differences between entheses in the spine 
versus peripheral joints could play a role (A). The peripheral skeleton has numerous synovio-entheseal complexes,173 which contain abundant myeloid 
cells, while these cells are rare in the spine. Spinal enthesitis is also associated with peri-entheseal bone disease and osteitis.59 173 238 The role of 
inflammatory cytokines, namely IL-23, IL-17A and TNFα, also differs across the spondyloarthritidies (B).12 14–16 167 168 172 239–248 IL-17A can be produced 
by several different sources in spinal entheses (C).56–59 74 75 81 82 99 100 158 175 249 Emerging evidence supports the cellular basis for IL-17 production that 
is independent of IL-23.56 57 158 175 Animal models also show that IL-23 has a redundant role once adaptive immunity is primed.175 Where ++, strong 
involvement; +, involvement; –, no involvement. AS, ankylosing spondylitis; γδT, gamma delta T cells; HLA-B27, human leucocyte antigen B27; IL-17A, 
interleukin 17A; IL-23, interleukin 23; ILC3, Type three innate lymphoid cells; iNKT, innate natural killer T cell; MAIT, mucosal associated invariant T cell; 
MSCs, mesenchymal stem cells; PsA, psoriatic arthritis; PsO, psoriasis; Tc17, CD8+T cells; Th17, T helper 17 cells; TNF, tumour necrosis factor α.
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of the HLA-B27 gene for axial disease.174 In terms of control 
of IL-17 production, IL-23 receptor positive and negative 
subpopulations of γδ T cells have been identified in human 
spinous processes entheses, pointing to a role for IL-23-inde-
pendent IL-17A production,57 and enthesis-resident myeloid 
cells are capable of IL-23 production locally.111 Further 
research is required to investigate the drivers of this process 
in the future although data in mice indicate that the initiation, 
but not the persistence, of experimental SpA is dependent on 
IL-23.175

CONCLUSION
The IL-17A inhibitors show efficacy in treating multiple facets 
of SpA, including psoriasis, enthesitis, synovitis, bone erosion, 
new bone formation and pain, which illustrates the impor-
tance of IL-17A in disease pathophysiology. Future research 
will investigate key remaining gaps, such as the role of human 
enthesis-resident innate and adaptive T cells in SpA and our 
understanding of IL-23-independent IL-17A production. 
The ongoing assessment of IL-17A inhibitors in a real-world 
setting will also be important as these agents become more 
widely prescribed in clinical practice. Ongoing research efforts 
will attempt to answer these and other open questions and 
shed further light on the role of IL-17A in SpA in the hope 
of furthering our understanding and improving treatment of 
these diseases.
Correction notice This article has been corrected since it published Online First. 
The last sentence in the second paragraph of the ’Well-defined role of IL-17A in host 
defence’ section has been updated for clarity.
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