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Quantum dissipative systems beyond the standard harmonic model: features

of linear absorption and dynamics
Luke D. Smith1, a) and Arend G. Dijkstra1, 2, b)
1)School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
2)School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

Current simulations of ultraviolet-visible absorption lineshapes, and dynamics of condensed phase systems,
largely adopt a harmonic description to model vibrations. Often, this involves a model of displaced harmonic
oscillators that have the same curvature. Although convenient, for many realistic molecular systems this
approximation no longer suffices. We elucidate non-standard harmonic, and anharmonic effects, on linear
absorption and dynamics using a stochastic Schrödinger equation approach to account for the environment.
Firstly, a harmonic oscillator model with ground and excited potentials that differ in curvature is utilised.
Using this model, it is shown that curvature difference gives rise to an additional sub-structure in the vi-
bronic progression of absorption spectra. This effect is explained, and subsequently quantified, via a derived
expression for the Franck-Condon coefficients. Subsequently, anharmonic features in dissipative systems are
studied, using a Morse potential, and parameters that correspond to the diatomic molecule H2 for differing
displacements and environment interaction. Lastly using a model potential, the population dynamics and
absorption spectra for the stiff-stilbene photoswitch is presented and features are explained by a combination
of curvature difference and anharmonicity in the form of potential energy barriers on the excited potential.

I. INTRODUCTION

The quantum dynamics of a system interacting with
an environment is important in many fields of research.
Prominent examples of this are found in excitonic en-
ergy transport in photosynthesis1–11 and the photoiso-
merisation event of molecular photoswitches12–14, a key
feature in the primary step of vision15–22. The pres-
ence of the environment, which could be the solution in
which a chemical reaction occurs or a protein, introduces
the effects of relaxation and dephasing23. As a result,
wavepacket dynamics along a potential energy surface
are altered from the closed system evolution, as defined
by the Schrödinger equation. In addition to the inter-
action with the environment, the shape of the potential
itself is also key in determining the quantum dynamics.
Commonly, theoretical approaches to open quantum

systems approximate vibrational degrees of freedom of
the environment with harmonic oscillators. This approx-
imation results in evenly spaced energy levels, and repre-
sents gaussian fluctuations in the weak coupling regime24.
Although the harmonic model is a common choice, molec-
ular potentials are, in general, anharmonic and there
are many examples that exhibit significant anharmonic-
ity such as light-harvesting and photosynthesis25–27,
photoswitches12, and small molecules28,29. The feature of
anharmonicity can also become pronounced when there
is a large displacement between the ground and excited
state potentials involving a large nuclear motion. In such
cases, parts of the potential far from equilibrium may be
explored, and the harmonic approximation is less likely
to hold.

a)cmlds@leeds.ac.uk
b)A.G.Dijkstra@leeds.ac.uk

Treatment of anharmonic behaviour has been tack-
led by stochastic environments30,31, molecular dynam-
ics simulations32–34, and by including anharmonicity in
the system potential35–37. An extension of a stochastic
theory to study generic quantum environments has also
been proposed38. In this study we use anharmonic sys-
tem potentials whilst also including an interacting envi-
ronment via the stochastic Schrödinger equation23,39,40.
Similarly, there is the quantum jump method capable of
simulating nonadiabatic dynamics41 and methods of sim-
ulating conical intersection dynamics in the condensed
phase42. Many other such open quantum system meth-
ods exist43 each with their respective advantages and a
review has been produced by Breuer44, and also by de
Vega45. Alternatively, there exist ab initio methods, such
as the Multiconfigurational Ehrenfest (MCE) method46

that provides treatment of a large number of quantum
nuclear degrees of freedom. In addition to this, there is
the ab initio multiple cloning (AIMC) method47, which is
capable of simulating ultrafast excited state quantum dy-
namics following photo-absorption. There are also semi-
classical methods available for studying large systems
with anharmonicity48,49.

The roots of modelling anharmonicity can be found in
the work of Osad’ko, and Skinner and Hsu50,51. In addi-
tion, Tanimura used a treatment first via perturbation to
harmonic potentials52 and subsequently conducted stud-
ies with Morse potentials53. Anharmonicity and its ef-
fects can manifest itself in numerous ways. The shape of
the entire potential can be important, as in the case of the
Morse potential and generally in the case of polynomial
potentials35. Additionally, displaced harmonic oscillators
that have different curvatures are accredited with giving
rise to non-standard spectral features36,54. Another fea-
ture is related to finer details of the potential, such as
barriers that perturb the energy levels, and give rise to
local minima which can trap the wavepacket. Realistic
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FIG. 1. Model potential energy surface of stiff-stilbene in
hexane as a function of the torsional coordinate θ. The ground
PES is represented by the curve S0 and the excited PES by
S1. For comparison, a displaced harmonic oscillator model
with differing curvatures, that approximates the stiff-stilbene
PES, is represented by the black dashed lines. Light vertically
excites the trans ground state at θ = 0 to the excited state
at approximately 3.5 eV. Subsequent rotation to θ = 0.5π
takes it to the perpendicular conformation P , where there is
a crossing point. Further rotation to θ = π leads to the cis
conformation. Two important features are the presence of
potential energy barriers on the excited state at θ = 0.3π and
θ = 0.7π, and the large difference in curvature of ground and
excited potentials.

systems, in the condensed phase, can include an interplay
of all these features in addition to the interaction with
the environment.
The presence of anharmonicity can have interesting ef-

fects on wavepacket dynamics. In the case of the Morse
oscillator as displacement is increased, and anharmonic
effects become more prevalent, a new phenomenon arises.
The amplitude of oscillations of the expectation value
of the position operator decreases to near zero and af-
ter a period of time revives to the near initial oscilla-
tion behaviour29,55,56. Such features can be observed in
absorption and emission spectra, and also time-resolved
nonlinear spectroscopies.
Various effects have been reported in absorption and

emission spectra, such as mirror-symmetry breaking be-
tween absorption and fluorescence, and splitting of the
zero phonon and one phonon peak35. In Two-dimensional
(2D)57 the analogues of these effects have been stud-
ied as well as those not identified by linear spectra36.
Also, 2D studies have been carried out on skewed spec-
tral lineshapes resulting from non-Gaussian dynamics58.
Additionally, it has been shown that the ratio between
selected cross peaks provides a measure of vibrational
anharmonicity and other experimental indicators are
possible37. The recently introduced Vibrationally Pro-

moted Electronic Resonance (VIPER) experiment59,60, a
combined electronic-vibrational spectroscopy technique,
offers new ways of probing and controlling molecular sys-
tems. A required effect for the VIPER experiment is
typically most pronounced when there is large displace-
ment upon electronic transition as featured in the studies
of this paper. Experimental studies have also been con-
ducted using photoelectron spectroscopy to investigate
the role of aqueous environments on electronic structure
and relaxation dynamics61.

It is known that spectral features may be broadened by
the presence of an environment. A question remains as
to how anharmonic and dissipative effects interplay, and
the impact on the well known displaced harmonic oscil-
lator model relations for absorption spectra. Systems in
which this might be particularly important include pho-
toswitches, where there can be large displacements, and
many of the stated features in the potential. An exam-
ple of this is found in the stiff-stilbene potential energy
surface (PES) shown in Fig. 1, for which there is a large
difference in curvature on ground and excited potentials,
and potential energy barriers on the excited potential
which shift energy levels away from the harmonic ap-
proximation. These effects can be crucial in identifying
spectral observables, wavepacket dynamics, and quantum
yields.

In this paper we investigate the effects of anharmonic-
ity and differing curvature, in the presence of an envi-
ronment, on linear absorption spectra and wavepacket
dynamics. To demonstrate relevance to a molecular sys-
tem, absorption spectra and dynamics are generated us-
ing the stiff-stilbene PES of Fig. 1. These results are
analysed using phenomena identified with model stud-
ies. We begin in Sec. II A by introducing the photoexci-
tation model. Following this, treatment of the environ-
ment using the stochastic Schrödinger equation is dis-
cussed in Sec. II B. The theory of linear absorption is then
described in Sec. II C. In Sec. III A we present the results
of the harmonic differing curvature model, the result-
ing sub-structure in the vibronic progression, and Franck
Condon coefficients that quantify this. Subsequently, in
Sec. III B we present the results for the Morse oscillator,
which demonstrates the sensitivity of spectral lineshape
of anharmonic systems due to asymmetric broadening
caused by dissipation. In Sec. IV we present population
dynamics and absorption spectra, for a model potential
energy surface of the stiff-stilbene photoswitch, using the
results of the previous sections to explain spectral fea-
tures. The concluding remarks are then given in Sec.V.

II. THEORY

A. Model

Throughout the paper we make use of electronic two-
level systems, interacting with a bath, that depend on a
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single coordinate. The total Hamiltonian is given by23

H = HS +HB +HI , (1)

where HB represents the heat bath, HI is the interaction
between system and bath, and the two-level system is
represented by

HS = Hg|g〉〈g|+He|e〉〈e|+ J(|g〉〈e|+ |e〉〈g|), (2)

where |g〉 and |e〉 represent ground and excited states
respectively and

Hg =− ~
2

2m

∂2

∂x2
+ S0(x) (3)

He =E1 −
~
2

2m

∂2

∂x2
+ S1(x). (4)

The coordinate of interest is represented by x, the mo-
mentum is given in terms of this coordinate and the mass
m, S0(x) and S1(x) represent the ground and excited
PESs, J is the coupling between them, and E1 provides
the energy difference between the minima of the ground
and excited state potentials. For simplicity, we assume
that J is independent of x. HB and HI describe the re-
maining environment degrees of freedom, and interaction
with the system, which give rise to the effects of relax-
ation and dephasing. A common choice of PES, is the
harmonic potential

Si(x) =
1

2
mω2

i (x−∆xi)
2 + Ei, (5)

where the harmonic frequency is given by ωi, and ∆xi
represents the displacement from the ground state poten-
tial. Also, a well known anharmonic PES is the Morse
potential

VM (x) = De(1− e−β(x−∆x))2, (6)

where De is the well depth defined relative to the dissoci-
ation energy, and β is associated with the width. Figure 1
shows the developed model PES for stiff-stilbene in hex-
ane which is used in Sec. IV of the paper. This has been
produced using a fit to TD-DFT results62 to correspond
with values of the energies of the trans excitation and
energy at the perpendicular conformation. A schematic
potential12,63 has also been used as inspiration for fea-
tures such as the double well ground PES and provides
potential energy barrier heights. The ground potential
surface is given by,

S0(θ) =
1

2
(EP − (λg − µg))(1− cos(2θ)) + S01(θ), (7)

where EP = 3.2 eV is the energy on the S0(θ) potential at
the perpendicular conformation, for which θ = 0.5, and
λg, µg, and S01(θ) are involved in the confining well. The
full description is provided in Appendix A. The excited
potential surface is given by,

S1(θ) =ET + ηe(cos(6θ)− 1)

+ S11(θ) + S12(θ) + S13(θ), (8)

where ET is the energy on the S1(θ) surface at the trans
conformation θ = 0, and the second term defines three
wells and two barriers in the region 0 ≤ θ ≤ π with a
height of 2ηe. S11(θ) defines a confining well, S12(θ) al-
lows further control over the well depth in the region 0 ≤
θ ≤ π, and S13(θ) allows control over the relative heights
of the barriers. Using this model the barrier heights are
chosen to be EB1 = 0.0806 eV and EB2 = 0.105 eV for
the trans and cis barriers respectively63. Further detail
on these terms is provided in Appendix A. Thus far the
given description in Eq. (1) is general, details about the
bath have not been specified and shall be discussed in
the next section.

B. Stochastic Schrödinger equation

In the previous section a description of the two-level
system with coupling was given, along with examples
of system Hamiltonians used. We now provide the de-
scription of the bath and how it is incorporated via the
stochastic Schrödinger equation (SSE). It is common to
model the environment as a heat bath consisting of har-
monic oscillators such that39,40

HB = ~

∫ ∞

−∞

dω ωb†(ω)b(ω), (9)

and

HI = i~

∫ ∞

−∞

dω κ(ω)[b†(ω)L− L†b(ω)], (10)

where b(ω) are boson annihilation operators for the bath
that have the relation

[

b(ω), b†(ω)
]

= δ(ω − ω′), (11)

where L is a system operator, and κ(ω) represents the
strength of the coupling of the bath modes to the sys-
tem. In this formalism the rotating wave approximation
has been made and the approximation that the range of
ω in the integrals is (−∞,∞). Additionally, an approxi-
mation commonly called the first Markov approximation
is often made in which the coupling constant is assumed
independent of the frequency such that

κ(ω) =

√

γ

2π
. (12)

Under these approximations it is possible to derive the
linear Itô stochastic Schrödinger equation39

d|Ψ(t)〉 =
(

(

− i

~
HS − 1

2
γL†L

)

dt (13)

+
√
γdB†(t)L−√

γdB(t)L†

)

|Ψ(t)〉, (14)
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where dB(t) = B(t+ dt)−B(t) and

B(t) =

∫ t

0

b(s)ds. (15)

In the low temperature regime we consider |Ψ(0)〉 =
|ψ〉 ⊗ |0〉, where |0〉 is the vacuum state for all bath
annihilation operators in the bath Hilbert space, corre-
sponding to a zero temperature approximation. Thus
dB(t)|Ψ(t)〉 = 0 and the linear Itô stochastic Schrödinger
equation reduces to the form

d|Ψ(t)〉 =
(

(

− i

~
HS − 1

2
γL†L

)

dt+
√
γdB†(t)L

)

|Ψ(t)〉,

(16)

For a full derivation of the linear SSE see Ref. 39. Ad-
ditional temperature effects may be included by map-
ping the zero-temperature case using the thermofield
method64–67. However, this is beyond the scope of the
current paper and shall be included in future studies.
The linear form of the equation has some drawbacks
for numerical simulation. In particular, the norm of
the states generated via this evolution can become very
small68. However, a non-linear version of the equation,
which is suitable for numerical simulations, may be de-
rived with the linear form as a starting point69. Thus
under the aforementioned approximations, a quantum
white noise formalism is obtained and a non-linear Itô
stochastic Schrödinger equation may be defined as23,39

d|ψ(t)〉 = D1[|ψ(t)〉]dt+D2[|ψ(t)〉]dW (t), (17)

in which dW (t) is a Wiener process, and D1 is called the
drift term, given by

D1[|ψ(t)〉] =− i

~
HS |ψ(t)〉

+
γ

2

(

〈L+ L†〉ψL

− L†L− 1

4
〈L+ L†〉2ψ

)

|ψ(t)〉, (18)

where L and L† are system operators called Lindblad (or
jump) operators, γ quantifies the strength of coupling to
the bath, and 〈L+L†〉ψ is concise notation for 〈ψ(t)|L+
L†|ψ(t)〉. D2 is the diffusion term, which is given by

D2[|ψ(t)〉] =
√
γ
(

L− 1

2
〈L+ L†〉ψ

)

|ψ(t)〉. (19)

The Wiener process must represent independent Gaus-
sian random variables, with zero mean, and a variance of
∆t. This is satisfied if

∆Wk =
√
∆tξk, (20)

where ∆Wk, and ∆t, represent discretisations of the
Wiener process and time respectively, and ξk is a Gaus-
sian distributed random variable that has a mean of zero

and unit variance. The closed system evolution of |ψ(t)〉
is represented by the first term in D1[|ψ(t)〉], whereas the
open system is incorporated through the additional terms
and Lindblad operators. It should be noted that for sim-
plicity the above equations include interaction defined
by a single Lindblad operator only, though the extension
to multiple interactions is possible. With regard to the
open system terms, the drift term represents the drift of
the state vector, and the diffusion term represents the
random fluctuations due to the interaction of the system
with the environment70. Equation 17 is also known as
a quantum state diffusion equation and is a Markovian
SSE that can be obtained as a stochastic unravelling71

of the density matrix equation given by the Markovian
Lindblad master equation (LME)23

d

dt
ρ(t) = − i

~
[HS , ρ(t)]

+γ
(

Lρ(t)L† − 1

2
L†Lρ(t)− 1

2
ρ(t)L†L

)

. (21)

Furthermore, the mean of the solutions of the SSE equals
the reduced density matrix

ρ(t) = E[|ψ(t)〉〈ψ(t)|]. (22)

In addition, operator expectation values follow a similar
relationship

〈A〉ρ(t) = Tr{Aρ(t)} = E[〈ψ(t)|A|ψ(t)〉]. (23)

Therefore, it also follows that in the mean normalisation
is preserved but individual realisations may fluctuate72.
The Lindblad equation is a simple example of an equation
of motion for a reduced density matrix. Although many
successful density matrix studies have been carried out
which include the effect of the bath in detail73, it is still of
interest to develop wave function based methods because
of reduced computational cost for multi-dimensional sys-
tems. An advantage of the SSE approach is that for
a state space of dimension d the state vector requires
only d complex numbers to define it whereas density
matrix approaches require d2/2. Such a reduction be-
comes important when considering systems with more
degrees of freedom as may be required for photoswitch
systems that have multiple coordinates that are relevant
to the photoisomerisation mechanism. Additionally, the
method has possible extensions to non-Markovian treat-
ments of the environment through the hierarchy of pure
states (HOPS) approach64, or alternative wave function
based approaches such as the hierarchical Schrödinger
equations of motion (HSEOM) approach74.
To formulate the SSE and the LME only the Hamil-

tonian and the Lindblad operators are required. The
choice of the Lindblad operators is arbitrary, up to the
requirement of being a system operator, and is chosen to
represent desired phenomena75. A common case is relax-
ation through resonant energy transfer between system
and bath, for which the Lindblad operators are chosen to
be the creation and annihilation operators of the systems
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manifold. One such example is the case of a damped
quantum harmonic oscillator for which L = a where a
represents the lowering ladder operator for the harmonic
oscillator44,71. Similarly, in this research we choose the
Lindblad operator to be a lowering operator in order to to
generate damped dynamics on respective PESs such that
the system relaxes to the lowest vibrational eigenstate on
each PES.
To simulate the stochastic Schrödinger equation an ap-

propriate numerical method that can solve stochastic dif-
ferential equations must be implemented. We make use of
an extension of the fourth-order Runge-Kutta scheme23,
and apply it to the SSE. This is performed, on the
wavepacket dynamics, for many iterations of the stochas-
tic process, and a Monte Carlo average is taken.

C. Linear absorption spectra

A useful tool to experimentally study the simultane-
ous transitions between molecular electronic states and
vibrations is optical spectra76,77. Linear absorption spec-
tra is viewed as an elementary experiment that allows
the elucidation of vibronic structure. Utilising the model
system of section IIA we assume that we have two po-
tential energy surfaces S0(x) and S1(x), dependent on
a coordinate x, and a displacement between them ∆x.
The object of interest for the calculation of absorption
spectra is the dipole correlation function

Cµµ(t) = 〈µ̄(t)µ̄(0)〉, (24)

where the dipole operator is given by

µ̄ = |g〉µge〈e|+ |e〉µeg〈g|, (25)

for which the Condon approximation has been made.
This approximation assumes that the dipole operator has
no nuclear dependence and only acts on the electronic
states. The implication is that electronic transitions oc-
cur without a change of nuclear coordinate and the shape
of the wavepacket remains unchanged, this is commonly
known as a vertical transition due to how it looks on a
potential energy diagram78.

An important component of the correlation function,
is given by the dephasing function79,80

F (t) = 〈ψg(t)|ψe(t)〉, (26)

where 〈ψg(t)| is a wavepacket on the ground potential
and |ψe(t)〉 is a wavepacket on the excited potential. It is
assumed that at t = 0 the ground state wavepacket is ver-
tically excited such that |ψe(0)〉 = |ψg(0)〉, the wavepack-
ets then evolve on respective PESs to time t. This for-
mula makes no assumption on the form of the potential
and can be calculated if the nuclear dynamics on ground
and excited state surfaces are known. The relation be-
tween the dipole correlation and dephasing functions is
such that

Cµµ(t) = |µeg|2e−iωegtF (t), (27)

where ~ωeg, in the standard displaced harmonic oscilla-
tor model, is commonly defined as the energy difference
between the minima of potentials. The absorption line-
shape is then simply the Fourier transform of the dipole
correlation function76

σabs(ω) =

∫ ∞

−∞

dt eiωtCµµ(t)

=|µeg|2
∫ ∞

−∞

dt ei(ω−ωeg)tF (t). (28)

The spectrum produced by this has a progression of ab-
sorption peaks from the peak centred at ωeg, which rep-
resents the 0-0 transition and is often called the zero-
phonon line (ZPL). The shape and intensity of the pro-
gression depends on the displacement ∆x of the PES.
Specifically, the Huang-Rhys factor D quantifies the cou-
pling strength of the electronic states to the nuclear de-
gree of freedom and is defined as

D = ∆x2
mωg
2~

. (29)

For the displaced harmonic oscillator the Franck-
Condon principle dictates a well defined relationship be-
tween the Huang-Rhys parameter D and vibronic tran-
sitions observed in linear absorption spectra. For D = 0
one peak is observed corresponding to the electronic en-
ergy gap ωeg. In the weak regime D < 1, the dependence
of the energy gap on the coordinate x is low such that
the ZPL is seen as the peak with the largest amplitude.
Additionally, the amplitude of the vibronic progression
falls off as Dn/(n + 1), where n refers to the eigenstate
number. Finally, in the strong regime D > 1, the peak
with the most amplitude corresponds to n = D such
that upon excitation from the ground state the average
number of vibrational quanta is equal to the Huang-Rhys
parameter.

III. MODEL STUDIES OF CURVATURE DIFFERENCE

AND ANHARMONICITY

A. Harmonic oscillator with differing curvatures

One of the notable features of the stiff-stilbene PES of
Fig. 1 is the large difference in curvature of ground and
excited potentials. To isolate, and illustrate, the effect
this may have on absorption spectra we utilise a model
that has harmonic ground and excited potentials that
differ in curvature. We will refer to this as the harmonic
differing curvature model, and we shall refer to harmonic
potentials with equal curvature as the standard harmonic
model. For the harmonic differing curvature model, a
previous study by Fidler and Engel54 has found that the
location of the absorption peak maximum, and the ab-
sorption width, are dependent on curvature difference.
Specifically, for a shallower excited state, the location of
the absorption peak maximum will slightly shift to lower
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FIG. 2. Franck-Condon coefficients for the standard harmonic
model (black dashed line) and differing curvature model (blue
line) for (a) the case of no displacement and (b) displaced
potentials. Notably, in the displaced and un-displaced cases,
there is an additional vibronic sub-structure for the differing
curvature model, not present in the standard harmonic model.
Additionally, for the displaced case, there is a shift in the
peak of the main progression to larger n and the width of the
progression decreases.

frequencies, whilst the peak width will decrease. Ad-
ditionally, a four level system which features harmonic
PESs with differing curvature has been studied81.

In this study we lift the restriction of modest curva-
ture difference and displacement of the excited state PES,
which are not valid assumptions for some photoswitches
such as stiff-stilbene, to show that new features arise in
absorption spectra. To allow focus on the effect of cur-
vature difference, spectral broadening effects of the en-
vironment, with this model, will not be included in this
section, and instead presented in Sec. IV. Under these
circumstances the Franck-Condon principle explains the
intensity of vibronic transitions that are shown in absorp-
tion spectra. This principle states that upon excitation,
and associated electronic transition, a change from one
vibrational energy level to another is dependent on the

overlap of the nuclear wavefunctions, and more likely to
occur if the overlap is significant. According to this prin-
ciple, the amplitude of absorption peaks are given by the
Frank-Condon coefficients

|〈ψn=0
g |ψne 〉|2, (30)

where n represents the vibrational state of the nuclear
wavepacket, n = 0 represents the vibrational ground
state wavepacket, and g and e represent the ground and
excited electronic wavepackets respectively. This expres-
sion represents the overlap between the ground electronic
state in the lowest vibrational state, and the excited elec-
tronic state in the nth vibrational state. The assump-
tion that the ground state electronic wavepacket is in
the lowest vibrational state holds for the low tempera-
ture regime, in particular it is valid for room temper-
ature at 298 K. In this case, the expression represents
the intensities of peaks in low temperature absorption
spectra. Franck-Condon coefficients for the standard dis-
placed harmonic oscillator are well known and show a de-
pendence on the Huang-Rhys parameter. For D = 0 only
one peak is expected corresponding to the coefficient

|〈ψn=0
g |ψn=0

e 〉|2 = 1. (31)

The peak intensity, corresponding to the respective
Franck-Condon coefficient, is shown in Fig. 2a, where the
standard harmonic case (black dashed line) is compared
to the harmonic potentials with differing curvatures (blue
line). Interestingly whilst in the standard harmonic case

FIG. 3. The nuclear wavefunctions for the ground and ex-
cited potentials are represented by the dashed and solid lines
respectively. For the differing curvature model (green dashed
line) the overlap is sensitive to individual oscillations of wave-
functions on the excited potential. For x = 0, if the excited
state vibrational wavefunction |ψn

e 〉 is close to a local minima
or maxima, as in the case of n = 40, the overlap is mainly
constructive and leads to the large intensity parts of Fig. 2.
The converse effect happens if at x = 0, |ψn

e 〉 is close to 0, as
in the case of n = 38.
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there is only one peak at n = 0, in the harmonic with dif-
fering curvatures model a decaying progression of peaks
is observed for even n, and the peak intensity is 0 for
odd n. In the more general case that allows for non-
zero displacement the Franck-Condon coefficient for the
standard harmonic model is given by

|〈ψn=0
g |ψne 〉|2 = e−D

Dn

n!
, (32)

where the intensity is dependent on the Huang-Rhys pa-
rameter D. In Fig. 2b, for whichD = 30 and ωg = ωe = 1,
this relation is seen to give rise to a Gaussian profile
(black dashed line), centered at the Franck-Condon verti-
cal transition. The largest intensity peak is at n = 30 and
thus D can be associated with the mean number of vi-
brational quanta excited for |ψe〉. Comparing this to the
harmonic differing curvature model, with ωg = 10ωe and
ωe = 1, there are three notable differences. Firstly, the
width of the main vibronic progression decreases and the
intensity of central peaks increases. Secondly, the largest
intensity peak shifts from n = 30 to n > 30. Last but not
least, there is the appearance of a number of smaller in-
tensity vibronic progressions that occur at larger n than
the main vibronic progression, and these decay to zero as
n increases. Owing to the sub-structure nature of these
progressions, we name this feature the sub-structure vi-
bronic progression or s-progression for short.
Figure 3 allows insight into the appearance of the s-

progression. Three excited state vibrational wavefunc-
tions |ψne 〉 are plotted corresponding to n = 38, 39 and
n = 40, this is compared to the ground state wavefunc-
tion |ψn=0

g 〉 for the standard harmonic model ωg = ωe
and the differing curvature model ωg > ωe. The vibra-
tional state numbers are chosen to correspond to where
the first progression in the s-progression starts at ap-
proximately n = 38 and to where it is at its maximum
intensity at n = 40. From this it can be seen that the
narrow width of the ground wavefunction of the differing
curvature model overlaps with close to only one of the os-
cillations of the excited state vibrational wavefunctions.
As a result, the overlap is sensitive to whether, at x = 0,
the excited state vibrational wavefunction |ψne 〉 is close to
a local minima, maxima, or close to zero. For n = 38, the
peak of |ψn=0

g 〉, located at x = 0, is nearly aligned with a

point where |ψn=38
e 〉 = 0, thus the overlap largely cancels

and the Franck-Condon coefficient becomes close to zero.
For n = 40 the peak of the |ψn=0

g 〉 is nearly aligned with

a local minima of |ψn=40
e 〉, this results in a overlap that

is large and thus this part of the s-progression is at its
maximum intensity. In comparison, |ψn=0

g 〉 in the stan-
dard harmonic model has a large width and does not pick
out the fine structure of individual oscillations, therefore
the effect is averaged out.
The decay of the progression can also be understood

through this figure, as n increases the oscillations of |ψne 〉,
in the region of overlap, become closer together and equal
in amplitude. For large n the width of |ψn=0

g 〉 in the dif-
fering curvature model no longer isolates individual oscil-

lations and the effect decays to zero, as in the standard
harmonic model. The shift of the main vibronic progres-
sion to larger n can also be understood by Fig. 3. The
overlap occurs first at the edges of |ψne 〉, and as the width
of the differing curvature model is much less than in the
standard harmonic model a larger n is required before
any overlap is achieved. The decrease in width of the
main vibronic progression is also due to overlap with in-
dividual oscillations and the small width of |ψn=0

g 〉, as
the overlap increases and decreases more rapidly with
increasing n.
Three features have thus far been identified, a shift of

the main vibronic progression to larger n, a decrease in
the width of the main progression, and the appearance
of an s-progression. These have been explained with the
help of Fig. 3 that shows the relative overlap. We now
derive and present analytic expressions for the Franck-
Condon coefficients that quantify these features and pro-
vide deeper insight into their appearance. We start with
the case of D = 0, where details of the derivation are con-
tained in Appendix B. For the differing curvature model,
the ground state wavefunction is given by

|ψn=0
g 〉 = Ng exp

(

− 1

2
αgx

2

)

, (33)

where

Ng =
(αg
π

)1/4

, (34)

and

αg =
mωg
~

, (35)

where, ωg is the angular frequency of the electronic
ground state oscillator. The excited state wavefunction,
in the nth vibrational state, is given by

|ψne 〉 = NnHn(
√
αex) exp

(

− 1

2
αex

2

)

, (36)

where

Nn =

( √
αe

2nn!
√
π

)1/2

, (37)

and

αe =
mωe
~

. (38)

The object of interest is the overlap integral between
|ψn=0
g 〉 and |ψne 〉, which is given by

〈ψn=0
g |ψne 〉 =NeNn

∫ ∞

−∞

dxHn(
√
αex) exp

(

− αx2
)

,

(39)

where

α =
αe + αg

2
, (40)
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and Hn(x) is the n
th Hermite polynomial. Note that for

odd n, Hn(x) is an odd function. The product of this odd
function with the even gaussian function, is odd. Taking
the integral of an odd function over a symmetric region
results in zero. Thus we have our first result that for odd
n, and D = 0 the Franck-Condon coefficient is zero, as
demonstrated in Fig. 2a.

The derivation presented in Appendix B results in the
expression

|〈ψn=0
g |ψne 〉|2 =

n!

2n((n2 )!)
2

√
αeαg

α

(

1− αe
α

)n

, (41)

for the FC factors in the case of D = 0, even n, and al-
lows for the differing curvature model. Equation 41 has
some noteworthy features. Firstly, for ωe = ωg we also
have αe = α and in this case the only non-zero value
for the Franck-Condon coefficient is when n = 0. There-
fore, as expected, in the harmonic limit Eq. (41) gives
|〈ψn=0

g |ψn=0
e 〉|2 = 1. In addition, this expression provides

the peak intensity of the progression shown in Fig. 2a,
and predicts a decay as n increases. Furthermore, the
progression will sustain for larger n, if the difference in
curvature is increased. In the large curvature difference
limit, the shape of the progression will be predominantly
determined by

n!

2n((n2 )!)
2

√
αeαg

α
. (42)

Following in the same manner we now derive and
present an analytic expression for the more general case
of when the differing curvature model is displaced. The
process of the derivation is presented in Appendix B for
the interested reader. An even more general expression
for the Franck-Condon factors of the differing curvature
model was derived by Chang82, which allows for n ≥ 0
for |ψng 〉. However, the derivation presented here diverges
from that of Chang, implementing the solution found in
the un-displaced model, connecting the two solutions.
Additionally, the end expression obtained is in a form
that allows for the interpretation of the observed features
in Fig. 2, and provides insight into the appearance of the
s-progression. Firstly, the excited state is redefined as

|ψne 〉 = NnHn(
√
αe(x− d)) exp

(

− 1

2
αe(x− d)2

)

,

(43)

where d corresponds to the displacement of the potential.
Using this definition the overlap integral, between |ψn=0

g 〉
and |ψne 〉, is given by

〈ψn=0
g |ψne 〉 =NeNn

∫ ∞

−∞

dxHn(
√
αe(x− d))

× exp

(

− 1

2
(αgx

2 + αe(x− d)2
)

. (44)

Following the derivation in Appendix B from Eq. (B11),
the Franck-Condon coefficients for the differing curvature

model, that admits displacement, is given by

|〈ψn=0
g |ψne 〉|2 =

1

2nn!

√
αeαg

α
e−A

×
∣

∣

∣

∣

n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l

×
(

1− αe
α

)l∣
∣

∣

∣

2

. (45)

At this point it is illuminating to consider this equation
in limits of interest. Firstly, in the standard displaced
harmonic model limit, that is to say of equal curvature,
αe = α. In this case, the only term that survives in the
summation is when l = 0. Furthermore, in this limit
A = D the Huang-Rhys parameter, and β =

√

D/2.
Therefore, making these substitutions we obtain the fa-
miliar formula, for harmonic FC coefficients, Eq. (32).
The second limit of interest is when the displacement is

zero. In this case, the only term that survives the sum-
mation in Eq. (45), is when l = n/2. Substituting this
value in and simplifying reproduces Eq. (41), the result
of the first derivation. A final limit of interest is when the
curvature is large, for which the shape of the progression
is predominantly determined by

|〈ψn=0
g |ψne 〉|2 =

1

2nn!

√
αeαg

α
e−A

×
∣

∣

∣

∣

n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l

∣

∣

∣

∣

2

. (46)

At this point the motivation for the form given can be
found, as the summation in this equation is simply an
explicit form of the Hermite polynomial

Hn(b) = n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l. (47)

Therefore, substituting this expression gives

1

2nn!

√
αeαg

α
e−AHn(β)

2, (48)

for large curvature difference.
The expression of Eq. (45) provides the peak intensity

of the progression shown in Fig. 2b. Furthermore, by
comparing to the limiting cases of this model we see that
the s-progression, in the displaced case, arises due to the
terms of the summation. The summation itself is a modi-
fied form of an explicit expression for the Hermite polyno-
mial in which, comparatively, latter terms of the summa-
tion contribute less. Thus, as n increases the additional
contribution of this summation becomes less important
and, along with the other contributions in the equation,
leads to the decaying feature of the s-progression. As
in the zero displacement case, for a larger difference in
curvature, the s-progression sustains for larger n.
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FIG. 4. A comparison of the linear absorption spectra of H2 with differing values of Huang-Rhys parameter D. (a) Weak
regime of D = 0.8. (b) For D = 4.0, a decaying vibronic progression is still observed. (c) For D = 7.0, the behaviour changes
as the amplitude of peaks becomes more uniform. (d) There is now a rise and fall of the amplitude of the vibronic progression.
Peaks 5 and 6 have the largest amplitude, disregarding the ZPL.

B. Morse oscillator

To study the effects of anharmonicity on linear ab-
sorption spectra we use a Morse potential with a har-
monic frequency and dissociation energy aimed to rep-
resent the bond vibration of the H2 molecule83. Pa-
rameters for H2 and other molecules84,85, for compari-
son, are contained in Table. I in atomic units. The ab-
sorption spectra, simulated with weak dissipation using
the SSE with the excited state Morse potential, for dif-
fering values of D is shown in Fig. 4, where we define
ωeg = E1/~− ω0/2, for which ω0/2 is subtracted to cor-
rect for the zero point energy of the ground state. In

TABLE I. Morse potential parameters of diatomic molecules

Molecule De(Eh) ωx(Eh) β(a0)
B2 0.104 0.005 1.89
H2 0.174 0.020 1.95
O2 0.190 0.007 2.66
F2 0.064 0.004 2.75
N2 0.277 0.011 3.09

the case of the Morse oscillator we find that many of
the harmonic absorption spectra relations, described in
Sec. II C, no longer hold. Firstly, the Franck-Condon fac-
tor for the vibrational ground state is larger and the first
vibrational state is lower than in the Harmonic case. In
the very low limits of D we expect results to be close
to harmonic as only parts of the potential close to the
minimum are explored. As the Huang-Rhys parameter is
increased towards D = 1, as in Fig. 4a, the Morse oscil-
lator vibrational ground state still features a larger FC
factor but the first and second states are less populated
than in the harmonic case. Furthermore, higher lying
states show increased FC factors. These features can be
explained due to the asymmetry of the Morse vibrational
eigenfunctions that are skewed to the shallow side of the
potential. In the weak regime, the higher states thus
have greater overlap with a displaced wavefunction that
is close to the ground state wavefunction, as is the case
for D < 183. Such an effect has been reported for cubic
perturbations to excited state harmonic potentials86.

Another such phenomenon is that a diminishing in-
tensity of the vibronic progression is still observed for
D > 1, as shown in Fig. 4, contrary to harmonic observa-
tions. Also, in the strong regime the peak with the largest
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FIG. 5. Linear absorption spectra for D = 7.0 is shown
for increasing dissociation energy De whilst retaining other
parameters of H2. (a) The increase from De = 0.174 to De =
0.3 introduces rise and fall behaviour of the amplitudes of
the vibronic progression. (b) For De = 0.6, the central peak
amplitudes increase such that relatively the ZPL no longer has
the largest peak amplitude. (c) Harmonic absorption spectra.
The inset shows the excited PES as a function of coordinate
for the case of De = 0.3 (purple line), De = 0.6 (red line),
and harmonic (dashed line).

amplitude, disregarding the ZPL, occurs at a lower fre-
quency than for harmonic spectra. These observations
are due to the effects of asymmetric broadening of the
spectra as each eigenstate relaxes at a different rate55,56.
In addition, the Morse distribution of the amplitude of
FC factors is more uniform which makes the relative am-
plitudes of spectra more sensitive to asymmetric broad-
ening. This also explains why the ZPL is observed as
the largest peak as it features no asymmetric broaden-
ing. Analysis with no dissipation shows the peak with
largest amplitude is the same as in the harmonic case.

To further exemplify these features we look at the har-
monic limit in Fig. 5 for D = 7.0. To approach the har-
monic limit the dissociation energy De is increased whilst
maintaining other parameters. As De is increased the
spectral lines become more evenly spaced which shifts
the higher states to larger frequencies. However, as the
results become more harmonic the distribution of am-

plitudes becomes less uniform, and more peaked around
the center of the vibronic progression. For De = 0.6 the
peaks corresponding to energies of eigenstates at n = 6
and n = 7 have become the largest intensity peaks. The
ZPL still remains greater in intensity than the harmonic
case as do the wings of the vibronic progression due to a
more uniform distribution of FC factors.
As the harmonic limit is achieved the ZPL has de-

creased as have the wings of the spectra. The tallest
peaks do not correspond to n = 6 and n = 7 due to
asymmetric broadening effects but the overall shape of
the vibronic progression is still close to a gaussian profile.
These results suggest that the features of the Morse spec-
tra are sensitive to the effects of dissipation and asym-
metric spectral broadening, especially so in the case when
D > 1.0.
The nature of asymmetric broadening is dependent on

the form of Lindblad operator used. A study of Morse
raising and lowering operators used as Lindblad opera-
tors, as opposed to the commonly used harmonic raising
and lowering operators, is presented in Appendix C.

IV. STIFF-STILBENE

Thus far, we have described how a large difference in
curvature between the displaced ground and excited po-
tentials can produce features in linear absorption spectra.
Additionally, we have shown how anharmonicity can al-
ter lineshape by changing the positioning and spacing of
the vibronic progression, and how this is influenced by
broadening caused by the environment. In connection
to this, the model PES of the stiff-stilbene photoswitch
shown in Fig. 1, possesses both large curvature difference
and anharmonicty. In this section the trans-cis popu-
lation dynamics and absorption spectra of stiff-stilbene,
using the developed model PES of Eq. (7) and Eq. (8),
are interpreted using the results of the previous sections.
Through this, features that are not captured by the stan-
dard harmonic model, of the dissipative dynamics and
linear absorption, are explained.
Firstly, the closed system dynamics of the PES in Fig. 1

are simulated to allow for comparison. To accomplish
this, it is assumed that the system starts out in the
ground state wavepacket |ψn=0

g 〉, which is approximated
as harmonic by fitting to the ground state potential, as
in Eq. (33), with a frequency ωg = 0.085 fs−1. Rotational
analogues of motion are taken, such that the coordinate
of interest depends on rotation about the double bond in
stiff-stilbene θ. In addition to this, the mass is replaced
by the moment of inertia I = 1001 eVfs−1, and the re-
duced planck constant in these units is ~ = 4.136/2π
eVfs. A harmonic potential is fitted to the excited PES
as in Fig. 1, with ωe = 0.01571 fs−1. We note that the
zero temperature approximation used here is valid for the
ground state at room temperature, but not quite met for
the excited state. Therefore, thermal effects should be
included in future work. This frequency ensures the de-
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FIG. 6. Time evolution of the populations are shown for closed dynamics, in (a) and (b), and damped dynamics, in (c) and
(d). The left column represents population on either the excited PES, S1, or the ground PES, S0. The right column displays
the time evolution of finding the system in cis or trans conformations, and is colour coordinated to correspond to Fig. 1.

sired period of 400 fs, and thus corresponds to a barrier-
less isomerisation time of 200 fs63,87. In turn this allows
the calculation of the moment of inertia stated,

I =
2(S1(θ)− E1)

ω2
e(θ − π/2)2

, (49)

where the definition of the excited state potential Eq. (5)
has been used with rotational analogues, and E1 = 3.195
eV. Following this, a point on the potential, for exam-
ple S1(0) = 3.5 eV62, is substituted to find the value
of the moment of inertia that is consistent with the ex-
pected period and model PES. It is assumed that the
wavepacket is vertically excited from the ground poten-
tial, thus maintaining the same shape at t = 0 on the
excited potential

|ψe(t = 0)〉 = |ψn=0
g 〉. (50)

Subsequently, the wavefunction is propagated forward in
time using the time-dependent Schrödinger equation

d|ψe(t)〉 = − i

~

(

He|ψe(t)〉+ J |ψg(t)〉
)

dt, (51)

and

d|ψg(t)〉 = − i

~

(

Hg|ψg(t)〉+ J |ψe(t)〉
)

dt, (52)

which is a limiting case of the SSE Eq. (17) for γ = 0, Hg

andHe are the Hamiltonians for stiff-stilbene which has a
chosen coupling of J = 0.02 eV, and potentials defined by
S0(θ) and S1(θ) in Eq. (7) and Eq. (8) respectively. The
coupling provides transfer of population between S0(θ)
and S1(θ) in the region of θ = 0.5π. The simulation is
carried out using a fourth-order Runge-Kutta scheme, for
θ ∈ [−2π, 3π], with a spacing of 0.002π. This ensures 500
grid points in the range of interest θ ∈ [0, π], and a large
enough grid to negate boundary effects. The wavepacket
dynamics are computed for a time of 400 fs, with a time
step of ∆t = 0.001 fs. The population dynamics of S1 is
calculated by

PS1
(t) =

∫ ∞

−∞

dθ ψ∗
e(θ, t)ψe(θ, t), (53)
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and similarly the population dynamics of S0 is given by

PS0
(t) =

∫ ∞

−∞

dθ ψ∗
g(θ, t)ψg(θ, t). (54)

To calculate the trans and cis populations, for S0 and S1,
the limits of integration are restricted to θ ∈ [0, π/2] and
θ ∈ [π/2, π] respectively. The results of the closed dy-
namics are shown in Fig. 6a and Fig. 6b, which is colour
coordinated to match Fig. 1, and can be interpreted as
follows. The wavepacket initially starts out in the trans-
S1 conformation and moves along the potential, at ap-
proximately 100 fs it reaches the perpendicular conforma-
tion. At this point the population transfers to cis-S1 and
also, due to the crossing, to the desired photoswitched
state cis-S0. Following the cis-S1 population, it takes a
further 200 fs to reach the perpendicular conformation
again. This occurs at 300 fs, upon which population is
transferred from cis-S1 to the trans-S0 state and trans-
S1. In addition to this, the population that transferred
to cis-S0 at 100 fs has a faster period of oscillation, and
at approximately 250 fs the wavepacket on the ground
potential reaches the crossing point, and the population
transfers from cis-S0 to trans-S0.

To simulate the damped dynamics, the SSE of Eq. (17)
is used such that the evolution on the ground state PES
is determined by

d|ψg(t)〉 =D1[|ψg(t)〉]dt+D2[|ψg(t)〉]dW (t), (55)

where

D1[|ψg(t)〉] =− i

~

(

Hg|ψg(t)〉+ J |ψe(t)〉
)

+
γ

2

∑

i=1,2

(

〈Li + L†
i 〉ψg

Li

− L†
iLi −

1

4
〈Li + L†

i 〉2ψg

)

|ψg(t)〉, (56)

and

D2[|ψg(t)〉] =
√
γ
(

Li −
1

2
〈Li + L†

i 〉ψg

)

|ψg(t)〉. (57)

Similarly, evolution on the ground state PES is deter-
mined by

d|ψe(t)〉 =D1[|ψe(t)〉]dt+D2[|ψe(t)〉]dW (t), (58)

where

D1[|ψe(t)〉] =− i

~

(

He|ψe(t)〉+ J |ψg(t)〉
)

+
γ

2

(

〈L3 + L†
3〉ψe

L3

− L†
3L3 −

1

4
〈L3 + L†

3〉2ψe

)

|ψe(t)〉, (59)

and

D2[|ψe(t)〉] =
√
γ
(

L3 −
1

2
〈L3 + L†

3〉ψe

)

|ψe(t)〉. (60)

As before, population can transfer between the PESs near
to the crossing point at θ = 0.5π due to a coupling of
J = 0.02 eV. Also, as in the closed case, the system is
assumed to start in the ground state wavepacket |ψn=0

g 〉,
and is then vertically excited to the excited PES. There
are some more parameters and operators for the damped
case which must be first specified before the dynamics are
simulated. These are the dissipation parameter, which is
chosen to be γ = 0.2ωe, to ensure appropriate broadening
in absorption spectra and significant population trapping
in the cis-S1 state at 400 fs63. In addition to this, the
Lindblad operators for evolution on S0 are chosen corre-
sponding to the lowering operator of a harmonic potential
fit at θ = 0

L1 =

√

Iωg
2~

(

θ̂ +
i

Iωg
p̂

)

(61)

and a fit at θ = π

L2 =

√

Iωg
2~

(

(

θ̂ − π
)

+
i

Iωg
p̂

)

(62)

are used to allow for damping towards the minima of
the potential corresponding to the trans and cis states
respectively. The Lindblad operator for evolution on S1

is chosen as the lowering operator of the harmonic fit to
S1

L3 =

√

Iωe
2~

(

(

θ̂ − π

2

)

+
i

Iωe
p̂

)

(63)

which results in damping towards the minima of S1, cor-
responding to the perpendicular conformation. This al-
lows a study of damped oscillation on the model PES of
stiff stilbene using the SSE method.
The results of the damped dynamics are shown in

Fig. 6c and Fig. 6d. Where the simulation implements
an adaptation of the fourth-order Runge-Kutta scheme
to SSEs23. The overall population dynamics on S0 and
S1 behave in a similar manner to the closed evolution,
specifically in the sense that at 400 fs the populations
are in close agreement. However, there is a difference in
the population transfer such that it is more gradual in
the damped case, whereas occurs in steps in the closed
case, an explanation for this will be provided through
consideration of the trans and cis populations. In Fig. 6b
it can be seen that, as in the closed case at t = 0 the
population is in the trans-S1 state, the population dy-
namics in the first 100 fs proceeds in a similar manner to
the closed dynamics. Population transfer at 100 fs has a
notable difference in that a small amount of population
does not overcome the first barrier, located at approxi-
mately θ = 0.3π in Fig. 1. This results in a small amount
of population maintained in the trans-S1 state. The ma-
jority of the population, is transferred to the cis-S1 state
with some transference, approximately 20%, occurring to
the desired cis-S0 state. There are some notable changes
in the ensuing dynamics for the damped case. For exam-
ple, following the cis-S1 population, between 200-400 fs
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FIG. 7. Linear absorption spectra of stiff-stilbene using a
model PES (blue line). To analyse the features of the spectra,
the standard displaced harmonic model spectra (black dashed
line) and differing curvature model spectra (red dashed line)
are plotted. Notably, there is the appearance of the s-
progression, described in Sec. III A, at λ = 350 nm.

there is a decaying transference between cis-S1 and trans-
S1, accompanied by a small rise in trans-S0. This is ex-
plained by the feature of the second barrier located at ap-
proximately θ = 0.7π in Fig. 1, which causes two dynam-
ical effects. The first is that the wavepacket approaching
the barrier from the perpendicular confirmation does not
pass over it, and thus there is some transference back to
trans-S1 and a small amount of transference to trans-S0.
The second effect is that the wavepacket overcomes the
barrier but then becomes partially trapped in the region
0.7π ≤ θ ≤ 1π. Therefore, in contrast to the closed dy-
namics, at 400 fs there is a greater cis-S1 population than
trans-S1. In addition, the population transfer to cis-S0

at 100 fs remains trapped over the time 100-400 fs. This
is due to the damped dynamics of the wavepacket on the
ground PES in the region 0.5π ≤ θ ≤ 1π, the wavepacket
is no longer able to reach the vicinity of the crossing
point and instead relaxes to the minima of the potential
at θ = π. To summarise, the damped dynamics causes
a larger cis population on both excited and ground PES
at 400 fs. Inclusion of finite temperature effects via the
thermofield method65 would also induce absorption from
the bath, which has to be described by additional Lind-
blad operators defined by raising operators. Inclusion
of these processes may promote wavepackets overcoming
potential energy barriers.

The features of the PES of Fig. 1 can also be assessed
by analysing linear absorption spectra. To generate the
absorption spectra, the wavepacket dynamics are first
simulated and the dephasing function of Eq. (26) is cal-
culated, which is then substituted into Eq. (28), in which
parallel dipoles are assumed and |µeg|2 = 1. The re-
sults are presented in Fig. 7. For comparison, absorption
spectra for the standard displaced harmonic oscillator
model is plotted as the black dashed line in Fig. 7, as-

suming that ωg = ωe = 0.01571 fs−1. Additionally, the
absorption spectra for the differing curvature model is
plotted as the red dashed line, with ωg = 0.085 fs−1 and
ωe = 0.01571 fs−1. The spectra of stiff-stilbene, gener-
ated using dynamics on the model PES of Fig. 1, is repre-
sented by the blue line in Fig. 7. The stiff-stilbene spec-
tra presents some features which are not captured by the
standard displaced harmonic oscillator model. Firstly,
the width of the peak is much narrower and the peak
maximum is shifted to larger wavelength. Both of these
features are a result of different curvature in ground and
excited PES, and are present in the spectra of the differ-
ing curvature model. Secondly, there is the appearance
of the s-progression described in Sec. III A, at λ = 350
nm, which is also a result of different curvature and
present in the differing curvature model spectra. The
results presented in this section do not give rise to the
well resolved vibronic progressions of Sec. III A due to
the presence of the environment which causes spectral
broadening. In the case of the differing curvature model
spectra, this broadening can make it difficult to observe
the s-progression. Additionally, the s-progression feature
is diminished further due to the asymmetric broadening
discussed in Sec. III B, which results in a larger amount
of broadening for smaller wavelength. We also note that,
as harmonic raising and lowering operators are used, the
extent of this asymmetric broadening may be different
than if the raising and lowering operators of the system
manifold were used. This is dependent on the spacing
of the eigenenergies, and if the anharmonicity makes the
spacing smaller or larger.

Although the differing curvature model allows some ex-
planation for the rise of features of the stiff-stilbene spec-
tra, it does not completely capture all spectral features.
For example, the stiff-stilbene spectra is less shifted to-
wards larger wavelength. This is a result of the anhar-
monicity of the excited state PES, whereby the potential
energy barriers, cause a shift of the eigenenergies above
the barrier to larger energies88. This, in turn, causes the
spectra to be shifted to smaller wavelengths. Further-
more, the s-progression is enhanced for the stiff-stilbene
spectra. This is due to the widening of the excited state
PES in the model before it rises steeply to act as a con-
fining well. The eigenfunctions thus become elongated
creating a greater overlap with higher lying states than in
the differing curvature model. It should be noted that the
experimental absorption spectra for stiff-stilbene exhibits
more complexity due to the presence of other modes
which are not directly involved in the isomerisation path-
way. As a consequence, the additional peaks can also ob-
scure spectral features for the presented band generated
by torsion about the carbon double bond in stiff-stilbene.
Comparing the lineshape to experimental spectra63 pro-
vides a number of insights. Firstly, the energy at θ = 0
on the excited PES should be closer to 3.65 eV, which
provides a wavelength of 340 nm for the absorption spec-
tra peak of the torsion band. Additionally, the harmonic
spectra is too broad and symmetric to match the ex-
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perimental torsion band. The differing curvature model
in part corrects this. For the lineshape at large wave-
lengths of λ ≥ 350 nm in Fig. 7 the best agreement is
found with the simulated stiff stilbene spectra, for which
the standard harmonic spectra overestimates the absorp-
tion. The differing curvature model agrees well for this
region but as the wavelength increases it underestimates
the absorption whilst the simulated stiff stilbene spectra
still features good agreement. At lower wavelengths of
340 nm there is less agreement between the experimental
spectra and the lineshape fit of the simulated spectra.
This is largely due to the spectral overlap of a band cen-
tred at approximately 320 nm. However, it could also
be in part due to the spectral broadening caused by the
environment and the approximate harmonic form of the
Lindblad operators as demonstrated in the Morse model
study in AppendixC. This discrepancy shall be investi-
gated in a future study. Lastly, the s-progression corre-
sponds to energies above the initial point of excitation,
at S1(0) = 3.5 eV, which can be associated with wave-
lengths of λ ≤ 354 nm. Therefore, it is possible that
a continuum of states contributes to the spectra in this
region.

V. CONCLUSION

We presented a model PES for stiff-stilbene in Fig. 1,
inspired by a schematic diagram and TD-DFT data62,63.
In addition to this, we incorporated the effects of an en-
vironment through a stochastic Schrödinger equation ap-
proach. Subsequently, two prominent features of the PES
were identified. The first was the large difference in cur-
vature of the excited and ground PES accompanied by a
large displacement, the second feature was anharmonic-
ity in the form of potential energy barriers. The first
feature was studied in Sec. III A, using a harmonic os-
cillator with differing curvatures model. This revealed
the presence of a s-progression, a substructure in the
vibronic progression, which was subsequently explained
and quantified via a derived expression for the Franck-
Condon coefficients. Linear absorption spectra of an an-
harmonic dissipative system was then studied using the
Morse potential in Sec. III B. This revealed the sensitivity
of spectral features due to the combined effects of asym-
metric broadening, and alteration of vibronic progression
intensity and spacing caused by anharmonicity. Further-
more, the assumption of harmonic raising and lowering
operators used as the Lindblad operators that define in-
teraction with the environment was tested using analytic
expressions. This provided the observation that using
harmonic raising and lowering operators causes a greater
broadening for higher frequencies than using the Morse
counterpart raising and lowering operators, though such
a feature was only prominent for large displacements.
Lastly, the population dynamics, and absorption spec-
tra, generated using the model PES for stiff-stilbene was
analysed. The former displayed the importance of an in-

terplay of anharmonicity in the form of potential energy
barriers, and damped dynamics. This suggests a pho-
toselectability of cis and trans states that is dependent
on a tuning of interaction with the environment and an-
harmonicity. The absorption spectra presented spectral
features, of the model stiff-stilbene PES, in the form of
the s-progression, a decrease of peak width, and shift of
peak maximum to larger wavelengths. These features
were largely accounted for by the difference in curvature
in ground and excited PES and the large displacement
between potentials. However, the presence of the po-
tential energy barriers additionally caused the spectra to
be less shifted to larger wavelength than in the differing
curvature model.
The presence of the s-progression in experimental ab-

sorption spectra presents a method of verifying, or esti-
mating, the difference in curvature of ground and excited
PES. This would be achieved by measuring the width of
the s-progression, then comparing and fitting to the de-
rived expressions for the FC coefficients.
The results here demonstrate population dynamics

generated using a stochastic Schrödinger equation and
spectral features present in a model PES for stiff-stilbene.
Follow-up research may consider a more realistic treat-
ment of stiff-stilbene that, for example, accounts for other
modes and a continuum of states. This would give rise
to more complexity in the absorption spectra, which may
obscure or diminish the s-progression. Additionally, tem-
perature effects and solvent properties that more closely
align with experiment may be included. Such effects can
be important, particularly when considering the rota-
tional speed of molecular motors14. This would allow
for a rigorous assessment of the spectral features of stiff-
stilbene and analysis of the importance of potential en-
ergy barriers and environment effects. Furthermore, to
improve the accuracy of simulations and extend to non-
markovian environments the HOPS approach64 or the
HSEOM approach74 may be utilised.
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Appendix A: stiff-stilbene model PES

We begin by describing the additional terms of the
ground potential of Fig. 1. The confining well term of
Eq. (7) is given by

S01(θ) = λg sin(θ) + µg

(

1− cos(1/2(θ − π/2))

1− (1/
√
2)

− 1

)

,

(A1)

where we choose λg = 12(1 − 1/
√
2) and µg = 10(1 −

1/
√
2), which control the steepness of the well and also

the position of the minima. This confining well ensures
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that the wavepacket is confined to the regions of Fig. 1. It
is possible to reduce the number of equations by setting
λg = µg+EP . In which case, Eq. (7) becomes redundant
and the ground potential is described by

S01(θ) = (µg+EP ) sin(θ)+µg

(

1− cos(1/2(θ − π/2))

1− (1/
√
2)

−1

)

.

(A2)
If the minima of this potential placed at the points θ =
0 and θ = π is desired, differentiation provides further
reduction of parameters to

µg =
EP
2

(
√
2− 1). (A3)

We make use of the unreduced form Eq. (7) to allow for a
potential that is of the form 1−cos(2θ) with an additional
confining well term. This allows control over the energy
at the perpendicular conformation, whilst also allowing
control over the symmetry about the minima of the wells
at θ = 0 and θ = π.

We now describe the additional terms S11(θ), S12(θ),
and S13(θ) of the excited potential S1(θ), which is dis-
played in Fig. 1. Starting with Eq. (8), the cosine ampli-
tude is chosen as ηe = 0.0702. The first additional term,
which describes the confining well, is given by

S11(θ) = λe sin(θ) + µe

(

1− cos(1/2(θ − π/2))

1− (1/
√
2)

− 1

)

,

(A4)

where we choose λe = 17(1 − 1/
√
2) and µe = 15(1 −

1/
√
2). The second term, which allows control over the

well depth in the region of interest, is described by

S12(θ) = −ξe(1− cos(2θ)), (A5)

which is akin to an inverted form of the ground PES,
where ξe = 0.375 controls the well depth. The final term,
is given by

S13(θ) = ζe sin(4θ), (A6)

which raises the barrier in the cis conformation, whilst
lowering the barrier height in the trans conformation,
where ζe = 0.00807 controls the barrier height difference.

Appendix B: Derivation of FC coefficients

For the derivation of FC coefficients in the case of D =
0 and even n the explicit representation of the Hermite
polynomial for even n89

Hn(x) = n!

n

2
∑

l=0

(−1)
n

2
−l

(2l)!(n2 − l)!
(2x)2l (B1)

is required. Substituting this expression into Eq. (39)
gives

〈ψn=0
g |ψne 〉 =NeNnn!

n

2
∑

l=0

(−1)
n

2
−l

(2l)!(n2 − l)!

×
∫ ∞

−∞

dx (2
√
αex)

2l exp

(

− αx2
)

. (B2)

The integral in Eq. (B2) is a gaussian integral with a
known result

∫ ∞

−∞

dx x2n exp

(

− ax2
)

=
(2n− 1)!!

2nan

√

π

a
, (B3)

where !! represents the double factorial, for which by def-
inition (−1)!! = 0!! = 1. Substituting the solution to the
integral gives

〈ψn=0
g |ψne 〉 =NeNnn!

n

2
∑

l=0

(−1)
n

2
−l

(2l)!(n2 − l)!

× (2
√
αe)

2l (2l − 1)!!

2lαl

√

π

α
(B4)

Further simplification can be achieved by using the fol-
lowing definition for the double factorial

(2n− 1)!! =
(2n)!

2nn!
. (B5)

Substituting this expression into Eq. (B4) and simplifying
gives

〈ψn=0
g |ψne 〉 =NeNnn!

√

π

α

n

2
∑

l=0

(−1)
n

2
−l

(l)!(n2 − l)!

(

αe
α

)l

(B6)

By taking a factor of (n/2)! out of the summation we can
recast the equation in terms of a binomial coefficient

〈ψn=0
g |ψne 〉 =NeNn

n!

(n2 )!

√

π

α

n

2
∑

l=0

(n
2

l

)(

αe
α

)l

. (B7)

The binomial formula

n
∑

k=0

(

n

k

)

xn−kyk (B8)

is now used to further simplify the equation to give

〈ψn=0
g |ψne 〉 =NeNn

n!

(n2 )!

√

π

α

(

αe
α

− 1

)
n

2

. (B9)

Substituting Eq. (34) and Eq. (37), simplifying, and tak-
ing the square absolute value provides the final expression
for the Franck-Condon coefficient

|〈ψn=0
g |ψne 〉|2 =

n!

2n((n2 )!)
2

√
αeαg

α

(

1− αe
α

)n

. (B10)
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For the more general case of D ≥ 0 and ωg 6= ωe
Eq. (44) can be recast into the form82

〈ψn=0
g |ψne 〉 =NeNn exp

(

− S

2

)
∫ ∞

−∞

dxHn(
√
αe(x− d))

× exp

(

− αg + αe
2

(

x− αed

αg + αe

)2)

,

(B11)

where

A =
αgαed

2

αg + αe
. (B12)

Next let

y = x− αed

αg + αe
, (B13)

and substitute this expression into Eq. (B11) to give

〈ψn=0
g |ψne 〉 =NeNn exp

(

− A

2

)
∫ ∞

−∞

dy Hn(
√
αey + β)

× exp
(

− αy2
)

, (B14)

where

α =
αg + αe

2
(B15)

as before and

β =
αg

√
αed

αg + αe
. (B16)

A Taylor expansion of the Hermite polynomial provides
the useful property

Hn(x+ y) =

n
∑

k=0

Hk(
√
αey)(2β)

n−k. (B17)

Using this property, for the Hermite polynomial in
Eq. (B14), gives

〈ψn=0
g |ψne 〉 =NeNn exp

(

− A

2

) n
∑

k=0

(2β)n−k

×
∫ ∞

−∞

dy Hk(
√
αey)× exp

(

− αy2
)

, (B18)

where the integral in the equation is of the same form as
Eq. (39). Therefore, by using the result in Eq. (B9), of
the derivation for the case of no displacement we obtain

〈ψn=0
g |ψne 〉 =NeNn

√

π

α
exp

(

− A

2

) n
∑

k=0

(

n

k

)

(2β)n−k

× k!

(k2 )!

(

αe
α

− 1

)k/2

, (B19)

for even k. For the purpose of clarity, we now replace k
with 2l for l ∈ N0 to give,

〈ψn=0
g |ψne 〉 =NeNn

√

π

α
exp

(

− A

2

) ⌊n/2⌋
∑

l=0

(

n

2l

)

(2β)n−2l

× 2l!

(l)!

(

αe
α

− 1

)l

, (B20)

where the floor function of n/2 has been taken in the
upper limit of the summation such that double count-
ing does not occur, and to ensure that 2l represents an
even number. Using the binomial coefficient formula, re-
arranging and simplifying, gives the form

〈ψn=0
g |ψne 〉 =NeNn

√

π

α
exp

(

− A

2

)

× n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l

(

1− αe
α

)l

,

(B21)

the motivation for which shall become clear in imminent
discussion. Firstly, we substitute for Ng and Nn, using
Eq. (34) and Eq. (37),

〈ψn=0
g |ψne 〉 =

1√
2nn!

(√
αeαg

α

)1/2

exp

(

− A

2

)

× n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l

(

1− αe
α

)l

.

(B22)

Thus, the Franck-Condon coefficients for the differing
curvature model, that admits displacement, is given by

|〈ψn=0
g |ψne 〉|2 =

1

2nn!

√
αeαg

α
e−A

×
∣

∣

∣

∣

n!

⌊n/2⌋
∑

l=0

(−1)l

l!(n− 2l)!
(2β)n−2l

×
(

1− αe
α

)l∣
∣

∣

∣

2

. (B23)

Appendix C: Morse raising and lowering Lindblad operators

It is commonplace in the literature to use harmonic
raising and lowering operators as the Lindbladians re-
gardless of the actual raising and lowering operators of
the system. The question is thus raised, as to whether
using Morse raising and lowering operators90 creates sig-
nificant difference on spectral features.
Using harmonic raising and lowering operators we have

ΓL†L|n〉 = Γn|n〉, (C1)
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where Γ controls the strength of dissipation, L† and L
are Lindblad operators, and we note this choice of Lind-
bladian causes downwards transitions proportional to n.

For the Morse raising and lowering operators90 we have

ΓL†L|n〉 = Γ(n− n

ν
)|n〉, (C2)

where

ν =

√

8mDe

β2~2
(C3)

is a measure of the systems harmonicity. This imposes
that the higher lying states experience less dissipation
than when using harmonic raising and lowering opera-
tors. The harmonic limit is achieved as ν → ∞. A
comparison of these terms is shown in Fig. 8. As De is
increased, and the system becomes more harmonic, the
dissipation as defined by L†L becomes linear in n.

To study the effects of the different raising and lowering
operators on absorption spectra we first choose a Huang-
Rhys factor of D = 1.0 , see Fig. 9(a),(b) and (c). This
represents relatively low displacement. We study three
choices of dissipation: weak Γ = 0.1ω0, medium Γ = ω0,
and strong Γ = 10ω0. Results are shown in Fig. 9 for
harmonic spectra (black dashed line), Morse spectra with
harmonic raising and lowering operators (red line), and
Morse raising and lowering operators (blue line).
For the weakest dissipation a decaying vibronic pro-

gression is observed, with small differences between the
Morse and harmonic spectra. The Morse ZPL is larger
in amplitude and the ensuing peaks are less than for the
harmonic spectra featuring a shift to lower frequencies
due to closer vibrational states. For a medium level of
dissipation we observe a ZPL which has larger ampli-
tude for the Morse spectra and a phonon sideband with

0 5 10 15
n

0

5

10

15

L†
L

Morse: De = 0.174
Morse: De = 0.3
Morse: De = 0.6

FIG. 8. The term L†L which defines dissipation is shown
against the number state for Morse raising and lowering oper-
ators. H2 parameters are used and the dissociation energy is
increased to observe the effect of increasing harmonicity. The
harmonic case is represented by the black dashed line.

lower amplitude which is shifted to lower frequencies as
compared to harmonic. For strong dissipation there is
a broad Lorentzian lineshape which is shallower in the
wings for the Morse spectra. A common feature among
all dissipation levels is that, for D = 1.0, there is almost
no perceivable difference in using Morse raising and low-
ering operators. The small observed differences are due
to the shape of the potential itself and the dissipation
is well approximated via harmonic raising and lowering
operators. It is also noteworthy that the harmonic case
overestimates the Huang-Rhys factor if used to approxi-
mate Morse.

We now turn our attention in Fig. 9(d),(e) and (f) to
the large Huang-Rhys factor D = 7.0 to demonstrate the
effect of using Morse raising and lowering operators. The
results for the Morse spectra have been normalised and
much of population of the system, for such a large Huang-
Rhys factor, is contained in the continuum of higher
states. As we are interested in the anharmonic effects
on the bound spectra we restrict ourselves to only the
bound states of the system. It should be noted however
that the profile of spectra can become insensitive to the
strength of damping due to transition occurring mainly
between the ground state and near continuum dissocia-
tion states91. In the low dissipation regime the ZPL for
the Morse oscillator has a larger relative amplitude with
respect to its vibronic progression. The peak intensity
shows only a steady rise in comparison to the harmonic.
For the low lying states n = 0, 1, 2 there is minimal dif-
ference between using Morse raising and lowering opera-
tors, as demonstrated when using D = 1.0. However, as
n increases differences become more apparent and we see
that the peaks and troughs of the spectra, generated us-
ing Morse raising and lowering operators, are increased.

For medium dissipation the changes are further exem-
plified. The harmonic spectra features only a broad line-
shape, whereas the Morse spectra still features a visi-
ble ZPL with large phonon sideband. The profile for
the Morse lineshape is shifted to lower frequencies with
respect to the harmonic frequency. The use of Morse
raising and lowering operators has significant difference
and we observe a lineshape with larger amplitude. The
changes are more significant to higher frequencies in the
spectra with rough agreement to harmonic raising and
lowering operators at low frequencies. Notably the Morse
spectra with harmonic raising and lowering operators has
a very similar profile to harmonic spectra albeit shifted to
lower frequencies and with a more defined ZPL. When the
Morse raising and lowering operators are utilised there is
less of a shift to lower frequencies and a different profile
at higher frequencies such that it is at first steeper than
the harmonic profile and then shallower. This overall ef-
fect causes the spectra to appear more symmetric about
the broadened peak of the sideband. In the large dissi-
pation regime the lineshape is very broad. This is due
to asymmetric broadening that is not proportional to n,
but instead to n − n/ν. The harmonic spectra features
one broad peak and hardly any definition to the ZPL. the
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FIG. 9. Linear absorption lineshape is shown for 3 increasing values of the dissipation parameter Γ. This is conducted for
D = 1.0 in (a), (b) and (c) and D = 7.0 in (d),(e), and (f). The harmonic result (black dashed line), Morse result (blue line),
and the Morse result using harmonic raising and lowering operators (red line) are shown to have little difference for the small
Huang-Rhys parameter D = 1.0. In comparison, for a large value of D = 7.0 it is observed that the resulting lineshape is
dependent on shape of the potential and the choice of Lindblad operator.

Morse spectra features a more defined point to where the
ZPL is with a protrusion of the broadening to higher fre-
quencies. Lastly, the Morse raising and lowering operator
spectra features a larger steep to shallow transition in its
lineshape profile.
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K. Schulten, J. Knoester, and U. Kleinekathöfer, Journal of
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