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ABSTRACT

Clustering amino acids is one of the most challenging problems in functional and
structural prediction of protein. Previous studies have proposed clusters based on
measurements of physical and biochemical characteristics of the amino acids such as
volume, area, hydrophilicity, polarity, hydrogen bonding, shape, and charge. These
characteristics, although important, are less directly related to the protein structure
compared to geometrical characteristics such as dihedral angles between amino acids.
We propose using the p-value from a test of equality of dihedral-angle distributions as
the basis of a distance measure for the clustering. In this novel approach, an energy
test is modified to deal with bivariate angular data and the p-value is obtained
via a permutation method. The results indicate that the clusters of amino acids
have sensible interpretation where Glycine, Proline, and Asparagine each forms a
distinct cluster. A simulation study suggests that this approach has good working
characteristics to cluster amino acids.

KEYWORDS

Circular distance; Squared Euclidean distance; Permutation two-sample test;
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1. Introduction

Clustering amino acids is a challenging problem in protein bioinformatics. This prob-
lem is important because, within a bigger context, it is strongly related to the problem
of protein structure prediction. Since a protein’s function is determined by its struc-
ture, researchers are interested to understand e.g. whether a substitution of one amino
acid with another has a substantial impact on its structure, and hence its function.
Since the identification of protein structure is expensive and very time consuming [21],
amino acid clustering becomes crucial as it enables us to better understand how they
are related to protein structure.

In recent years, different procedures have been used to cluster amino acids. Georgiu
et al.[8] published a study of amino acids classification via a fuzzy clustering tech-
nique. They employ two different distance measures: the Minkowski distance and the
fuzzy distance metric and they rely on several physical properties of the amino acids in
this classification. Kosiol et al.[12] developed a criterion and grouping method to clas-
sify amino acids. This criterion depends on the description of protein evolution by a
Markov process. Albatineh and Razeghifard[2] presented a clustering approach to clas-
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sify amino acids depending on physicochemical properties of amino acids such as vol-
ume, area, hydrophobicity, polarity, hydrogen bonding, shape and charge. Stanfel[22]
produced a new approach to clustering amino acids depending on their physicochem-
ical properties.

Regardless of the clustering methods employed, these methods rely on dissimilarity
measures between amino acids that are informed by their physical, biological, bio-
chemical, or physicochemical properties. Some of the physicochemical properties, for
example, are not related to the 3-dimensional structure of the protein, while the others
are only related indirectly. These are volume, area, polarity, charge, and shape [22].
The term ’shape’ here refers to the shape characteristics of each amino acid based on
the atom configuration, and does not refer to protein structure that are shaped by the
amino acids. When protein structure and function is the main interest, we regard this
as sub-optimal. It is therefore intuitive and appropriate to consider dissimilarity mea-
sures that are informed directly by geometrical properties of amino acids in a protein
structure.

The structure of a protein can be described as a collection of dihedral angles along
the backbone of protein that connects the amino acids [5]. The backbone of a protein,
with m amino acids, consists of a sequence of atoms N1 −Cα1 −C1 −N2 −Cα2 −C2 −
. . .−Nm−Cαm−Cm, where N and C denote nitrogen and carbon atoms, respectively.
The difference between Cα and C atoms are simply in the types of other atoms that
are bonded with them. The angle around the bond Ni−Cαi , denoted φi, and the angle
around the bond Cαi −Ci, denoted ψi, are the i-th pair of dihedral angles of the protein,
for i = 1, . . . ,m− 1 [4].

In this study, we propose a novel approach where the dissimilarity measures between
amino acids are informed directly by their distribution of dihedral angles. When a pair
of amino acids are similar, i.e. in the same cluster, then we expect the dihedral angles
of the first amino acid across proteins will have the same distribution as those in
the second amino acid. Similarly, when the two amino acids are not similar, i.e. in
different clusters, then we expect the distribution of dihedral angles to be different. It
is therefore natural to use p-value of a test of equality of the two distributions as the
basis of a measure of dissimilarity.

To test the equality of the distribution of dihedral angles, we construct a test where
we modify the energy distance [25] as a test statistic to deal with the bivariate nature
of dihedral angles and its significance is assessed using a permutation method. Once
the p-value for each pair of amino acids is obtained and transformed to a dissimilarity
measure, any distance matrix-based clustering method can be employed. In our study
we consider commonly used clustering methods as illustrations on the use of the new
dissimilarity measures: hierarchical clustering with single, complete, and average link-
age, and Ward’s method to illustrate our application. We also consider a simulation
study to confirm the proposed method’s characteristics.

This paper is organised as follows. A motivating dataset is described in Section 2.
Section 3 describes the main methods and a simulation study. The results of simulation
study and an application to real dataset are illustrated in Section 4. Section 5 will
contain discussion of our new approach.

2. Motivating datasets

We consider the dataset from the Kinemage database,
http://kinemage.biochem.duke.edu/databases/top500.php, where a selection of 500 pro-
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teins from the Protein Data Bank (PDB) are catalogued. The 500 proteins were se-
lected because of their high quality, low homology and high resolution (1.8 Å or better)
[13]. The dataset contains the information on dihedral angles φ and ψ, protein ID, po-
sition of amino acids in the protein, and type of amino acid in this position. It is
important to note that each amino acid in each position in each protein is associated
with a pair of dihedral angles.
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Figure 1. Distribution of dihedral angles φ (horizontal axis) and ψ (vertical axis) of amino acids PHE (red

dot) and THR (blue triangle) in the top panel and GLY (red dot) and PRO (blue triangle) in the bottom
panel. Please note that opposite edges in the figures are the same points because they are circularly wrapped.
Circular plots illustrate the marginal circular density for the dihedral angles. The p-values are from test of
equality of distribution of dihedral angles as described in Section 3.

Some of the data are presented in Figure 1 for illustration. The figure shows the
distribution of dihedral angles between a pair of amino acids in the data. In the top
panel of the figure, we compare the distribution of the dihedral angles betweed PHE
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and THR that we later find to be similar (in terms of distribution) from the test
proposed in Section 3. The bottom panel of the figure shows the comparison between
GLY and PRO that we later find to be different. These examples provide a quite
straightforward conclusion on the equivalence of the distribution of dihedral angles
between two amino acids. In other pairs of amino acids, it is not straightforward to
identify that. Therefore, we need the help of a statistical test as described in the next
section. Further description of this dataset is available in the Supplementary Material.

In addition to the above dataset, we consider a second independent dataset, also
from the Protein Data Bank (PDB). We select all proteins from PDB that have less
than 1.5Å in resolution, and published (uploaded to the repository) from 2015 to May
2019 (inclusive). In the end, we have 1,259 proteins in this dataset, and none of them
are overlapping with the first dataset above. The description of this second dataset
is presented in more details in the Supplementary Material. Some more comparison
results with this new dataset are also presented, mainly in the Supplementary Material.

3. Methodology

In this section, we present main method to obtain the dissimilarity measures between
pairs of amino acid as the p-value of equality test of distribution of dihedral angles.
We also present how this information is utilised to cluster amino acids. A simulation
study is also considered to see the working characteristics of the proposed method.

3.1. Notation and setting

Before we discuss the test, it is important that we set out the notation and context
that we use in this manuscript. With regard to the motivating dataset above, let
x1, x2, . . . , xn1

be n1 pairs of dihedral angles from the first amino acid across proteins
and positions (in proteins). Similarly, let y1, y2, . . . , yn2

be n2 pairs of dihedral angles
from the second amino acid. We assume that the xi’s and yj ’s are samples or realised
values of random variables X and Y with cummulative distribution function FX and
FY , respectively. Given this, our setting is as follows.

(1) Each xi contains two angular measurements φxi and ψxi for i = 1, 2, . . . , n1. Simi-
larly, each yi contains two angular measurements φyj and ψyj for j = 1, 2, . . . , n2.
In other words, each xi and yj is bivariate.

(2) We assume that xi and xi′ are independent for all i 6= i′. Similarly, we also as-
sume that yj and yj′ are independent for all j 6= j′. When we are considering
a pair of amino acids to be tested for equality in their distribution of dihedral
angles, it is possible that a particular xi of the first amino acid and a particular
yj of the second amino acid are adjacent in a protein, i.e. they are dependent.
However, the dependencies are relatively weak; the correlation between adjacent
amino acids is approximately between -0.1 and 0.1. Relative to the size of the
data, where this occurence happens in less than 18 adjacent amino acids among
approximately 1,600 to 9,000 pairs of amino acids, this dependence is too weak
to have practical importance. Some more details are presented in the Supple-
mentary Material on this note. Furthermore, the significance of the test will
be calculated through permutation that can deal with this weak dependency[9],
hence it is not a problem.

(3) The test of equality of the distribution of dihedral angles between two amino
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acids is a test on two independent samples with n1 and n2 bivariate observations.
These two samples are not paired, i.e. x1 is not paired with y1, although within
each xi and yj , the angles φxi is paired with ψxi and φyj is paired with ψyj .

(4) The context of this investigation is in identifying clusters of 20 amino acids, each
of which has a distribution of dihedral angles. The context is not in clustering
dihedral angles themselves. Each amino acid has a bivariate distribution of di-
hedral angles and our interest lies in developing a dissimilarity measure between
amino acids so that any distance matrix-based clustering method can be applied.
Therefore, the focus of investigation is to cluster groups of observations that are
represented by a single p-value, rather than the (individual) observations them-
selves. With this in mind, the dissimilarity matrix will be between amino acids
and of size 20×20, although one amino acid in the above data can have more than
5,000 bivariate dihedral angles. As such, the dissimilarity between two different
amino acids is represented by a single number that summarises how similar the
distribution of dihedral angles in both amino acids. In this case, a p-value of less
than 0.05 indicates that the distribution of of dihedral angles between the two
amino acids are different at the 5% significance level.

We now discuss the test of equality of distribution of dihedral angles between two
samples (two amino acids) as presented in the next section.

3.2. Bivariate angular permutation test (BAPT)

As described above, we aim to obtain a p-value from a test of equality distribution of
dihedral angles between two amino acids as a dissimilarity measure. We are therefore
interested in testing the null hypothesis

H0 : FX = FY

against

H1 : FX 6= FY ,

where FX is bivariate distribution of dihedral angles from one amino acid and FY is
from the second amino acid.

It is intuitive to consider the distance between two probability distribution as the
Cramer distance [6]

∫ 2π

0
{FX(z)− FY (z)}

2 dz, (1)

which is equal to zero if FX = FY . In the context of Euclidean space, Szekely[23]
showed that this distance is half of the energy distance

D2(FX , FY ) = 2E||X − Y || − E||X −X ′|| − E||Y − Y ′||, (2)

where the cummulative distribution function of X ′ is FX and that of Y ′ is FY , E is
the expected value, and || · || is the norm of vector.

In metric spaces, the above energy distance is defined as energy statistic (e-statistic),
which is a function of distances between statistical observations [19]. It can be applied
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to measure the difference between distributions of two or more samples with arbitrary
dimension not necessarily equal [24]. Since our context is bivariate distribution (of
dihedral angles), we consider the energy statistic as defined by Szekely and Rizzo[25]
in testing the equivalence of distribution in higher dimension:

E(X,Y ) =
n1n2
n1 + n2

( 2

n1n2
B1 −

1

n21
B2 −

1

n22
B3

)

(3)

where

B1 =

n1
∑

i=1

n2
∑

j=1

d(xi, yj), B2 =

n1
∑

i=1

n1
∑

i′=1

d(xi, xi′), B3 =

n2
∑

j=1

n2
∑

j′=1

d(yj , yj′)

and, in the Euclidean space, d(xi, yj) is usually defined as

d(xi, yj) = ||xi − yj ||. (4)

From the above formulation, it is immediately clear that if the two datasets are exactly
identical (i.e. xi = yj for all i, j), then d(·) will be zero for all φ’s and ψ’s, and so will
the energy statistic E(·). When there is a discrepancy in the distribution of dihedral
angles in the first amino acid from those in the second amino acid, then E(·) will
increase to be greater than zero in the positive real line.

However, this definition of distance (4) is not directly applicable to our case with
bivariate angular data. For the application of energy statistic in our context with
xi ≡ (φxi, ψxi) and yj ≡ (φyj , ψyj), we define d(xi, yj) as

d(xi, yj) = ∆(φxi, φyj)
2 +∆(ψxi, ψyj)

2, (5)

for i = 1, . . . , n1, and j = 1, . . . , n2, where, for two angles θ and ϑ,

∆(θ, ϑ) = 1− cos(θ − ϑ). (6)

It is important to note that the objective of this study to cluster of amino acids will
be based on the dissimilarity measure obtained from the p-value of the test statistic
E , and not to identify clusters from the distance in Eq. (5). The distance (5) measures
the angular distance between dihedral angles from a pair of amino acids.

To have a sense of whether the observed energy statistic E is “far enough” from
that under the null hypothesis, we calculate the p-value of the test as a measure of
significance, which will be considered as a measure of dissimilarity between amino
acids. Under the null hypothesis, the distribution of the energy statistic E does not
follow a simple form [24], even when we consider Euclidean distance. So, in our context
where the distance is from dihedral angles, the distribution is not tractable. To deal
with this, we consider the calculation of p-value of the test via permutation method,
as suggested by Szekely and Rizzo[24].

With this new definition of distance for bivariate angular data, it is important to
note that E may take a small negative value. Our simulation study indicates that, under
the null hypothesis, it is possible to have a small fraction of simulated test statistics to
be negative, although their magnitude is very small. The main reason is because the
definition of distance between two bivariate angular points in Eq. (5) is calculated as a
direct line that ’pierces’ through the torus of bivariate angular distribution [3, 14, 16],

6



instead of the shortest line along the surface of the torus. Because of this, the quantities
B2/n

2
1−B3/n

2
2 may be slightly larger than 2B1/(n1n2) in Eq. (3). However, this is not a

problem in our analysis because, first, we consider p-value as the dissimilarity measure
that is non-negative and monotonically decreasing and, second, the p-value is obtained
from a permutation method where the distribution of E is obtained empirically. It
requires, however, a careful consideration when interpreting the magnitude of the
observed energy statistic from real data.

To obtain the p-value, we consider the following algorithm. This p-value is calculated
for each and every pair of amino acids.

(1) Given a pair of amino acids, we calculate the observed test statistic Eobs from
Eq. (3) using the distance according to Eqs. (5) and (6).

(2) We pool the bivariate data x1, x2, . . . , xn1
and y1, y2, . . . , yn2

to have a pooled
dataset with n1+n2 observations. Under the null hypothesis, we randomly shuffle
the group labels and assign them to the pooled data to obtain x∗1, x

∗
2, . . . , x

∗
n1

and
y∗1, y

∗
2, . . . , y

∗
n2
. In this step, the dihedral angles within each xi and yj are kept

intact and fixed.
(3) Calculate the energy statistic for the shuffled data x∗1, x

∗
2, . . . , x

∗
n1

and
y∗1, y

∗
2, . . . , y

∗
n2
, denoted E∗, from Eq. (3) using the distance according to Eqs.

(5) and (6).
(4) We repeat Steps 2 and 3 nperm times to obtain E∗

1 , E
∗
2 , . . . , E

∗
nperm

. In our study,
we use nperm = 1000, although this can be set at a higher number if one wishes
to have higher precision on the estimated p-value. The E∗’s represent the distri-
bution of the energy statistic under the null hypothesis.

(5) The p-value of the test is calculated as

∑nperm

h=1 I (E∗
h ≥ Eobs)

nperm
,

where I(·) is a function that is equal to one if the statement in the brackets is
true and zero otherwise.

The above algorithm is run for each and every pair of amino acids to obtain the
dissimilarity matrix. The end result of this step is a 20 × 20 dissimilarity matrix
of amino acids. After this step, then any distance matrix-based clustering methods
can be employed. To illustrate the application of clustering amino acids based on
the dissimilarity matrix, we consider hierarchical clustering (single linkage, complete
linkage, and average linkage), and the Ward’s method. We touch on them briefly in
the next section for completeness.

3.3. Clustering methods based on dissimilarity matrix

We consider several well known methods to cluster amino acids based on the dissimi-
larity matrix obtained using the above algorithm. The purpose of considering them in
this paper is only to illustrate the application of clustering amino acids based on the
dissimilarity matrix produced by the above method. These methods are hierarchical
clustering with single, complete, and average linkage, and Ward’s method[15, 18]. For
a reference on these clustering methods, the reader may refer to any cluster analysis
textbook, for example [7]. In determining the number of clusters, we consider to make
a ‘cut’ at a reasonable height in a dendogram. There are several criteria to do this
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(e.g. [15, 18]). However, since the purpose is only to illustrate the use of newly defined
dissimilarity matrix for clustering, one may consider different ways of determining the
number of clusters.

One important note in the application of clustering is that the p-value from the test
on a pair of amino acids is transformed to a distance by taking the negative of the log
of p-value. Let M be a 20 × 20 distance matrix between amino acids. The entries of
the matrix, denoted mkk′ , is defined as

mkk′ = − log(pkk′) (7)

for k = 1, . . . , 20 and k′ = 1, . . . , 20 where pkk′ is the p-value of the test between k-th
and k′-th amino acids. For k = k′, we set pkk′ = 1.

After clustering, we will consider the Rand index to see whether there is agreement
between two clustering methods [17]. There are other indices to identify how good the
agreement between two different clustering methods but we consider the Rand index
for simplicity and easy interpretation on the agreement. A value of zero in Rand index
indicates that the two clustering methods do not agree while a value of one indicates
that both methods produce exactly the same clusters.

3.4. Simulation study

We perform a simulation study to understand the working characteristics of the test of
equality of distribution of dihedral angles between two amino acids, which characterises
whether the two amino acids shall be in the same cluster or not. The purpose of
this simulation study is two-fold. First, we are interested to understand whether the
proposed test has an appropriate control of false positive (Type-I error). For this
purpose, we generate two dihedral-angle distributions under the null hypothesis that
they are equal to identify the control of Type-I error rate. This simulation is critical to
identify that when we say that the significance of the test is 5%, then the test actually
controls the probability of false positive at 5%. In other words, we wish to confirm
that the estimated p-value is accurate, as it is going to be the basis for a measure of
dissimilarity between amino acids.

Second, we are interested to identify that the test is able to distinguish two amino
acids when they are truly from different distributions, and at what amount of dif-
ferences that the test is able to distinguish the two. We perform a simulation study
under the alternative hypothesis, where there is a difference in the distribution be-
tween two amino acids either in terms of mean or concentration. Given that there
are six parameters from bivariate distribution that can vary in this simulation (two
mean parameters and four concentration parameters), we consider to only vary one
mean parameter and two concentration parameters that are constrained to be equal for
simplicity. Both purposes of the simulation can be constructed in a single simulation
framework as described below.

In the simulation study, we perform the following:

(1) For the first amino acid, we generate n1 bivariate data points under the bivariate
von Mises distribution with mean vector (0, 0)T and concentration parameters

[

1 0
0 1

]

.
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The number of simulated data points n1 is set at n1 = 100, 200, 500 and 1000,
to understand the effect of different number of observations per sample in the
simulation.

(2) In the case where we vary the mean, we generate n2 =1000 bivariate data points
under the bivariate von Mises distribution for the second amino acid with mean
vector (0, δ)T and concentration parameters

[

1 0
0 1

]

.

The values of δ that we consider range from 0 to 2.5 or
δ ∈ {0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5}.

(3) In the case where we vary the concentration, we generate 1000 bivariate data
points under the bivariate von Mises distribution for the second amino acid with
mean vector (0, 0)T and concentration parameters

[

τ2 0
0 τ2

]

.

The values of τ2 that we consider range from 1.25 to 4 or
τ2 ∈ {1.25, 1.5, 2.0, 3.0, 4.0}.

(4) Test the null hypothesis of equal distribution between the two amino acids and
record the p-value of the test.

(5) We repeat Steps 1-2-4 1000 times and Steps 1-3-4 200 times for each of δ and
each τ2 so that we have 1000 p-values under each setting.

In the Steps 1-2-4, there is a setting where we can investigate the control of Type-
I error, which is when δ = 0. In this setting, we are generating data from the null
hypothesis and we can investigate whther the distribution of p-value follow a uniform
distribution. For the other settings, whether the mean or concentration that varies,
we can investigate the sensitivity of the test as the mean (or variance) starts to differ
from the null.

4. Results

4.1. Simulated data

The results of simulation study are presented in Figure 2. The figure indicates that
the proposed BPAT test has a proper control of type-I error rate at 0.05 for the
nominal 0.05 significance level. This is confirmed further by looking into the quantile-
quantile plot of the p-values under H0 in Figure 3. More details are presented in the
Supplementary Material. Figure 2 (left panel) indicates that, as the mean difference
increases (and concentration remains the same), the test is able to start identifying that
the two distributions of dihedral angles are different. On the right panel of the figure,
the test is also able to start identifying the difference as the ratio of concentration
between the two distributions increases.
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Figure 2. Type-I error rate and sensitivity of the energy test between two simulated distributions of dihedral

angles as a function of mean difference (left panel) and concentration ratio (right panel) for different number
of observations in the first group: 100, 200, 500, 1000. The number of observations in the second group remains
the same (1000). The value for mean difference zero or concentration ratio one corresponds to type-I error rate,
while the other values correspond to sensitivity.
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Figure 3. Quantile-quantile plot of -log(p-value) under the null hypothesis of equal distribution between two
datasets in the simulation study.

4.2. Real data: test results

The results of testing equality of distribution of dihedral angles between pairs of amino
acids are presented in Figure 4. The figure shows pairs of amino acids with p-value
of the test more than 0.05 connected by solid black lines. This indicates that those
pairs of amino acids have similar distribution of dihedral angles. The figure also shows
pairs of amino acids with p-value of the test less than 0.05 not connected by the solid
black lines. This indicates that those pairs of amino acids have somehow different
distribution of dihedral angles. The figure suggests that GLY, PRO, and ASN have
different distributions of dihedral angles to any of the other amino acids.

Figure 4 suggests a natural clustering of amino acids, even before any distance-
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Figure 4. Results of test of equality of distribution of dihedral angles between pairs of protein. The lines
between pairs of amino acids denote that the p-value of the test between the pairs is more than 0.05 indicating
similarities in the distribution, while the absence of lines incidate that the p-value is less than 0.05 indicating
dissimilarity.

based clustering methods is employed. Let us for the moment consider the (natural)
clustering of amino acids as suggested in Figure 4. For the two big amino-acid clusters
in the figure, the details of p-values of the test between the pairs are presented in
Table 1.

4.3. Clustering of amino acids

We now illustrate the application of some methods to cluster amino acids based on the
dissimilarity matrix M that we obtained by transforming p-values into dissimilarity
measures. Figure 5 shows the results of clustering based on M . With a natural clus-
tering formed based on the p-values shown in Figure 4, then we expect that most, if
not all, of distance-matrix based clustering methods will produce similar results. For
example, the dendogram of hierarchical clustering under single linkage is quite similar
to that under average linkage.

When we make a cut on the dendogram to form five clusters, then the clusters
formed have the same members of amino acids as suggested by Figure 4. This is
clearer to infer when we consider the single linkage in Figure 5 rather than the average
linkage. In the average linkage, we may make a cut in the dendogram to make five
or six clusters. When it is six clusters, then HIS and TRP form a different cluster
separating from their previous main cluster as shown in Table 2.
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Table 1. p-values for each pair of amino acids in two major cluster in Figure 4 as a result of test of equality

of distribution of dihedral angles.

Cluster 1

ILE CYS THR TYR TRP HIS PHE SER VAL

ILE — 1.000 1.000 1.000 0.184 0.002 1.000 1.000 0.211

CYS 1.000 — 0.104 0.052 0.001 0.001 0.061 0.165 1.000

THR 1.000 0.104 — 0.274 0.001 0.001 0.634 0.001 1.000

TYR 1.000 0.052 0.274 — 0.003 0.092 0.171 1.000 0.220

TRP 0.184 0.001 0.001 0.003 — 0.070 0.014 1.000 0.001

HIS 0.002 0.001 0.001 0.092 0.070 — 0.026 0.469 0.001

PHE 1.000 0.061 0.634 0.171 0.014 0.026 — 1.000 0.024

SER 1.000 0.165 0.001 1.000 1.000 0.469 1.000 — 1.000

VAL 0.211 1.000 1.000 0.220 0.001 0.001 0.024 1.000 —

Cluster 2

MET ARG GLN ALA LEU LYS GLU ASP

MET — 0.285 0.247 0.010 0.448 0.036 0.003 0.025

ARG 0.285 — 0.051 0.005 0.106 0.970 0.009 0.021

GLN 0.247 0.051 — 0.575 0.462 0.041 0.311 0.009

ALA 0.010 0.005 0.575 — 1.000 0.063 0.937 0.001

LEU 0.448 0.106 0.462 1.000 — 0.057 0.003 0.215

LYS 0.036 0.970 0.041 0.063 0.057 — 0.050 0.136

GLU 0.003 0.009 0.311 0.937 0.003 0.050 — 0.001

ASP 0.025 0.021 0.009 0.001 0.215 0.136 0.001 —

Table 2. Cluster memberships from hierarchical clustering with average linkage with five and
six clusters.

Five Clusters Six Clusters

{ILE,PHE,TYR,THR,HIS,SER,VAL,TRP,CYS} {ILE,PHE,TYR,THR,SER,VAL,CYS}

{MET,LEU,ARG,ASP,LYS,GLN,GLU,ALA} {MET,LEU,ARG,ASP,LYS,GLN,GLU,ALA}

{ASN}, {GLY},{PRO} {ASN},{GLY},{PRO},{HIS,TRP}

4.4. Comparisons

Finally, we are interested to the see agreement between our clustering based on geo-
metrical information of the amino acids and clustering based on the physicochemical
and biochemical information that are well known (e.g. [2, 22]). The agreement between
clustering based on the geometrical information and those other information are pre-
sented in Table 3. The table indicates that the agreement between clustering based on
the geometrical information (BAPT) has the lowest agreement with the other cluster-
ing methods although the magnitude of agreement is moderate. This indicates that
the geometry-based distance has some common and different information than those
of physicochemical and biochemical information.

This indication is best seen when we consider clustering results based on a com-
posite distance matrix that is calculated from weighting distance matrix based on
geometric information and physicochemical information. The gradation of character-
istics of clustering can clearly be seen when we vary the weight and it can be seen
that some common features are shared between the two distance matrices and some
other features are different (the results are presented in the Supplementary Material).
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Figure 5. Dendogram of hierarchical clustering of amino acids under single, average, and complete linkage,
and Ward’s clustering based on the dissimilarity matrix M as defined in Equation (7) from p-values of test of

equality of dihedral angle distributions between pairs of amino acids.

In summary, there are three clusters of amino acids that are relatively consistent be-
tween the two methods of distance matrix construction: {ASP, GLU, ASN, GLN},
{PHE, TRP, TYR}, and {HIS, LYS, ARG}, while the other ones are different.

5. Discussion

Clustering amino acids is a challenging problem in protein analysis. Extensive research
has been done to cluster amino acids based on their physicochemical and biochem-
ical properties. In this investigation we propose a geometry-based distance measure
between amino acids for the clustering. This measure is more directly related to the
protein structure, which is a critical determinant in protein function. Therefore, we
expect that this new approach to clustering has a more direct relevance to the study
of protein structure and function.
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Table 3. The rate of agreement (Rand index) between clustering using geometry-based dis-
tance (BAPT) with clusters based on physicochemical and biochemical measures. Chemical1:
aliphatic, hydroxyl, cyclic, aromatic, basic, or acidic. Chemical2: aliphatic, aromatic, sulfu-
ric, hydroxyl, basic, acidic, and amide. Polarity1: non-polar, basic polar, polar, and acidic.
Polarity2: polar and non-polar. Polarity3: non-polar, flexible, and polar. Hydrogen donor:
donor, acceptor, donor & acceptor, and none. Charge: positive charged, negative charged,
and uncharged.

Chem.1 Chem.2 Polar.1 Polar.2 Polar.3 Hyd. Charge

BAPT 0.642 0.616 0.542 0.495 0.532 0.553 0.469

Chem.1 1.000 0.932 0.732 0.611 0.616 0.721 0.532

Chem.2 1.000 0.800 0.637 0.611 0.789 0.558

Polar.1 1.000 0.837 0.695 0.905 0.737

Polar.2 1.000 0.858 0.795 0.574

Polar.3 1.000 0.674 0.484

Hyd. 1.000 0.642

Charge 1.000

For this purpose, we modify the energy statistic E to deal with bivariate angular
data to test the null hypothesis that the distribution of dihedral angles between a
pair of amino acids is equal. To assess the significance of the observed statistic, we
calculate p-value of the test using a permutation method. One main challenge using
the permulation method is in the burden of computation. However, we find that this
is not a major hurdle as the permutation can be implemented in a home computer
relatively easily. It is currently our active research to identify the null distribution of
the energy statistics so that we can avoid the permutation and make the test more
efficient.

Our simulation study indicates that the Type-I error control is appropriate for the
proposed method. This indicates that the permutation test deals with potential depen-
dencies between observations in the two samples. The simulation study also indicates
that the test is able to distinguish two amino acids with different distributions, i.e.
good sensitivity. Finally, we conclude that, although there are some information in
the dissimilarity matrix that are shared with amino acids’ physicochemical and bio-
chemical properties, this new approach has new information. Clustering based on the
proposed dissimilarity matrix indicates that each of GLY, PRO, and ASN is in its own
individual cluster, and the remaining amino acids are grouped into two major clusters.
The first two amino acids (GLY and PRO) are well known to not follow typical dis-
tribution in terms of their dihedral angles. Due to a ring formation connected to beta
carbon, the dihedral angles around the peptide bond have less permissible degrees of
rotation. Further research is needed to understand why ASN also has atypical distri-
bution of dihedral angles. This is beyond the scope of our current study, since physical
and biochemical properties of the amino acids need to be studied in more details.

Further extensions to this study are also possible. The context of our current study
is in clustering groups of observations, rather than the observations themselves. It
is currently our active research to investigate the clustering of dihedral angles (as
observations) directly in each protein. This contributes to address an important re-
search question: given a sequence of amino acids (protein), can we identify secondary
structures of the protein (that contribute to the overall three-dimensional structure
of protein)? In this context, recent advances in clustering can be considered to poten-
tially be either extended or adapted to deal with bivariate angular data. For example,
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[11] proposed a fuzzy c-means algorithm for clustering circular data by modifying the
fuzzy c-means algorithm to be applicable to directional data. This is a simple and the
most common clustering algorithm in all fuzzy clustering methods. Abraham et al. [1]
presented a Bayesian model to cluster non-ordered multivariate circular data. They
introduce a hierarchical model that combines a symmetrisation technique, projected
normal distributions and a Dirichlet process. Huang et al. [10] proposed a novel clus-
tering method termed multi-view space clustering (MVIC). The aim of the multi-view
clustering is to combine information from multiple views in an unsupervised manner
to discover a better clustering structure. For clustering circular-linear data, Roy et
al.[20] proposed a mixture model-based clustering algorithm and they applied this al-
gorithm for clustering hue and chroma information. It still remains to be seen whether
the extension or adaptation would give a good clustering performance for bivariate
dihedral angles.

6. Conclusion

This study proposes novel geometry-based distance, on which any distance-based clus-
tering method can be utilised to cluster amino acids. This approach paves an alterna-
tive way of investigating clusters of amino acids based on a measure that are directly
related to protein structure/function, in addition to those based on physicochemical
and biochemical properties. The two-sample test involved has a good sensitivity and
a proper control of type-I error.
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