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In a recent proposal using the group field theory approach, a spatially homogeneous (generally

anisotropic) universe is described as a quantum gravity condensate of “atoms of space,” which allows

the derivation of an effective cosmological Friedmann equation from the microscopic quantum gravity

dynamics. Here we take a first step towards the study of cosmological perturbations over the homogeneous

background. We consider a state in which a single “atom” is added to an otherwise homogeneous

condensate. Backreaction of the perturbation on the background is negligible and the background dynamics

can be solved separately. The dynamics for the perturbation takes the form of a quantum cosmology

Hamiltonian for a “wave function,” depending on background and perturbations, of the product form

usually assumed in a Born-Oppenheimer approximation. We show that the perturbation we consider

corresponds to a spatially homogeneous metric perturbation, and for this case derive the usual procedures

in quantum cosmology from fundamental quantum gravity.

DOI: 10.1103/PhysRevD.91.043526 PACS numbers: 98.80.Qc, 04.60.Pp, 98.80.Bp

I. INTRODUCTION

The most natural point of contact between observable

phenomena and fundamental theories of quantum gravity is

probably in the cosmology of the early Universe. In spite of

the phenomenological successes of inflation as a theory of

the early Universe, classically a generic inflationary uni-

verse must have emerged from a singularity, implying a

breakdown of classical general relativity [1]. Quantum

gravity could also provide insight in the search for a theory

of initial conditions for the Universe. In practice, describing

cosmological singularities and, more generally, cosmologi-

cally interesting time-dependent spacetimes has been a

difficult task in basically all approaches to quantum gravity.

In loop quantum gravity (LQG) [2] the task is complicated

by the property of background independence which implies

that the natural (Ashtekar-Lewandowski) vacuum [3]

describes a completely degenerate (metric) geometry; a

state describing a macroscopic and approximately smooth

geometry cannot be found as a small perturbation of this

vacuum state. The Dittrich-Geiller vacuum [4], describing

a flat connection but completely undetermined metric,

seems a more promising starting point, but the restriction

to exactly flat geometries is from the perspective of

cosmology rather severe.

In the absence of a fully satisfactory description of

cosmological spacetimes within quantum gravity, a

common strategy is to perform a symmetry reduction at

the classical level and to quantize only the degrees of

freedom of the reduced system. This leads to minisuper-

space models of Wheeler-DeWitt quantum cosmology,

with a long history [5], or, when LQG techniques are used

in the quantization, to loop quantum cosmology (LQC) [6].

LQC models confirm the expectation that the classical

singularity is resolved by quantum gravity effects, leading

to a big bounce. Their precise relation to the full theory of

LQG has however not been fully clarified so far.

A new proposal addressing this fundamental issue was

put forward in Refs. [7]. Working in the group field theory

(GFT) approach to quantum gravity, itself a second

quantization formulation for LQG [8] (such a second

quantization of what is already a field theory is sometimes

called “third quantization” [9]), the new idea is the

description of a spatially homogeneous (generally aniso-

tropic) universe as a condensate of elementary excitations

of quantum geometry, or “atoms of space.” As the number

of atoms in such a condensate is taken to be very large, it

can be interpreted as an approximate continuum spacetime;

the property of condensation, implying that all microscopic

geometric degrees of freedom are in the same quantum

state, is analogous to spatial homogeneity for a continuum

manifold.

The results of Refs. [7] show that the description of

space as a quantum gravity condensate goes beyond a

purely kinematical construction. Imposing some of the

GFT Schwinger-Dyson equations as conditions on a given

condensate state, and hence demanding that the condensate

is, for the operators chosen, a good approximation to a

nonperturbative GFT vacuum, leads to conditions on the

“condensate wave function” that can be interpreted as

(generally nonlinear, nonlocal) effective quantum

cosmology equations where the condensate wave function

plays the role of a quantum cosmology wave function.

(A different approach, using the notion of fidelity instead*
s.gielen@imperial.ac.uk
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of Schwinger-Dyson equations for deriving an effective

dynamics, is outlined in Ref. [10].)

The resulting effective dynamical equations for GFT

condensate states are still fully quantum. In Refs. [7], a

semiclassical WKB limit was used to interpret them in

terms of classical cosmological dynamics, and it was

shown that, in the isotropic case, they reduce exactly to

the Friedmann equation of general relativity. This result

was obtained both in Riemannian and Lorentzian signature,

for pure vacuum and for gravity with a massless scalar field.

The meaning of the WKB approximation in this context has

however been debated. Exact solutions for isotropic uni-

verses (even if they are oscillatory) can deviate strongly

from the WKB expectations [11]; if the scaling of macro-

scopic observables with the number of atoms in the

condensate is taken into account, the WKB expansion in

derivatives appears to be an expansion in the ratio of the

Planck area to the average area per atom, which is not

necessarily a small parameter [12]. Accounting for this

scaling, an effective cosmological dynamics can be derived

from expectation values of macroscopic (cosmological)

observables without any semiclassical approximation; the

interpretation of the resulting equations in terms of cos-

mological variables such as the scale factor then depends

on how the number of atoms scales with the cosmological

variables, and is not necessarily compatible with the WKB

results [12]. See however also Ref. [13] for how the

dynamics of isotropic LQC can emerge from a WKB limit

of effective equations of GFT condensates.

While the use of quantum gravity condensates offers

promising opportunities for deriving quantum cosmology

models from a more fundamental theory, the formalism

so far suffers from a basic restriction, as the assumed

condensate states correspond to an exactly spatially

homogeneous universe. In the geometric interpretation

of general many-atom GFT states given in Refs. [7], the

geometric data contained in such a state specifies a metric

on a continuum manifold after an embedding of the basic

geometric quanta (interpreted as elementary tetrahedra, or

simplicial manifolds composed of a few tetrahedra) into a

given 3-manifold is chosen. For a condensate, where all

basic quanta are in the same state, the choice of embed-

ding is arbitrary, as is consistent with invariance of the

metric under a transitive group action; for a more general

geometry, however, the reconstructed metric depends on

the choice of embedding. It is not yet clear how to relax

the assumption of strict homogeneity, even perturbatively,

as one would need to do to incorporate cosmological

perturbations into GFT many-atom states, and to connect

with the usual formalism [14].

In quantum cosmology, one standard procedure for

including inhomogeneities is to follow Ref. [15]. One

considers a perturbed homogeneous, isotropic Friedmann-

Lemaître-Robertson-Walker (FLRW) universe, expands the

Hamiltonian up to second order in the perturbations, and,

as the different fluctuation modes are not coupled to each

other, assumes a wave function of product form

Ψða;ϕ; xnÞ ¼ Ψ0ða;ϕÞ
Y

n

Ψ
ðnÞða;ϕ; xnÞ ð1Þ

where a and ϕ are the scale factor and scalar field of the

background and n labels the fluctuation modes. One then

works in a Born-Oppenheimer approximation where the

Wheeler-DeWitt equation for the background wave func-

tion Ψ0 is solved separately from the fluctuations which

propagate on a semiclassical background, given by Ψ0 in a

WKB limit. For a recent application of this formalism

to a computation of quantum gravitational corrections to

the cosmic microwave background (CMB) spectrum, see

e.g. [16]. In such calculations in quantum cosmology, a

number of assumptions have to be made regarding the

smallness of fluctuations with respect to the background

and the applicability of the Born-Oppenheimer approxi-

mation. There is no embedding of wave functions into a

well-defined Hilbert space in which the error of these

approximations could be quantified; this provides one of

the main motivations for seeking to derive quantum

cosmology models consistently from some candidate

theory of quantum gravity.

In this paper, we take a first step towards extending the

proposal of quantum gravity condensates to cosmological

perturbations. Using the formalism of group field theory

and its Fock space of atoms of space, we consider the

simplest possible perturbation of a fully homogeneous

condensate, a state in which an elementary excitation

is added to the condensate. This state is characterized

by two separate wave functions for the condensate and

the perturbation. We compute its effective dynamics by

using Schwinger-Dyson equations of the GFT as pro-

posed in Refs. [7,12], and find confirmation of several

assumptions made in the same context in quantum

cosmology: First, the backreaction of the perturbation

on the condensate is negligible, so that the dynamics

for the “background” condensate wave function can be

solved separately. Then the resulting dynamics for the

perturbation takes the form of a Wheeler-DeWitt

Hamiltonian for a wave function which is the product

of the wave functions for condensate and perturbations.

The Hamiltonian for this product wave function contains

one part for the background plus a part for the perturba-

tions of identical form. We explain why the interpretation

of such a perturbation as spatially homogeneous is fully

consistent with the geometric interpretation given in

Refs. [7]. We stress that none of these results arise from

the assumption that our perturbed condensate describes a

perturbed FLRW universe; instead they are derived from

the kinematics and dynamics of a full theory of quantum

geometry. They provide reassuring consistency with

conventional quantum cosmology.
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While the perturbation we consider can classically be

absorbed into the background, quantum mechanically

background and perturbation can be distinguished by the

different number of quanta of geometry. Our example,

while restricted to a special case, exemplifies the possibility

for adding perturbations to quantum gravity condensates,

to be investigated further in future work.

II. QUANTUM GRAVITY CONDENSATES

AND COSMOLOGY

In this section we give a short summary of the proposal

of Refs. [7] for describing spatially homogeneous universes

by condensate states in group field theory.

The GFT formalism itself [17] was developed as a

covariant quantum field theory formulation of the dynamics

of loop quantum gravity. In LQG, transition amplitudes

for boundary spin network states, interpreted as discrete

geometries, are given in terms of a spin foam amplitude

associated to each discrete spacetime history that interpo-

lates between the prescribed boundary data [2]. In GFT, the

same amplitudes are generated as Feynman amplitudes

associated to the discrete spacetime histories appearing as

Feynman graphs. Spin foam models and GFT actions are in

one-to-one correspondence [18].

Just as in condensed matter physics, using a second

quantized quantum field theory formulation of the dynam-

ics of LQG gives access to a variety of techniques and

simplifies many considerations. In particular, in analogy

to the physics of Bose-Einstein condensates, one can define

a condensate of atoms of geometry. In this picture, a

homogeneous universe is made up of many disconnected

discrete geometric building blocks, all in the same micro-

scopic quantum state, so that they carry the same geometric

information. The (approximate) metric one reconstructs

from such a discrete geometry is spatially homogeneous

[7]. As in Bose-Einstein condensates, the GFT field

operator acquires a nonzero expectation value which is

interpreted as a quantum cosmology wave function,

subject to nonlinear equations of motion analogous to

the Gross-Pitaevskii equation. Such equations can then

be interpreted in terms of cosmological observables, for

instance by considering expectation values or a semi-

classical approximation.

More concretely, the kinematical Hilbert space of dis-

crete geometries in GFT can be defined as a Fock space.

One starts with a Fock vacuum j0i which is analogous

to the Ashtekar-Lewandowski vacuum of LQG; it corre-

sponds to a completely degenerate geometry, with zero

expectation value for all areas and volumes, and no

excitations of quantum geometry. (That such a state gives

a natural vacuum can be understood by observing that only

a zero metric is invariant under diffeomorphisms.) There

is a basis of creation operators that create excitations when

acting on j0i. In three spatial dimensions, these excitations

are interpreted as tetrahedra with geometric information

attached to them. In the “group” representation, four group

elements gI define the parallel transports of a gravitational
connection along links dual to the four faces; in the dual

“metric” representation the data is given by four Lie algebra

elements BI corresponding to the area element integrated

over the four faces, BAB
I ∼

R

△I
eA∧eB.

One particular set of one-particle states is given by acting

with the GFT field operator, in the group representation,

on j0i,

jg1;…; g4i ≔ φ̂†ðg1;…; g4Þj0i: ð2Þ

Such a state is interpreted as a single tetrahedron with

discrete geometric data given by the group elements gI
interpreted as parallel transports of a connection.

Consequently, the gI take values in a group G interpreted

as the gauge group of gravity. Depending on the model, one

usually takes G ¼ Spinð4Þ, G ¼ SLð2;CÞ or G ¼ SUð2Þ,
which is the gauge group in the Ashtekar-Barbero formu-

lation of gravity, and hence in LQG.

The Fock space can now be constructed by repeated

actions of the field φ̂†ðgIÞ, taking into account the

(nonrelativistic) bosonic commutation relations

½φ̂ðgIÞ; φ̂ðg
0
IÞ� ¼ ½φ̂†ðgIÞ; φ̂

†ðg0IÞ� ¼ 0;

½φ̂ðgIÞ; φ̂
†ðg0IÞ� ¼ 1GðgI; g

0
IÞ; ð3Þ

where 1G is a gauge-invariant delta distribution. In the rest

of the paper, we will assume compact G, with a normalized

Haar measure
R

dg ¼ 1. We can then set 1GðgI; g
0
IÞ ≔

R

dhδ4ðgIhg
0−1
I Þ. Equation (3) is compatible with the gauge

invariance property of the field φ̂,

φ̂ðg1;…; g4Þ ¼ φ̂ðg1h;…; g4hÞ ∀ h ∈ G; ð4Þ

which corresponds to invariance of the theory under gauge

transformations acting on a vertex where all four links

associated to a tetrahedron meet; these act as gI ↦ gIh as in

lattice gauge theory.

Any given N-particle state in the Fock space is inter-

preted as a geometric structure made up of N tetrahedra

with discrete geometric data. Depending on the state, these

can be connected, with several or all faces glued to one

another, or disconnected. In any case, a priori they are not

embedded in any “space,” but themselves make up space

and its geometry. GFTs are not quantum field theories on

space but of space. The domain space of the field φ̂ is the

abstract group manifold G4 which is the configuration

space of a single tetrahedron, and has no relation to space

or spacetime.

In Refs. [7], an embedding into a given manifold

(of fixed topology) was used in order to reconstruct an

approximate metric geometry from given GFT Fock states.

In general, the reconstructed metric depends on the choice

of embedding, which is arbitrary. However, for a spatially
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homogeneous metric it does not, as a homogeneous

geometry can be fully reconstructed from any one given

point. The criterion for spatial homogeneity is that all GFT

quanta carry the same geometric data, which is analogous

to the condition of condensation in condensed matter

systems. By taking the (average) particle number N as

large as possible, the approximate metric reconstructed

from the discrete GFT data gives an arbitrarily good

approximation to a continuum metric.

There are a few ambiguities in the definition of GFT

condensate states. In particular, one can consider a con-

densate of “atoms,” single tetrahedra, or a condensate of

“molecules” which are composed of two or more tetrahe-

dra. The simplest type of molecule would be a “dipole” of

two tetrahedra with all four faces pairwise identified, which

is the simplest triangulation of a three-sphere. The dipole is

the elementary building block in the spin foam cosmology

approach [19], which also aims at describing spatially

homogeneous universes within LQG. In Refs. [7], both

types of condensates were considered. Condensates of

atoms are much simpler to handle technically, as the

associated quantum states are coherent states of the GFT

field operator. For the exploratory purposes of this paper,

we will only consider this type of condensate.

The unperturbed condensate state is then defined by

jσi ≔ N ðσÞ expðσ̂Þj0i; ð5Þ

where

σ̂ ≔

Z

ðdgÞ4σðgIÞφ̂
†ðgIÞ ð6Þ

and N ðσÞ is a normalization factor, and without loss of

generality σðgIÞ ¼ σðgIhÞ for all h ∈ G, due to Eq. (4).

N ðσÞ can be computed by noting that

h0j expðσ̂†Þ expðσ̂Þj0i ¼ exp

�
Z

ðdgÞ4jσðgIÞj
2

�

ð7Þ

and hence

N ðσÞ ≔ exp

�

−
1

2

Z

ðdgÞ4jσðgIÞj
2

�

: ð8Þ

It is then immediate to verify that jσi indeed satisfies

φ̂ðgIÞjσi ¼ σðgIÞjσi: ð9Þ

Using this, the average particle number is

N ≔

Z

ðdgÞ4hσjφ̂†ðgIÞφ̂ðgIÞjσi ¼

Z

ðdgÞ4jσðgIÞj
2: ð10Þ

Hence the integral of σ is not normalized to one, but

corresponds to a physical observable of the condensate. As

mentioned above, in order for the discrete spatial geometry

formed by the condensate to be a good approximation

to a continuum homogeneous universe one needs N ≫ 1

(e.g. N could be the volume of the spatial region of interest

in Planck units). There may be constraints on the possible

values for N coming from the dynamics of the given GFT

model, through the requirement for (5) to be a good

approximation to a physical state.

This requirement can be expressed a set of equations for

the condensate wave function σðgIÞ which can be derived,

among other means, from Schwinger-Dyson equations of

the GFT. These equations can be formally derived from the

path integral, and require expectation values of certain

operators to vanish in any vacuum state of the theory (itself

defined through the path integral).

The simplest such operator is the equation of motion

�

δS½φ; φ̄�

δφ̄ðgIÞ

�

¼ 0: ð11Þ

More generally, one can insert an operator O½φ; φ̄� into the

path integral to find additional relations of the form

�

δO½φ; φ̄�

δφ̄ðgIÞ
−O½φ; φ̄�

δS½φ; φ̄�

δφ̄ðgIÞ

�

¼ 0: ð12Þ

The idea is now to use expectation values such as Eq. (12),

evaluated in the state jσi, as information about the under-

lying GFT dynamics, and to interpret the resulting equa-

tions for the condensate wave function σ as quantum

cosmology equations. The simplest such equation

Eq. (11) would, in the case of a Bose-Einstein condensate,

precisely reproduce the Gross-Pitaevskii equation for the

condensate wave function Ψ.

Here we follow the approach introduced in Ref. [12] and

interpret (12) as the expectation value of a suitable many-

body operator on the GFT Fock space. One setsO ¼ φ̄ðgIÞ
and integrates over the gI . Under normal ordering, the delta

distribution δφ̄=δφ̄ disappears and one obtains, in terms of

normal ordered operators,

hK̂i þ

�
Z

ðdgÞ4φ̂†ðgIÞ
δV̂½φ̂; φ̂†�

δφ̂†ðgIÞ

�

¼ 0 ð13Þ

where we have written the GFT action as S ¼ K þ V with

quadratic kinetic term K and potential V. As in Ref. [12],

we now also assume that the second term in Eq. (13)

vanishes. This can be an exact result for a certain class of

states, such as the dipole condensate states defined in

Refs. [7], or more generally correspond to a weak-coupling

limit in which the GFT interactions are neglected.

Neglecting the second term in Eq. (13) also simplifies

the quantum cosmology interpretation, as Eq. (11) becomes

a linear equation of motion for σ, as in standard quantum

cosmology. (The more general, nonlinear case could be
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related to the nonlinear extension of quantum cosmology

introduced in Ref. [20].)

The expectation value of the GFT “kinetic energy” is

hK̂i ≔

Z

ðdgÞ4hσjφ̂†ðgIÞKφ̂ðgIÞjσi

¼

Z

ðdgÞ4σ̄ðgIÞKσðgIÞ; ð14Þ

where we are assuming a local kinetic term specified by the

choice of a differential operator K on G4.

Imposing the requirement hK̂i ¼ 0 on the condensate

trial state (5) can thus be interpreted as a given many-body

operator on the GFT Fock space having zero expectation

value. The classical limit of this operator can be interpreted

as an effective Hamiltonian constraint corresponding to a

generalized Friedmann equation, written in terms of cos-

mological observables such as the scale factor and Hubble

“parameter,” as detailed in Ref. [12]. This provides the link

between the Schwinger-Dyson equations of the GFTand an

effective quantum cosmology equation, and hence between

the microscopic dynamics of quantum geometry and

large-scale cosmological dynamics, in a way analogous

to deriving an effective hydrodyamic description (e.g. the

Euler equation) of a quantum fluid by using coherent states

in condensed matter physics. See Refs. [7] for more details

and conceptual background.

III. ADDING A PERTURBATION

GFT condensate states such as Eq. (5) can be interpreted

as spatially homogeneous geometries. Although an embed-

ding of the quanta of geometry into a manifold is used in

the reconstruction of an approximately smooth geometry

defined by the quantum state, the property of condensation,

meaning that all quanta are in the same microscopic state,

makes the reconstructed geometry independent of the

embedding. This convenient feature of the exact condensate

is however rather restrictive; our Universe is not exactly

homogeneous, and being able to reproduce the correct

spectrum of cosmological perturbations is an important

consistency check for any proposed model of quantum

cosmology.

Developing a formalism for the study of cosmological

perturbations over exactly homogeneous condensates in

quantum gravity will require new conceptual insights.

There is no obvious notion of coordinates for the con-

densate with respect to which perturbations could be

localized; on the contrary, the condensate is made up of

indistinguishable quantum particles. One expects an effec-

tive classical picture of a background (e.g. FLRW) geom-

etry to be meaningful only for a condensate with

semiclassical properties; appropriate conditions for semi-

classicality must presumably be defined for macroscopic

instead of microscopic observables, as there is no reason

to expect semiclassical behavior at the Planck scale

(as discussed in Refs. [11,12]).

In absence of a complete picture, we will take a first step

into the study of perturbations of homogeneous GFT

condensates by considering the simplest possible type of

perturbation. Namely, we take the state (5) and create

another elementary excitation over it,

jτ; σ0i ≔ N ðτ; σ0Þτ̂ expðσ̂0Þj0i; ð15Þ

where we define

τ̂ ≔

Z

ðdgÞ4τðgIÞφ̂
†ðgIÞ; ð16Þ

we use the notation σ0 instead of σ to emphasize this

specifies the background, and τ is the wave function for the

additional excitation. Computing the normalization factor

N ðτ; σ0Þ, we find

h0j expðσ̂†0Þτ̂
†τ̂ expðσ̂0Þj0i

¼ h0j expðσ̂†0Þτ̂τ̂
† expðσ̂0Þj0i

þ

Z

ðdgÞ4jτðgIÞj
2h0j expðσ̂†0Þ expðσ̂0Þj0i

¼

��

�

�

�

Z

ðdgÞ4τ̄ðgIÞσ0ðgIÞ

�

�

�

�

2

þ

Z

ðdgÞ4jτðgIÞj
2

�

× exp

�
Z

ðdgÞ4jσ0ðgIÞj
2

�

; ð17Þ

and so

N ðτ; σ0Þ ¼

��

�

�

�

Z

ðdgÞ4τ̄ðgIÞσ0ðgIÞ

�

�

�

�

2

þ

Z

ðdgÞ4jτðgIÞj
2

�

−
1
2

× exp

�

−
1

2

Z

ðdgÞ4jσ0ðgIÞj
2

�

: ð18Þ

As we will see in the following, while this type of

perturbation does not allow us to go away from spatial

homogeneity, it already gives several conceptual insights

strengthening the link between the effective dynamics of

condensate states and usual quantum cosmology.

Using

φ̂ðgIÞjτ; σ0i ¼
N ðτ; σ0Þ

N ðσ0Þ
τðgIÞjσ0i þ σ0ðgIÞjτ; σ0i ð19Þ

we find that
Z

ðdgÞ4hτ; σ0jφ̂
†ðgIÞKφ̂ðgIÞjτ; σ0i

¼
N ðτ; σ0Þ

2

N ðσ0Þ
2

Z

ðdgÞ4τ̄ðgIÞKτðgIÞ

þ
N ðτ; σ0Þ

N ðσ0Þ

�

hσ0jτ; σ0i

Z

ðdgÞ4τ̄ðgIÞKσ0ðgIÞ þ c:c:

�

þ

Z

ðdgÞ4σ̄0ðgIÞKσ0ðgIÞ: ð20Þ
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The overlap between the unperturbed and perturbed con-

densate states is

hσ0jτ; σ0i ¼
N ðτ; σ0Þ

N ðσ0Þ

Z

ðdgÞ4τðgIÞhσ0jφ̂
†ðgIÞjσ0i

¼
N ðτ; σ0Þ

N ðσ0Þ

Z

ðdgÞ4τðgIÞσ̄0ðgIÞ ð21Þ

and we finally obtain
Z

ðdgÞ4hτ; σ0jφ̂
†ðgIÞKφ̂ðgIÞjτ; σ0i

¼
N ðτ; σ0Þ

2

N ðσ0Þ
2

�
Z

ðdgÞ4τ̄ðgIÞKτðgIÞ

þ

Z

ðdgÞ4τðgIÞσ̄0ðgIÞ

Z

ðdhÞ4τ̄ðhIÞKσ0ðhIÞ

þ

Z

ðdgÞ4τ̄ðgIÞσ0ðgIÞ

Z

ðdhÞ4σ̄0ðhIÞKτðhIÞ

�

þ

Z

ðdgÞ4σ̄0ðgIÞKσ0ðgIÞ ð22Þ

where we are assuming that K is self-adjoint. Note that

N ðτ;σ0Þ
2

N ðσ0Þ
2
¼

1

j
R

ðdgÞ4τ̄ðgIÞσ0ðgIÞj
2þ

R

ðdgÞ4jτðgIÞj
2
: ð23Þ

Setting K≡ 1 we find the average particle number

N ¼

Z

ðdgÞ4hτ; σ0jφ̂
†ðgIÞφ̂ðgIÞjτ; σ0i

¼

Z

ðdgÞ4jσ0ðgIÞj
2 þ 1

þ
j
R

ðdgÞ4τ̄ðgIÞσ0ðgIÞj
2

j
R

ðdgÞ4τ̄ðgIÞσ0ðgIÞj
2 þ

R

ðdgÞ4jτðgIÞj
2
: ð24Þ

The perturbation by τ increases the average particle number

by between 1 and 2, depending on the overlap between the

wave functions τ and σ0 in minisuperspace. It is indeed a

very small perturbation if, as we are assuming through-

out, N0 ¼
R

ðdgÞ4jσ0ðgIÞj
2
≫ 1.

If we now require, as before, that the expectation value of

the GFT “kinetic energy” vanishes,

Z

ðdgÞ4hτ; σ0jφ̂
†ðgIÞKφ̂ðgIÞjτ; σ0i ¼ 0; ð25Þ

we find four different terms from Eq. (22). Comparing the

terms inside the brackets, we see that the first should be

negligible for a large enough number of particles in the

background (so that jσ0ðgIÞj ≫ 1). We then obtain

Z

ðdgÞ4σ̄0ðgIÞ

Z

ðdhÞ4
�

τðgIÞτ̄ðhIÞKh þ ðKτÞðgIÞτ̄ðhIÞ

j
R

ðdg0Þ4τ̄ðg0IÞσ0ðg
0
IÞj

2 þ
R

ðdg0Þ4jτðg0IÞj
2
þ δ4ðg−1I hIÞKh

�

σ0ðhIÞ ≈ 0: ð26Þ

By including the perturbation by τ, the resulting effective

dynamics for the background wave function σ0 is modi-

fied by nonlocal and highly nonlinear terms that depend

on the perturbation wave function, leading to a nonlocal

effective “Hamiltonian constraint.” These nonlocalities on

minisuperspace encode the backreaction of inhomogene-

ities on the background. Their effect is very small, as

expected; due to the extra factor of σ20 in the denominator,

it is generically of order 1=N0 relative to the unperturbed

background evolution (though it can be large for very

special states, e.g. states with no overlap of τ and σ0 in

minisuperspace).

IV. EFFECTIVE QUANTUM COSMOLOGICAL

DYNAMICS

In a situation where there is a very small perturbation to

the dynamics of a background wave function, one can study

the system by solving for background and perturbation

separately. Hence let us imagine solving Eq. (26) for the

background σ0 ignoring the nonlinearities. Equation (22)

can then be read as specifying an effective dynamics for the

perturbation τ,

Z

ðdgÞ4τ̄ðgIÞ

Z

ðdhÞ4ðσ0ðgIÞσ̄0ðhIÞKh

þðKσ0ÞðgIÞσ̄0ðhIÞ þ δ4ðg−1I hIÞKhÞτðhIÞ ≈ 0: ð27Þ

Again, the last (local) piece is completely negligible for a

large enough number of background quantaN0. For general

σ0, the dynamics for τ appears highly nonlocal in minis-

uperspace. Note however that we have made no assump-

tions about the form of σ0, so that it does in general not

correspond to any background geometry on which fluctua-

tions could propagate. Equation (27) describes the inter-

action between a quantum condensate and a quantum

perturbation of it, and does not in general admit a semi-

classical picture. If we assume a σ0 that is sharply peaked

around some g0I [or rather an equivalence class fg
0
Ihg under

(4)], these nonlocalities will be strongly suppressed.

(Nonlocalities involving configurations that are related

by a gauge transformation are not physical; one can work

on a smaller configuration space of gauge-invariant geo-

metric data as outlined in Ref. [11].)

If we discard the local term quadratic in τ, there is

another interesting observation. Defining a new wave
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function ΨðgI; hIÞ describing both the background and the

perturbation by ΨðgI; hIÞ ≔ σ0ðgIÞτðhIÞ, Eq. (27) can be

recast as

Z

ðdgÞ4ðdhÞ4Ψ̄ðgI; hIÞPðKh þKgÞΨðgI; hIÞ ≈ 0 ð28Þ

where P is a permutation PfðgI; hIÞ ≔ fðhI; gIÞ. In this

form, the dynamics can be interpreted as an effective

Hamiltonian on an enlarged minisuperspace, spanned by

ðgI; hIÞ, of the possible geometric configurations of back-

ground and perturbation combined. The resulting dynamics

is then evidently reminiscent of the Born-Oppenheimer

approximation for small perturbations of a FLRW universe

in usual quantum cosmology. For full details of the

reasoning behind this approximation, see e.g. the textbook

[21]; here we are summarizing the most important points.

Given a wave function on a “superspace” encoding both the

FLRW background and perturbations over it, and dynamics

given by the Hamiltonian constraint of general relativity

expanded up to second order in the perturbations, one

regards the background variables as “heavy” and the

perturbations as “light” in the Born-Oppenheimer sense.

The wave function is taken to be (1) where the dependence

of the fluctuation wave functions ΨðnÞ on the background

variables ða;ϕÞ is adiabatic, i.e. derivatives of ΨðnÞ with

respect to a and ϕ are small,

�

�

�

�

∂Ψ0

Ψ0

�

�

�

�

≫

�

�

�

�

∂ΨðnÞ

Ψ
ðnÞ

�

�

�

�

ð29Þ

for ∂ ¼ ∂=∂a or ∂ ¼ ∂=∂ϕ. One then splits the equation

HΨ ¼ 0 into a Wheeler-DeWitt equation for the back-

groundΨ0 and equations for each of theΨ
ðnÞ. By using (29)

and the assumption that Ψ0 is of WKB form, an effective

“Schrödinger equation” for ΨðnÞ emerges, with an approxi-

mate “WKB time” defined through Ψ0.

In our setting no metric superspace or Hamiltonian on it

exists a priori, but both are reconstructed from the quantum

dynamics of the GFT condensate and the perturbation over

it. A Born-Oppenheimer approximation would correspond

to a wave function

ΨB:O:ðgI; hIÞ ≔ σ0ðgIÞτðhI; gIÞ ð30Þ

for which derivatives of τ with respect to gI are assumed to

be small, and a split of the full dynamics into separate

equations for the background and perturbations. Here,

we recover precisely this structure in the dynamics of

the background wave function σ0 and the product wave

function Ψ that includes perturbations, in the limit where

one neglects derivatives of τ with gI so that τ is only a

function of hI. The analogue of the Born-Oppenheimer

criterion of a separation into heavy and light degrees of

freedom is the condition N0 ≫ 1 that implies that the

perturbation by τ really is a small perturbation of the

homogeneous condensate. This condition also implies that

the reconstructed (approximate) metric describing the

condensate and its perturbation is only minimally affected

by the perturbation: as discussed in Ref. [12], such a metric

is reconstructed from geometric quantities that are extensive

observables of the condensate. Thus if 1=N0 ≪ 1 we have

a small perturbation δg=g ≪ 1. Note that conditions like

N0 ≫ 1 can be verified for any given condensate state such

as Eq. (15), in contrast to conventional quantum cosmology

where the consistency of a Born-Oppenheimer approxi-

mation must be assumed.

In order to complete the interpretation of Eq. (28) as

giving the dynamics for an effective Born-Oppenheimer

quantum cosmology wave function, one should show that

the effective Hamiltonian appearing in Eq. (28) can be

interpreted, at least in an appropriate semiclassical limit, as

a gravitational Hamiltonian constraint for a homogeneous

background metric with a small perturbation. This is what

we will investigate next.

Equation (28) can be interpreted as requiring the expect-

ation value of the operator PðKh þKgÞ to (approximately)

vanish in the state specified by the first quantized quantum

cosmology wave function Ψ. One needs to interpret this

operator in terms of cosmological variables.

The operator P corresponds to a permutation of the

background and perturbation variables on minisuper-

space, and its interpretation in terms of quantum cosmol-

ogy is not totally clear. Its appearance may be related to

the corresponding classical symmetry that, for a spatially

homogeneous perturbation (see below), the splitting

between background and perturbation is completely arbi-

trary. If one imposes a symmetry under P on the combined

wave function Ψ, P would disappear from the expectation

value (28).

For concreteness, we can set K ¼
P

IΔgI
þm2 as was

done in the previous work of Refs. [7,11,12]. This type of

kinetic term appears naturally in the renormalization of

GFT models [22]. If, as in Ref. [11], we restrict to isotropic

configurations for which the wave functionΨ only depends

on one isotropic combination of group elements p0 for the

background and another one q for the perturbation, we have

ðKh þKgÞΨðgI; hIÞ

¼

�

2p0ð1− p0Þ
∂2

∂p2
0

þ ð3− 4p0Þ
∂

∂p0

þ 2qð1− qÞ
∂2

∂q2

þ ð3− 4qÞ
∂

∂q
þ
m2

2

�

Ψðp0; qÞ ð31Þ

as the explicit expression of the differential operator

ðKh þKgÞ in terms of isotropic minisuperspace coordi-

nates ðp0; qÞ. Note that the “effective Wheeler-DeWitt

equation” ðKh þKgÞΨ ¼ 0 is a sufficient but not necessary

condition for Eq. (28) to hold; Eq. (28) would correspond to

a weakly imposed Hamiltonian constraint in the quantum

cosmology picture. As outlined in Sec. II, Eq. (28) is just
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one out of an infinite number of expectation values coming

from the Schwinger-Dyson equations of the GFT, and

finding an exact physical state of the GFTwould (in theory)

amount to solving many more consistency relations than

one Wheeler-DeWitt equation in quantum cosmology.

Solutions to Eq. (28) can provide a first approximation

to such an exact physical state.

As a second-order differential operator, Eq. (31) defines

a metric on the minisuperspace parametrized by ðp0; qÞ;
one can absorb the first derivatives in a coordinate

redefinition P0 ¼ P0ðp0Þ, Q ¼ QðqÞ and then read off

the (inverse) metric as the coefficients in front of the second

derivatives. Explicitly, choosing

P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p0

p0

s

; Q ¼

ffiffiffiffiffiffiffiffiffiffiffi

1 − q

q

s

; ð32Þ

Eq. (31) becomes

ðKh þKgÞΨðgI; hIÞ

¼

�

ð1þ P2
0Þ

∂2

∂P2
0

þ ð1þQ2Þ
∂2

∂Q2
þm2

�

ΨðP0; QÞ:

ð33Þ

This defines a minisuperspace metric which is diagonal and

nondegenerate everywhere except at the boundary points

P0 ¼ ∞ orQ ¼ ∞ (note that while p0 and q are in the unit

interval [0, 1], the range of P0 and Q is ½0;∞�).
In this canonical form, Eq. (33) can be used to introduce

a notion of “WKB time” on minisuperspace as for the

Born-Oppenheimer approximation in usual quantum cos-

mology. This time is well defined in a regime in which the

wave function σ0 is taken to be of WKB form, so that

ΨðP0; QÞ ¼ eiS0ðP0Þ=ℏGχðP0; QÞ ð34Þ

where S0 oscillates very rapidly compared to χ (we have

absorbed the slowly varying absolute value of σ0 into χ).

One can then approximate

ð1þ P2
0Þ
∂2
Ψ

∂P2
0

≈
i

ℏG
ð1þ P2

0Þ
∂S0

∂P0

∂Ψ

∂P0

; ð35Þ

identifying ∂S0=∂P0 with the (WKB) momentum conju-

gate to P0; by using Hamilton’s equations for the

Hamiltonian defined by Eq. (33) one then notices that

the combination ð1þ P2
0Þ∂S0=∂P0 is equal to −

1
2
times the

time derivative of P0. This defines a time t by

ð1þ P2
0Þ
∂2
Ψ

∂P2
0

≈ −
i

2ℏG

dP0

dt

∂Ψ

∂P0

≈ −
i

2ℏG

∂Ψ

∂t
ð36Þ

again using the WKB assumption that derivatives with

respect to P0 dominate the gradient of Ψ. All this here

formally goes through as in standard quantum cosmology,

but relies on having a background wave function σ0 of

WKB form; as discussed above and again in the following,

it remains unclear whether this assumption is satisfied for

physically interesting GFT condensate states.

In order to interpret the coordinates p0 and q on the

group in terms of a gravitational connection, the scaling of

an “averaged holonomy,” to be associated to such a

connection, with the number of GFT quanta must be taken

into account [12]. One can then identify p0 and q with

parallel transports of a gravitational connection,

p0 ∝ sin2ðνN−1=3ωpÞ; q ∝ sin2ðνN−1=3ωqÞ ð37Þ

where ν is a free parameter and N is the average number of

quanta in the condensate [12]. Trivial parallel transport

p0 ¼ 0 corresponds to a flat connection whereas p0 ∼Oð1Þ
means large curvature on the (perhaps Planckian) scale set

by the discrete quanta. Equation (32) then means

P0 ∝ cotðνN−1=3ωpÞ; Q ∝ cotðνN−1=3ωqÞ ð38Þ

so that a flat connection corresponds to P0 ¼ ∞ orQ ¼ ∞,

which seems less convenient. We therefore use the

variables ðp0; qÞ and Eq. (31) in the following.

The detailed interpretation of Eq. (31) as an effective

Friedmann equation depends not only on the interpretation

of such coordinates on minisuperspace but also on how N
scales with other cosmological variables such as the scale

factor. Furthermore, while one may employ a semiclassical

WKB-type approximation in which the highest derivatives

dominate Eq. (31), the interpretation of this approximation

is not clear as it assumes that the average area per quantum

of geometry is large compared to the elementary (presum-

ably Planckian) area scale in the theory. See Refs. [11–13]

for discussions of the WKB approximation in this context.

The effective Hamiltonian for the wave functionΨ given

by Eq. (28) is a sum of decoupled kinetic terms for

background and perturbations. To be more concrete, we

have to interpret Eq. (28) in terms of cosmological

dynamics, i.e. an effective Friedmann equation. As said

before, this interpretation depends rather crucially on the

behavior of the atomic number N relative to other cosmo-

logical variables. Interpreting Eq. (28) in terms of expect-

ation values and assuming a relation N ¼ NðaÞ, various
possibilities for the effective cosmological dynamics were

discussed in Ref. [12]. It is then clear that, for any effective

Friedmann equation for the background variables derived

in this way, Eq. (28) simply gives the sum of two such

Friedmann equations for the background and perturbation

variables.

One possible, rather crude, derivation of this sort would

be to apply a WKB approximation to Eq. (31) taking only

the highest derivatives into account. In this limit, requiring

a zero expectation value for Kh þKg means that the
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coefficients in front of the highest derivatives have to be

tuned to zero in terms of the WKB variables,

2p0ð1 − p0Þ ≈ 0; 2qð1 − qÞ ≈ 0: ð39Þ

Out of the two solutions for each equation, only one is

viable in the geometric interpretation of GFT condensates.

p0 and q represent the spatial curvature measured on the

scale of an individual tetrahedron, which must be small

for the condensate to approximate a continuum geometry.

This enforces the only allowed solution

p0 ≈ 0; q ≈ 0: ð40Þ

p0 ≈ 1 or q ≈ 1 would correspond to a geometry with

large curvature on presumably Planckian scales. In this

approximation, one would conclude from Eq. (40) that the

connection given by ωp and ωq has to be flat and the

semiclassical solution is Minkowski spacetime, suggesting

that the classical limit of Eq. (28) is compatible with the

dynamics of classical vacuum GR (where this would be

the only solution). However, we should mention again that

the viability of such WKB approximations in the study of

GFT condensate states has been questioned by the analysis

of Ref. [11], as it means assuming large microscopic

average areas, as discussed in Ref. [12]. A more detailed

study is needed to see whether there exist well-behaved

and physically relevant states solving Eq. (28) that are also

peaked on the classical values (40). In Ref. [11] it was

shown, for wave functions only depending on one geo-

metric variable p0, that depending on the value of m2 there

may or may not exist such solutions, and solutions that do

exist generally do not display rapid oscillation as assumed

in the WKB limit. The argument presented here should

therefore be seen as very tentative.

V. DISCUSSION

We have given a tentative argument suggesting that a

classical limit of the effective quantum cosmological

dynamics, for a perturbed GFT condensate of the form

(15), could indeed reproduce the expectations from vacuum

GR if the perturbation is interpreted as spatially homo-

geneous. As discussed in Ref. [12], a more careful analysis

that does not require the WKB approximation will gen-

erally give corrections to the vacuum Friedmann equation

which depend on assumptions about the scaling relation

NðaÞ. More work is then needed to interpret the specific

form of the dynamics given by Eq. (28) for different

choices of GFT dynamics and condensate states.

The main point of this paper is however more general

than this. We have given a consistent interpretation of the

simplest perturbation of an exactly homogeneous conden-

sate as a spatially homogeneous metric perturbation. The

quantum dynamics of such a state is controlled by the

effective Hamiltonian (28) for a product wave function, and

an effective Born-Oppenheimer approximation emerges

from the smallness of the average particle number of the

perturbation with respect to the number of quanta in the

background N0. The same smallness also guarantees that

the reconstructed geometry is indeed a very small pertur-

bation of the geometry determined by the background

condensate state.

The interpretation of one or two atoms perturbing the

condensate as a spatially homogeneous perturbation is

perfectly consistent with the geometric interpretation of

general GFT Fock states introduced in Refs. [7]. Imagine

reconstructing a metric geometry by embedding the back-

ground condensate into a manifold. Then, add a perturba-

tion, which will be embedded somewhere in the manifold,

so that one should reconstruct a spatial geometry that is

spatially homogeneous everywhere except one small patch

in which it looks different. However, one also has to take

into account quantum-mechanical indistinguishability of

the bosonic GFT quanta, meaning that the reconstructed

geometry is in fact a superposition of all permutations of

the chosen embedding. But this implies that the perturba-

tion cannot be localized in the embedding space; it can be

found at any of the embedding patches with equal prob-

ability. Hence, if any type of semiclassical description is

viable, it should be that of a spatially homogeneous metric

perturbation.

Of course, classically this perturbation can simply be

absorbed into the background, and so at first glance does

not seem to add anything of interest to the unperturbed

condensate. However, we now have a different quantum

system with twice as many degrees of freedom; in the

isotropic case, a and L are independent variables, and can

fluctuate independently. Including anisotropies in the

perturbation τ, with a background condensate assumed

to be isotropic, allows for a systematic perturbative treat-

ment of anisotropies. More generally and more importantly,

studying this very simplest type of perturbation already

shows how an effective formalism for quantum cosmology

of a homogeneous background with perturbations can

emerge from suitable states in a fundamental quantum

gravity theory given by GFT. Background and perturba-

tions can be distinguished by computing the average

particle number, as we have shown. The very existence

of such a discrete quantum observable is a genuine

quantum gravity effect, whose possible cosmological

consequences have been already anticipated in Ref. [12]

(a dependence of quantum gravity corrections in LQC on

this observable has also been observed in Ref. [23]). Here,

it allows us to set up an effective Born-Oppenheimer

approximation in which it is justified to first solve the

equations for the background, ignoring nonlocal and non-

linear terms coming from backreaction of the perturbations,

and then to define a wave function of product type whose

dynamics is governed by an effective Hamiltonian on an

enlarged minisuperspace including the degrees of freedom
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of both background and perturbations. While indications

that the dynamics has the correct semiclassical limit

corresponding to a vacuum universe in classical general

relativity will require further analysis to become conclu-

sive, the technical and conceptual insights gained in our

analysis should be helpful in future work towards under-

standing the major open issue of including inhomogeneous

perturbations in quantum gravity condensates.

It is clear from the previous discussion that, in devel-

oping such a formalism for inhomogeneities, one will need

to consider more complicated states than the very simple

ones given by Eq. (15). Inhomogeneous perturbations must

be localizable with respect to the background, while in our

setting both the background and the perturbation describe a

fluid made up of a large number of identical, uncorrelated

excitations. This calls for an extension of our approach to

one using states that contain correlations between different

quanta. In the discrete geometry language of GFT, such

correlations encode topological information; instead of

only considering disconnected “atoms” or small “mole-

cules” as we have done here, one could consider states

describing large connected structures of many such GFT

quanta. A concrete method for constructing such states was

put forward in Ref. [24]. The interpretation of the states

of Ref. [24] requires no embedding into an (arbitrary)

manifold; such states form a macroscopic (simplicial)

manifold of their own, with topology determined by

combinatorial data contained in the state. We can envisage

using such a condensate state, say with topology of a

3-sphere, to define an intrinsic notion of spherical har-

monics, only making reference to the background con-

densate, with respect to which (a more complicated notion

of) inhomogeneous fluctuations can then be defined. The

limitations of the simple type of perturbations of GFT

condensates considered in this paper then are mainly a

consequence of the simple ansatz (15) and not a feature of

the general program of extracting quantum cosmology from

condensate states in GFT.
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