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Naturalness of CP Violation in the Standard Model
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We construct a natural measure on the space of CKM matrices in the standard model, assuming
the fermion mass matrices are randomly selected from a distribution which incorporates the observed
quark mass hierarchy. This measure allows us to assess the likelihood of Jarlskog’s CP violation
parameter J taking its observed value J ~ 3 x 107°. We find that the observed value, while well
below the mathematically allowed maximum, is in fact typical once the observed quark masses are

assumed.

I. INTRODUCTION

Kobayashi and Maskawa’s beautiful explanation for
why CP violation is naturally expected in the standard
model of particle physics, with three or more families [1],
has been recently rewarded with a Nobel prize. Still,
the magnitude of the observed CP violation remains un-
explained, and this is a major task awaiting a funda-
mental theory. Even before we have such a theory, it
is interesting to ask whether the observed CP violation
is “finely tuned,” and therefore poses a major new puz-
zle, or whether it is in some sense “typical,” of what a
fundamental framework might be expected to predict.

According to Kobayashi and Maskawa, the observed
CP violation originates in the Yukawa couplings between
right- and left-handed quarks. These couplings are not
entirely physical because they can be altered by a global
redefinition of the basis of fermion fields. To resolve this
ambiguity, Jarlskog has constructed a basis-independent
measure of CP violation, called J. In this Letter, we
construct a natural measure on the space of mass ma-
trices, assuming the observed quark mass hierarchy but
predicting the CKM mixing angles and phase. From this
we infer the typically expected value for J. We find that
the observed value of .J, while far smaller than the max-
imal mathematically allowed value, is indeed very likely.
Hence we conclude that, at least with the measure we
define, there is no “fine tuning” problem in this aspect of
the standard model.

We begin from the low energy effective Lagrangian de-
scribing standard model quarks. In the gauge basis, this
contains mass terms

ﬁmass = _@LmQR _@L m' Q/R+h'c'7 (1)

where Q = (t,¢,u), Q" = (b, s,d) and m and m’ are arbi-
trary 3 x 3 complex matrices, with dimensions of mass.
Following [2], we define the dimensionless mass matrices
M =m/A and M’ = m//A’, where A and A’ are mass
scales which may be chosen for convenience. Via a re-
definition of Qg and Q%, M and M’ may be rendered
Hermitian, with non-negative eigenvalues. They can be
represented as follows

M =U'DU, M =U"D'U’, (2)

where D and D’ are real and diagonal, D =
diag(My, M., M) and D’ = diag(My, Mg, My). The fi-
nal step is to redefine UQr = Q7'** and similarly for
Qr,Q%,Q, removing U and U’ from the mass terms.
They now appear only in the charged current interaction
terms in the Lagrangian, JY = @anaSSW#VQ’IEaSS + h.c.,
with V' = UU’T being the Cabibbo-Kobayashi-Maskawa,
(CKM) mixing matrix.

The normalized mass eigenstates are only defined up
to a phase. Jarlskog defined a measure of CP violation
which is invariant under the choice of these phases [2, 3],

J = —idet[M,M'] /(2T B), (3)
where

T = (Mt - Mu)(Mt - Mc)(Mc - Mu) ’
B = (My — Mg)(My — MJ)(Ms — My).  (4)

In terms of the CKM matrix V/,
J =1Im (Vll Vaz Vi V2*1) ) (5)

and |J| has an elegant geometrical interpretation as twice
the area of the so-called unitarity triangle.

Mathematically, (2 represents the space of mass
matrices M (with three distinct eigenvalues) as
(U(1)? x 63)\SU(3) x R3, for generic D, because left-
multiplication of U by a diagonal phase matrix P €
SU(3), i.e., an element of U(1)?, does not alter M.
To avoid overcounting, we must in addition factor out
by elements of SU(3)which permute the masses, as we
shall detail below (&3 is the symmetric group on 3 el-
ements). Because only the product UU’l appears in
physical quantities, the two SU(3)’s are redundant and
we may identify them with a diagonal SU(3) subgroup.
Thus the final physical space of angles and phases en-
coded in V may be thought of as the double coset
(U(1)? x &3)\SU(3)/(U(1)? x &3). Our goal is to con-
struct a natural measure on this space which incorporates
the observed values of the quark masses.

The standard measure on the space of Hermitian ma-
trices, DM, will be detailed shortly. Since the space
of eigenvalues is not compact, we must also include a
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weight function which makes the integral over the eigen-
values converge. We choose the weight function to distin-
guish the three up-type quarks and give them appropriate
expected masses, and similarly for the three down-type
quarks. The simplest assumption is that the measure
factorizes,

DM f (Tr(M?A)) DM’ f (Tr((M')?A")), (6)

where A and A’ are Hermitian and positive definite, and
we shall further assume [A, A’] = 0.

Since physical quantities are invariant under U —
UW,U" — U'W, without loss of generality we can choose
A and A’ to be diagonal. For simplicity and ease of tech-
nical calculations, we shall choose the function f in (@)
to be a decaying exponential so M and M’ are governed
by Gaussian distributions. Our proposal is to fit the di-
agonal matrices A and A’ to the observed quark masses,
and then employ the resulting distribution given by (@)
to infer a probability measure on J.

The introduction of the matrices A and A’ means that
the invariance of the measure DM DM’ under separate
conjugation of M and M’ by arbitrary elements of U(3),
i.e., under the action of U(3) x U(3), is broken down to
the action of the diagonal subgroup U(1)? x U(1)? which
commutes with A and A’. We find that this symmetry
breaking is necessary to obtain a distribution that re-
produces different expectation values for squared quark
masses.

Full details of the calculations presented in this Letter,
as well as a more general discussion of possible measures
on the space of CKM matrices, may be found in the sep-
arate publication [4].

II. CALCULATING THE MEASURE

The natural line element on the space of Hermitian
matrices is

ds?

Te(dM dM) (7)
Tt (dD dD) +2Tx (a0 Ut D)* - (av UT)” D?)

which is invariant under conjugation under U(3). Our
parametrization for the matrix U, an element of the space
U(1)2\SU(3), is

U=WTkg, (8)
where
—iw
CyCs CySz e sy
W=\ —czs, — q‘wsxsycz CypCy — e”f’szsysz SzCy
858, —€Vegsyc,  —SzC. — eV egSys,  Ciey
(9)
and

Th = diag(eiwrit7 it 872ir) 7 (10)

where s, = sinx, ¢, = cosz, etc., and the ranges of the
coordinates on U(1)?\SU(3) are

T,Y,2 € [O, g] , w,rte (0,2 . (11)

In this parametrization, the Jarlskog invariant .J is given
by

1
J = n sin 2z sin 2z siny cos? y sinw, (12)

which has a maximal value of —t- ~ 0.096.

6V/3

We obtain a Riemannian measure

DM :=[[(Di - D;)*dDydD,dD3 DU, (13)

i<j
with
DU :=sin 2z cos®y siny sin 2z dx dy dz dw dr dt, (14)

on the space of Hermitian 3 x 3 matrices. We allow these
to have arbitrary eigenvalues. (In a fermionic mass term,
the sign of the mass has no physical significance, and only
m? enters in physical quantities.) Note that the subspace
of matrices with coinciding eigenvalues has measure zero
and can be ignored in the following discussion.

Each Hermitian matrix with three distinct eigenval-
ues is associated with six different elements of R? x
U(1)%\SU(3), related by the action of the discrete group

63:

U'DU = (UTP~YYPDP Y (PU)=U'DU, P € &3,
(15)
where G3 is the symmetric group of degree 3 which per-
mutes the canonical basis vectors of R3. We need to
consider the space (U(1)? x &3)\SU(3) x R? instead, re-
stricting the coordinates on U(1)?\SU(3) in order to pick
one of the six matrices related by the &3 action. This
can be achieved by demanding that the elements of the
third column have ascending absolute value,
0<z<

0 <y < arctan(sinx), (16)

T
1
Since there are two mass matrices and we need to av-
erage over two copies of the space of 3 x 3 Hermitian
matrices, an integral of a quantity such as J? becomes

) fDM DM’ efTr(MQA)fTr((M’)ZA’) J2(M, M/)
(/%) = [ DM DM’ ¢~ T A) ~Tx((M7)ZA7) ’
(17)

and J really depends only on V = UU’t. We choose J?
since all odd powers of J average to zero. We use the
same parametrization for M’ as for M, parametrizing U’
by o’,y’, 2, etc.

It should be clear from (7)) that multiplying A (or A”)
by a constant is the same as rescaling the eigenvalues
D; (or D)), and so amounts to a rescaling of the mass




scales A and A’. We can therefore, without any loss of
generality, choose

1 0 0 1 0 0
a={o12 o |, a=loe o |,
0 0 1/u 0 0 1/uf

where fic, fu, bs and pg are dimensionless parameters
that we are free to choose so as to reproduce the ob-
served squared quark masses as expectation values (D?)
etc. We expect these to be of the same order of mag-
nitude as the corresponding quark masses, expressed in
units where A = m; and A’ = my,.

In the case where A and A’ are proportional to the
identity, the exponential factor becomes exp(—aTr(D?)—
BTr((D')?)), and the integral (I7T) splits into a product
of an integral over the eigenvalues, and an integral of J?2
over ((U(1)? x &3)\SU(3))?. The distribution of J? is
then independent of the quark masses, and one would
expect J2 to be much larger than observed. A generic
A couples the diagonal D to U which is an element of
(U(1)? x &3)\SU(3))?, and allows the quark masses to
have an effect on the distribution of J.

III. RESULTS

We need to use approximations to evaluate the integral
(@), as the expression for J in terms of coordinates on
(U(1)? x &3)\SU(3))? is too complicated to be given
explicitly. However, since

2
Tr(M?A) = Tr(D*UAUT) = D—21 sinfy+...  (19)
M

and

Tr((M')2A") = Te(D)*U' A (U = (ZZ—DQ siny’ + ...

2
(20)
with all remaining terms being non-negative, and pu, <
1 and pg < 1, the integrand is negligibly small unless
y ~ 0 and 3y’ ~ 0. We can therefore do the integrations
over y and ¥, using siny ~ y with the remaining part
of the integrand taken at y = ¢’ = 0. The result is
now independent of w and w’, and we can integrate the
expression for J? over r,7/,t, and t'. Then the integrals
over both copies of R3 can be done analytically, but one
is left with a four-dimensional integral over z, z, 2z’ and
2’ which, in general, can only be evaluated numerically.
Expectation values for squared masses, however, take
the relatively simple form

_Te(D? 1
[d*D d?x D? (e Tr(D2U AU )) |y:0

f d3D d2x (e—Tr(DQUAUT)) ‘y:O !

(D) =

(21)

where

/d3Dd2x = /RB];[de
(22)

Using the fact that these integrals are dominated by small
x and z, we find [4] the analytical approximations

/4 /2

H(Di—Dj)Q/dx/dzsthz.

1<j 0 0

2 2
He Ky
’ <Dg> ~ 7 )

(D}) ~ ~EL Dy~

N W

(23)

and similarly for (D})2.

We use these approximate analytical results as a con-
sistency check for more accurate numerical calculations
of expectation values of squared quark masses. The mass
scales A and A’ are fixed by setting (D?) = (m;/A)? and
((D})?) = (mp/A)2. By comparing the results obtained
by numerical integration with the values we want to re-
produce, we can then fix the parameters pc, iy, ts and
Hd-

Due to the dependence of quark masses on the energy
scale, described by the renormalization group, there is
some ambiguity in what is meant by the “quark masses”
we want to reproduce. Following [5], for example, we
take all the quark masses evolved to the scale of the Z
boson mass. We use the central values [6]

(My, me,my) = (1.27 MeV, 619 MeV, 171.7 GeV)
(mg,ms,mp) = (2.9 MeV, 55 MeV, 2.89 GeV). (24)

Comparing our numerical results with (24]), we fix the
parameters to

me\ 2 my\
u3—3(—c) . = <—“) :
me me
2 2
3/m 12 (my
2 s 2
=—-|— =— | — . 25
Ms 2<mb) 9 Md 5 (mb) ( )

to reproduce the corresponding expectation values for
squared eigenvalues of the mass matrices. (The analytical
approximation (23]) is less accurate for the d, s,b quarks
since the mass hierarchy is milder, so the numerical fac-
tors given here are numerical fits.)

We can obtain an analytical expression for the expec-
tation value of J? because the integral (I7) is dominated
by the region of small y,y’, and z, and therefore to a
first approximation we only need J? at y = 3’ = z = 0.
Averaging over r,t,r" and t' gives a factor of 1/2, and
therefore we can use

1 . . .
ool gz = 3 sin® x cos? x sin? 2’ cos® 2’ cos? 2’ sin* 2/
(26)
for our calculations. We obtain
A mymagm
JZ O R 27
< smally,y’,z> ~ 7 t1t2, ( )

memd (1+/332)



with

i1 = arctan( e ) — 2ma
Moy

2 me
tgzarctan(@/g%zz)—\/%%7 (28)
where the different prefactors arise from the numerical
factors given in (25). Note that the top quark mass does
not, appear in this leading approximation.
Numerical evaluation of (J?) (taken at y =y’ = 0, but
integrated over all z) gives

AJ = /{J2) ~ 7.27 x 107°. (29)

Therefore the observed value J ~ 3.08 x 1075 |7] is about
0.42 standard deviations away from zero in our distribu-
tion, and cannot be viewed as being finely tuned.

To test the sensitivity of our results to experimental
uncertainties in the quark masses, we take their values
at the upper or lower limits given in [6] and obtain the
corresponding highest and lowest values for (J?). We
find the bounds

431 x107° < AJ <1.23x 1077, (30)

By identifying the dominant regions of the integrals
appearing in (7)), we are also able to give estimates |4] of
the expected magnitudes of the components Viq, Vis, Veq
of the CKM matrix [7], finding

Via| & pta 2 0.002, [Vis| & p1s & 0.02, |Vig| & % ~ 0.07.

S
(31)
These very rough estimates are within factors of a few of
the observed values, and reproduce the correct ordering,
lending further support to the approach taken here.

IV. CONCLUSIONS AND OUTLOOK

In this Letter, we have shown that by assuming the
observed hierarchy in quark masses in a Gaussian distri-
bution over the space of mass matrices one obtains ex-
pectation values for J? close to the observed value. This
statistical observation indicates that the mechanism re-
sponsible the quark mass hierarchy might also explain
why the observed value for |J| is so small, with no ad-
ditional fine tuning. In strong contrast, a geometrical

measure on the space of CKM matrices alone, which does
not take quark masses into account, makes the observed
value of J appear highly unlikely [4].

These results suggest that the choice of CKM angles
is closely linked to the observed mass hierarchy. Broadly
similar conclusions have been reached before [§], but we
believe our work represents a significant improvement.
First, the measure we use is invariant under unitary ro-
tations of the quark fields Qr and Q’, whereas the mea-
sure in [8] is not and hence depends on arbitrary con-
ventions. Second, we have input the observed quark
masses and obtained fairly tight predictions for (.J?), still
consistent with observation. In contrast, [8] assumed
power law distributions for the magnitudes of the ele-
ments of M and M’ and obtained the much looser pre-
diction 1078 < [J| < 107* at one sigma. Finally, we
have obtained analytical approximations whereas their
work was entirely numerical.

Our analysis also applies to the case of massive neutri-
nos, where the predictions will conceivably be tested by
future experiments. In the standard theory, the Maki-
Nakagawa-Sakata matrix [9] which appears is naturally
an element of U(1)?\SU(3), since only phasing of the lep-
ton charge eigenstates, but not the neutrino mass eigen-
states (which are assumed Majorana) is possible. Since
the right phases do not play any role in neutrino oscilla-
tions, and the relevant J is independent of these phases,
the calculations are identical to the ones presented here,
although with the appropriate values of the p param-
eters appearing in A and A’. In the see-saw mecha-
nism one adds very heavy right-handed neutrinos, and
the most general mixing matrix would be an element of
U(1)°\SU(6). This is naturally a Kéhler manifold, and
the measure induced by the K&hler metric can be ob-
tained from the analysis in [10]. We leave a detailed
treatment of this case to future work.

Finally, one could analyze the effects of a fourth gen-
eration of quarks on CP violation, by repeating the cal-
culations for 4 x 4 Hermitian matrices. If this general-
ization spoils the agreement with the observed .J, one
might obtain interesting lower bounds on the masses of
a hypothetical extra generation of quarks.
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