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a b s t r a c t

Nucleation is an important wet granulation rate process that sometimes has a profound effect on granule

attributes and which needs to be captured in process modelling studies. However, existing models fail to

predict nuclei size distribution of a range of spray conditions typically used in industry. In this paper, the

dimensionless nucleation number Wn is used to develop two new nuclei size distribution models, one

empirical and one semi-mechanistic. The empirical model assumes a log-normal distribution (LND),

and the semi-mechanistic model is based on a approach proposed by Hapgood et al. (2009), which applies

the Poisson distribution (PD) function. Modelling parameters are estimated using Monte Carlo simula-

tions (MCS) data. From the models, the nuclei size distribution can be easily determined using analytical

equations, which simplifies the inclusion in a population balance modelling (PBM) framework. The

results of both models are assessed using MCS data as well as experimental data from literature. The

empirical LND model is able to capture the MCS results accurately, and the predictions agree reasonably

well with the experimental results over a wide range of dimensionless nucleation number (0 < Wn < 3).

The predictions of the semi-mechanistic modified Poisson distribution (MPD) model do not agree qual-

itatively with the MCS or experimental results. A sensitivity analysis shows that the MCS modelling

assumptions need to capture the spatial drop distribution in the spray accurately, while the drop size dis-

tribution can be assumed to be uniform. Overall, we recommend that the LND model with the parameter

values estimated be used in PBM frameworks to determine nuclei size distribution for a wide range of

experimental conditions in mixers and fluidised granulators.

� 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Wet granulation is a size enlargement process whereby gran-

ules are formed from a particulate feed using a liquid binder. This

process is ubiquitous in any industry processing fine powders. Dif-

ferent equipment is available for wet granulation including flu-

idised bed granulators, high-shear mixers and twin-screw

granulators. The granule attributes are controlled by three classes

of rate processes that occur during granulation: wetting and nucle-

ation, consolidation, layering and coalescence, and breakage and

attrition. If the kinetics of these rate processes are known, then

predictive models for wet granulation processes are possible.

The most promising approach to model wet granulation rate

processes at the macroscopic scale is a population balance mod-

elling (PBM) framework. The population balance equation for wet

granulation can be written as (Ramkrishna and Mahoney, 2002):

@Vnð�x;tÞ
@t

þ @
@�x

Vnð�x; tÞ _Glay þ _Gcons

� �h i

¼ _V inninð�xÞ � _Voutnoutð�xÞ

þV _bnucð�xÞ þ _bcoalð�xÞ þ _bbrð�xÞ � _dcoalð�xÞ � _dbrð�xÞ
h i

;
ð1Þ

where V is the control volume, n is the volume-specific number

density of particles, �x is the set of granule properties of interest, t

is time, _V in and _Vout are the entering and leaving volumetric flow-

rates, _Glay and _Gcons are the rate of change due to layering and con-

solidation, respectively, _bnuc;
_bcoal and

_bbr are the birth rates due to

nucleation, coalescence and breakage, and _dcoal and
_dbr are the death

rates due to coalescence and breakage. PBM has been widely

applied to wet granulation (Ramachandran et al., 2009; Kastner

et al., 2013; Biggs et al., 2003; Darelius et al., 2006; Lee et al.,
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2017; Wauters et al., 2003; Bouffard et al., 2012; Yu et al., 2017; Le

et al., 2009; Oullion et al., 2009; Sanders et al., 2003; Verkoeijen

et al., 2002; Chaudhury et al., 2014; Žižek et al., 2013; Pohlman

and Litster, 2015; Dhanarajan and Bandyopadhyay, 2007; Barrasso

et al., 2015; Kumar et al., 2016; Poon et al., 2008).

In PBM, the key step of the model development process is to

represent the most important rate processes by including appro-

priate kernels. In order to develop a predictive model, kernels

which take full account of the impact of formulation and process

variables should be applied (Chaudhury et al., 2017; Kumar et al.,

2013). By far the most effort in the literature has been on the

development of mechanistic kernels for coalescence. By contrast,

few nucleation kernels have been developed and implemented

within a PBM framework.

Nucleation is one of the important rate processes in wet granu-

lation which describes the penetration of binder drops into a pow-

der bed and the subsequent formation of nuclei granules. If the

drop size is significantly larger than the size of the powder parti-

cles, the size of the binder liquid drops is critical for determining

the nuclei size. This phenomena is also called immersion or pene-

tration nucleation and is dominant in most high-shear wet granu-

lation and twin-screw granulation processes. Nucleation of large

particles and small drops is known as distribution nucleation

(Kariuki et al., 2013) and is out of the scope of this paper.

Based on experiments, Hapgood et al. (2003, 2004) identified

three different nucleation regimes for immersion nucleation

(Fig. 1): drop-controlled, intermediate, and mechanical dispersion

regime. In the drop-controlled regime, only few drops coalesce,

hence the nuclei size distribution is rather narrow. In the mechan-

ical dispersion regime, the conditions lead to the formation of large

nuclei (lumps), which need to be broken up mechanically. By eval-

uating two dimensionless groups, dimensionless spray flux Wa and

dimensionless drop penetration time sp, the prevailing regime can

be identified. The dimensionless spray flux Wa is defined as the

ratio of the flux of the area wetted to the flux of the powder bed

surface area as it passes through the spray zone (Eq. (2)) (Litster

et al., 2001). Drop penetration is described in more detail by

Hapgood et al. (2002, 2003).

Wa ¼
3 _V

2 _Add

; ð2Þ

where _V is the volumetric spray rate, _A is the flux of the powder bed

surface area through the spray zone, and dd is the drop diameter. A

correlation between the dimensionless spray flux and the nuclei

size distribution has been observed experimentally (Tardos et al.,

1997; Hapgood et al., 2004; Wildeboer et al., 2007; Ax et al., 2008).

Few nucleation models have been incorporated in PBM frame-

works. Poon et al. (2008, 2009) proposed a model to capture the

kinetics of drop penetration. Two approaches to kinetically model

nuclei formation by immersion have been developed by Hounslow

et al. (2009) and compared to experimental findings by Pitt et al.

(2018). A framework to determine the nuclei size based on drop size

has been proposed by Barrasso and Ramachandran (2016). A frame-

Nomenclature

List of Indices

1 single drop

br breakage

coal coalescence
cons consolidation

d diameter

d drop

i; j; k indices
lay layering

n nucleation

n nuclei
nuc nucleation

x coordinate

List of Symbols
_A area flux of the powder bed surface area through the

spray zone [m
2

s ]

a cross-sectional area [m2]
_b volume-specific birth rate [m�3 s�1]
B subregion area [m2]

b fitting parameter [–]

c fitting parameter [–]
_d volume-specific death rate [m�3 s�1]
d diameter [m]

d
0

dimensionless diameter [–]
f
0
m dimensionless mass frequency [–]

fm mass frequency [m�1]

G rate of change [m�3 s�1]
i; j; k indices [–]

K nucleation size ratio [–]

k nuclei exclusion area ratio [–]

m1...3 fitting parameters [–]
N distribution function [–]

n number of drops [–]

n volume-specific number density [m�3]

P probability of coalescence [–]
s1...3 fitting parameters [–]

t time [s]
_V volumetric flowrate [m

3

s ]
V volume [m3]

x coordinate [m]

x set of fitting parameters [–]

x set of granule properties [–]
y coordinate (direction of powder flow) [m]

k intensity function [–]

l logarithmic mean [–]

Wa dimensionless spray flux [–]
Wn dimensionless nucleation number [–]

r logarithmic standard deviation [–]

Fig. 1. Nucleation regime map (Wa dimensionless spray flux, sp dimensionless drop

penetration time) (Hapgood et al., 2003).
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work to include a spray/nucleation zone in compartmental PBM by

determining its volume mechanistically has been proposed by Yu

et al. (2016). None of these models predict the impact of the dimen-

sionless sprayfluxWa on thenuclei size distributiondue to drop coa-

lescence and therefore are not applicable outside the drop-

controlled regime. However, operating in the drop-controlled

regime is challenging and sometimes impracticable, due to the very

low spray rate required. A nucleation kernel that includes drop coa-

lescence and predicts the effect of the dimensionless spray fluxWa is

needed to develop a PBM framework for wet granulation.

Approaches to predict the nuclei size distribution for formula-

tions with short drop penetration times can be found in the litera-

ture. Hapgood et al. (2004) applied Monte Carlo simulations (MCS)

to determine the nuclei size distribution assuming a uniform dis-

tribution of drops, spatial randomness, and a uniform drop diame-

ter. Apart from the drop diameter, the dimensionless spray flux Wa

is the only input parameter. Wildeboer et al. (2005) extended the

approach developed by Hapgood et al. (2004). They considered a

log-normal distribution for the initial drop diameter. Furthermore,

a truncated normal distribution of drops has been assumed over

the width of the spray zone; this assumption is based on spray

characteristics experiments by Wauters et al. (2002). This new

approach explicitly takes nuclei coalescence into account. While

a drop penetrates the powder bed, it forms a nuclei which is larger

in size than the drop due to the addition of solid and gas. Nuclei

coalescence can happen when two nuclei collide or overlap during

their formation. Due to the increase in size, the probability of coa-

lescence is higher under this assumption. The size increase can be

quantified by the diameter ratio of the nuclei to the drop.

Wildeboer et al. (2005) incorporated this nuclei-to-drop diameter

ratio Kd and introduced the dimensionless nucleation number Wn

as a new dimensionless group for nuclei coalescence:

Wn ¼ K2
d

3 _V

2 _Add

¼ K2
dWa: ð3Þ

However, the MCS approach of Wildeboer et al. (2005) is

unsuitable for process modelling studies due to long simulation

times.

An analytical approach to predict the nuclei size distribution

has been proposed by Hapgood et al. (2004). Here, the probabilistic

Poisson distribution (PD) function has been applied with the

dimensionless spray flux as input parameter. The model results

showed good agreement with MCS data for powder bed surface

area covered and fraction of nuclei formed by single drops. This

approach has been extended by Hapgood et al. (2009) to determine

the probability of drop coalescence based on the dimensionless

spray flux. By comparing the results of the PD model to experimen-

tal data, they showed that this model is able to predict the nuclei

size distribution for the drop-controlled regime. However, the PD

model does not predict the formation of large nuclei or multi-

modal distributions which were observed in experiments outside

the drop-controlled regime. Liu et al. (2013) extended the PD

model by including nuclei breakage (Liu et al., 2009), which can

have a significant effect on the nuclei size distribution of weak

nuclei. In this approach, nuclei breakage is predicted based on

the Stokes deformation number (Tardos et al., 1997) but it is still

limited to a low dimensionless spray flux. No good quality model

to predict the nuclei size distribution for a dimensionless spray flux

between 0:1 and 5 is currently available.

In this paper, two new nuclei size distribution models are pro-

posed and assessed. The emphasis of this study is to address the

weaknesses of the previously published modelling approaches.

For the development of the models, two different approaches are

considered, one empirical and one semi-mechanistic. The empiri-

cal approach applies the log-normal distribution (LND) function,

and the semi-mechanistic approach is based on the PD function.

Both models can be included in a PBM framework without increas-

ing the computational cost significantly. MCS data is used to esti-

mate modelling parameters of both models. The model

assessment includes comparison to experimental data from the lit-

erature. A sensitivity analysis is conducted to assess the MCS mod-

elling assumptions and the applicability of the LND model.

2. Model development

2.1. Log-normal distribution model

An empirical model is proposed that can determine the nuclei

size distribution. First, we define the a dimensionless mass fre-

quency and dimensionless nuclei diameter. The dimensionless

mass frequency f
0
m can be derived from the mass frequency fm

and the diameter of a nucleus formed by a single drop d1:

f
0
m ¼ fmd1; ð4Þ

and the dimensionless nuclei diameter d
0
n is defined as the ratio of

the nuclei diameter dn to the diameter of a nucleus formed by a sin-

gle drop d1:

d
0
n ¼ dn

d1

: ð5Þ

The model assumes that the dimensionless nuclei mass fre-

quency follows a log-normal distribution (LND):

f
0
mðd

0
n;ln;rnÞ ¼

1

d
0
nrn

ffiffiffiffiffiffiffi

2p
p exp � ln d

0
n � ln

� �2

2r2
n

 !

; ð6Þ

where ln and rn are the logarithmic mean and logarithmic standard

deviation of the dimensionless nuclei diameter.

It is assumed that the two parameters ln and rn depend on the

dimensionless nucleation numberWn as well as the standard devi-

ation of the spatial drop distribution in the spray rx. Based on this

assumption, the following two functions are proposed:

ln ¼ m1rx þm2ð ÞWn þm3 ð7Þ

and

rn ¼ s1rx þ s2ð ÞWn þ s3; ð8Þ

where m1;m2;m3; s1; s2, and s3 are fitting parameters. Combining

Eqs. (6)–(8):

f
0
m ¼ 1

d
0
n s1rx þ s2ð ÞWn þ s3ð Þ

ffiffiffiffiffiffiffi

2p
p

� exp � ln d
0
n � m1rx þm2ð ÞWn þm3ð Þ

� �2

2 s1rx þ s2ð ÞWn þ s3ð Þ2

 !

; ð9Þ

In order to predict the nuclei size distribution, the diameter of a

nucleus formed by a single (average) drop needs to be known. By

transformation, the dimensionless results can be converted:

fm ¼ 1

dn s1rx þ s2ð ÞWn þ s3ð Þ
ffiffiffiffiffiffiffi

2p
p

� exp �
ln dn

d1
� m1rx þm2ð ÞWn þm3ð Þ

� �2

2 s1rx þ s2ð ÞWn þ s3ð Þ2

0

B

@

1

C

A
; ð10Þ

with

d1 ¼ Kddd: ð11Þ

The six fitting parameters m1;m2;m3; s1; s2, and s3 need to be

estimated; in this study, the average nuclei mass frequency �f 0m

S. Bellinghausen et al. / Chemical Engineering Science: X 4 (2019) 100038 3



derived from Monte Carlo simulations (MCS) data is used for this

purpose. Therefore, a weighted optimisation is chosen with the

dimensionless diameter values d
0
n as weights, and the final objec-

tive function is solved using the least square method:

minx

X

6

i¼1

X

10

j¼1

X

k

d
0
nðkÞ �f 0m rxðiÞ;WnðjÞ;d0

nðkÞ
� �

� f
0
m rxðiÞ;WnðjÞ;d0

nðkÞ;x
� �� �

;

ð12Þ

with

x ¼ m1;m2;m3; s1; s2; s3½ �: ð13Þ

2.2. Modified Poisson distribution model

The semi-mechanistic Poisson distribution (PD) model

approach was proposed by Hapgood et al. (2004, 2009). This

approach has been used to predict drop coalescence on powder

beds. However, it is also suitable to predict nuclei coalescence by

accounting for substituting the smaller drop size with the larger

nuclei size. For the development of Hapgood’s model, the PD func-

tion is applied to determine the probability of a (new) drop/

nucleus to coalesce with n other drops/nuclei:

Pn ¼ exp �kBð Þ kBð Þn
n!

; ð14Þ

where k is the intensity of distribution, and B is a subregion.

Hapgood et al. (2009) assumed that the intensity k is a function of

the dimensionless spray flux only since drop coalescence was con-

sidered. Furthermore, it was assumed that the area that leads to

coalescence is 4 times larger than the area of a single drop and is

independent of the number of drops already coalesced (See Fig. 2):

kB ¼ 4Wa: ð15Þ

In this study, nuclei coalescence rather than drop coalescence is

assumed. Therefore, the dimensionless nucleation number Wn and

the cross-sectional area of a single drop nuclei a1 are used to deter-

mine the intensity of distribution:

k ¼ Wn

a1
: ð16Þ

In this case, subregion B is the area that leads to nuclei coales-

cence (nuclei exclusion area). If the centre point of a new drop

lands inside this nuclei exclusion area, the drop will coalesce with

the nucleus. The nuclei exclusion area is effectively assumed to be

one radius larger than the nuclei in every direction. The nuclei

exclusion area increases with the number of drops as illustrated

in Fig. 2. For the development of the MPD model, the constant

nuclei exclusion area is replaced with a function for the nuclei

exclusion area an which depends on the number of drops:

B ¼ anðnÞ ð17Þ

From Eqs. (16) and (17), the term kB of the MPD model can be

derived:

kB ¼ anðnÞ
a1

Wn ¼ kðnÞWn; ð18Þ

where kðnÞ is the ratio of nuclei exclusion area to single nucleus

area. Combining Eqs. (14) and (18):

Pn ¼ exp �kðnÞWnð Þ kðnÞWnð Þn

n!
: ð19Þ

To represent the spatial distribution of drops, a uniform distri-

bution is assumed in the direction of the powder flow, and a nor-

mal distribution is applied perpendicular to the powder flow.

Therefore, the spray zone is divided into 10 equal-size sections to

model the normal distribution of drops. The nuclei size distribution

is determined based on the average dimensionless nucleation

number of each section:

Wnðx;lx;rxÞ ¼
�Wn

Prx

ffiffiffiffiffiffiffi

2p
p exp � x� lx

� �2

2r2
x

 !

; ð20Þ

where x is the coordinate, �Wn is the dimensionless nucleation num-

ber averaged over the spray zone, P is the percentage of drops

within the spray zone, and lx and rx are the mean and the standard

deviation of the distribution function, respectively. The following

power function is applied to determine the nuclei exclusion area

ratio:

kðnÞ ¼ 4þ bn
c
; ð21Þ

where b and c are fitting parameters. Here, kð0Þ equals 4 which is

the nuclei exclusion area ratio for a single drop nucleus. This power

function is the essential contrast to Hapgood’s PD model, which

assumes: kðnÞ ¼ 4. The average nuclei exclusion area for up to

1000 drops is determined using a MCS approach. A non-linear least

squares method is used to fit the following power function to the

simulation results.

In order to calculate the factorial of the MPD, Ramanujan’s

approximation is used (Andrews and Berndt, 2005):

n! �
ffiffiffiffi

p
p n

e

� �n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n3 þ 4n2 þ nþ 1

88

6

r

: ð22Þ

This approximation is also used to scale the equation. Scaling is

needed since terms of the PD function can exceed numerical limits

of mathematical solvers especially at higher coalescence rates.

From Eqs. (19) and (22), the scaled equation can be derived:

Pn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp �kðnÞWnð Þn
p

e
n
kðnÞWn

� �n

ffiffiffiffi

p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8n3 þ 4n2 þ nþ 1
88

6

q : ð23Þ

Fig. 2. Illustration of nuclei exclusion area and criterion for nuclei coalescence (d1 single drop nucleus diameter).
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While the PD function is normalised, the modifications made

lead to a model, which results in a sum of probability greater than

1. The reason for that is the intensity function kB which increases

with the number of drops n; the PD function was developed for a

constant intensity function. As a consequence, the probability dis-

tribution results from Eq. (23) need to be normalised.

After determining the probability distribution using Eq. (23),

the nuclei size distribution is determined by discretising the nor-

malised results applying a linear grid with the bin boundaries d
0
n;k:

d
0
n;k ¼ 0:5k: ð24Þ

2.3. Monte Carlo simulations for parameter estimation

Two sets of Monte Carlo simulations (MCS) are conducted to

determine the model parameters for both models. In the first set

of MCS, the entire spray zone is simulated to generate data to fit

the empirical LNDmodel (Eq. (10)). The second set of MCS determi-

nes the nuclei exclusion area, which is needed for the MPD model

(Eq. (21)). In both approaches, the spray zone is assumed to be a

flat surface, and nuclei are represented as circles. A flowchart of

the simulations is shown in Fig. 3.

In the first set of MCS, circular nuclei are randomly placed on a

quadratic area which represents the liquid addition onto a powder

bed surface using a nozzle. This approach is adapted from

Wildeboer et al. (2005). The simulations are based on only one

input parameter - the dimensionless nucleation number. The cir-

cles represent nuclei because the approach is based on nuclei coa-

lescence rather than drop coalescence. Instead of representing the

spray as drops which vary in size (Wildeboer et al., 2005), a uni-

form drop diameter is assumed in this case. In the direction of

the powder flow, the spatial distribution of drops is assumed to

be uniform over the spray zone because surface of the powder

bed is moving steadily through the spray zone. A truncated normal

distribution is applied perpendicular to the direction of the powder

flow:

Nðx;lx;rxÞ ¼
1

Prx

ffiffiffiffiffiffiffi

2p
p exp � x� lx

� �2

2r2
x

 !

; ð25Þ

where x is the coordinate, P is the percentage of drops within the

spray zone, and lx and rx are the mean and the standard deviation

of the distribution function, respectively. The mean location is set to

the centre of the spray zone, and the standard deviation is varied

between 0:15 and 0:25 of the width of the spray zone, which is a

typical range for spray systems (Wauters et al., 2002; Sehmbi,

2019). In order to determine whether or not nuclei coalesce, an

overlapping criterion is applied:

xi � xj
� �2 þ yi � yj

� �2
6

d1;i þ d1;j

� �2

4
; ð26Þ

where x and y are the centre coordinates of the drops i and j. Based

on this criterion, nuclei are identified, and their sizes are deter-

mined. The results are discretised to generate a nuclei size distribu-

tion using a linear grid. The bin boundaries d
0
n;k are given by:

d
0
n;k ¼ 0:5k: ð27Þ

The size of the spray zone is 2000� 2000 pixels, and the single

drop nuclei diameter d1 is 10 pixels. The number of drops per sim-

ulation varies between 5100 and 51000 which correlates to a

dimensionless nucleation number between 0:1 and 1:0. The MCS

results are averaged over 10 simulations. Python is used to carry

out all MCS; one simulation can take between several minutes

and several hours depending on the dimensionless nucleation

number used.

Additional MCS are carried out based on the same approach. In

these simulations, the following inputs are varied: the standard

deviation of the spatial drop distribution in the direction perpen-

dicular to the powder flow ( 1
16
� 1

2
of the spray zone width) and

the nuclei diameter (10–20 pixels). Furthermore, a log-normal

drop size distribution is introduced with a logarithmic standard

deviation between 0:1 and 0:6 of the logarithmic mean diameter.

In the second set of MCS, nuclei with up to a 1000 drops are

simulated. The objective is to determine the average nuclei exclu-

sion area (Fig. 2). Therefore, every drop is added individually; and

after every drop, the nuclei exclusion area is determined. Every

drop (except for the first drop) is placed randomly applying a uni-

form distribution with a minor constraint: the new drop has to

overlap with the existing nucleus (Overlapping criterion: Eq.

(26)). The final results are averaged over 100 simulations.

2.4. Model assessment

For the model validation and assessment, the deviation of the

model results from the reference data at every grid point is deter-

mined, and the sum of squared errors is calculated. To be able to

utilise different sets of reference data, the relative sum of squared

errors is reported, while all results are relative to the results of

Hapgood’s PD model.

3. Literature experiments for model validation

In order to assess the model predictions, experimental data is

used, as well as MCS data. The deviation of the model predictions

is quantified with the sum of squared errors at every grid point.

The results reported are relative to Hapgood’s PD model results.

Two sets of experiments are selected which were published by

Litster et al. (2001, 2002). An overview of all experiments can be

found in Table 1.Fig. 3. Flowchart of the MCS (Wildeboer et al., 2005).
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Litster et al. (2001) conducted ex-granulator nucleation experi-

ments using a powder bed on a rotating table with different rota-

tional velocities. A nozzle was placed above the powder bed to

spray liquid onto the powder bed. Litster et al. (2002) conducted

nucleation-only experiments in a Fielder PharmaMATRIX 25 l

high-shear mixer with a spraying time of 5 s. Experiments at differ-

ent impeller frequencies are conducted to test the impact of the

dimensionless nucleation number on the nuclei size distribution.

In all experiments, the powder bed consisted of lactose mono-

hydrate which was screened before to facilitate the separation of

nuclei during the characterisation. Water was used as binder liquid

which was delivered by a single flat spray nozzle. The spray pres-

sure applied was 3:1 bar, which lead to an average drop diameter

of 96 m, a spray rate of 58 ml
min

, and a spray zone width of 8 cm. A

standard deviation of the spatial drop distribution of 0:25 can be

derived from characterisation measurements for the spray nozzle

and pressure applied (Wauters et al., 2002), and a nuclei-to-drop

diameter ratio of 1:5 has been determined. The experiments are

described in more detail by Litster et al. (2001, 2002), Hapgood

et al. (2004, 2009).

4. Results and discussion

The nuclei size distribution in the spray zone is simulated using

MCS, and a selection of the results are illustrated in Fig. 4. The MCS

results show clearly the uniform distribution in the vertical direc-

tion and the normal distribution horizontally.

4.1. Log-normal distribution model

First, two parameter estimation studies are carried out to esti-

mate parameter values for the log-normal distribution (LND)

model (Eq. (9)). Therefore, the model is fitted to the MCS results

for each dimensionless nucleation number individually (1 st

parameter estimation; Eq. (6)) and for all conditions simultane-

ously (2 nd parameter estimation; Eq. (9)). A comparison of the

parameter values of both studies is shown in Fig. 5. The results

of the 1 st parameter estimation show that the values estimated

increase almost linearly with increasing dimensionless nucleation

number. Furthermore, it can be seen that both parameter estima-

tion studies result in very similar parameters for the dimensionless

nucleation number range chosen. This confirms that both model

parameters can be represented with linear functions of the dimen-

sionless nucleation number only (Eqs. (7) and (8)). The results of

the parameter estimation are given including a 95% confidence

interval (using Eq. (9)):

m1 ¼ �3:0� 0:88 ð28Þ
m2 ¼ 1:9� 0:18 ð29Þ
m3 ¼ �0:046� 0:050 ð30Þ
s1 ¼ �3:4� 0:87 ð31Þ
s2 ¼ 0:98� 0:18 ð32Þ
s3 ¼ 0:32� 0:024: ð33Þ

The Monte Carlo simulations (MCS) and the fitted LND model

results are compared in Fig. 6. The MCS data shows that most

nuclei do not coalesce at a low dimensionless nucleation number,

giving a very narrow size distribution. With increasing dimension-

less nucleation number, more larger nuclei are predicted. Due to

the formation of more larger nuclei, a distribution with a long tail

is predicted. However, the peak of the mass frequency remains at a

very small nuclei diameter. The fitted LNDmodel results agree very

well with the MCS at low as well as high dimensionless nucleation

number values. The narrow size distribution at a low dimension-

Table 1

Overview of experiments.

Source Equipment Dimensionless nucleation number Wn

�½ �

Litster et al.

(2001)

Ex-granulator 0:5;0:6; 0:7;1:2;2:7

Litster et al.

(2002)

High-shear

mixer

0:5;0:7;1:2

Fig. 4. Surface area coverage in spray zone at different dimensionless nucleation number values from MCS data (rx ¼ 0:25).

Fig. 5. Parameter values estimated in the 1st and 2nd parameter estimation using Eqs. (6) and (9), respectively, of the LND model (rx ¼ 0:25).
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less nucleation number is correctly represented as well as the long

tail at a higher dimensionless nucleation number. This shows that

the LND model is suitable for representing the MCS data for the

dimensionless nucleation number range chosen. The LND model

can be applied to predict the nuclei size distribution for a wide

range of conditions using the parameter values reported (Eqs.

(28)–(33)).

4.2. Poisson distribution model

The nuclei exclusion area results determined using MCS can be

found in Fig. 7. The 95% confidence interval of the MCS shows that

the uncertainty of the results is an acceptable range. Furthermore,

it can be seen that the power function fitted is in very good agree-

ment with the simulation results. The parameters b and c of Eq.

(21) are estimated, and the respective 95% confidence intervals

are determined:

b ¼ 2:70� 0:01 ð34Þ
c ¼ 0:708� 0:001 ð35Þ

In Fig. 6, the MPDmodel and Hapgood’s PD model are compared

to MCS data. The MCS data used for this comparison is not used to

estimate model parameters of the MPD model, and Hapgood’s PD

model does not require any parameter estimation. Therefore, all

model results compared to MCS data in this section are predictions.

Hapgood’s PD model predicts the nuclei size distribution for

Wn ¼ 0:1 very accurately. Also, the mass frequency of small nuclei

(d
0
n < 1:5) is in very good agreement with the MCS data which cor-

responds with previous model assessment results (Hapgood et al.,

2004). As described in Section 2.2, only the area of larger nuclei is

underpredicted but the area of very small nuclei is determined

accurately. The fact that this model is capable of predicting specific

MCS results shows the strength of this model; the MCS approach is

very computationally expensive compared to Hapgood’s PD model.

However, the nuclei size distribution is clearly underpredicted out-

side the drop-nucleation regime because the formation of larger

nuclei is not predicted (Fig. 6b,c,d).

While the predictions of the MPD model agree reasonably well

at lower dimensionless nucleation numbers, the discrepancy of the

predictions becomes apparent at higher dimensionless nucleation

numbers. Both the MCS and the MPD model predict the average

nuclei size to increase; however, the resulting distributions do

not match. The MCS results show a much broader distribution at

higher dimensionless nucleation numbers with a long tail of large

nuclei while the peak of the distribution remains always at

d
0
n � 1� 2. This is in contrast to the MPD model predictions which

show a narrower nuclei size distribution and a large increase of the

peak at higher dimensionless nucleation numbers. The MPD model

does not contain an overlapping criterion like the MCS. It solely

determines the likelihood of n nuclei/drops to land within the area

anðnÞ (average nuclei exclusion area formed by n drops). This can

lead to an overprediction of larger nuclei since the drops that land

in an do not necessarily overlap.

A quantitative comparison of the accuracy of the model predic-

tions can be found in Fig. 9. Hapgood’s PD model underpredicts the

nuclei size distribution outside the drop-controlled regime while

the MPD model overpredicts the nuclei size distribution. Neither

model captures the breadth of the nuclei size distributions at

Wn P 0:5.

Fig. 6. Comparison of the LND, MPD, and Hapgood’s PD model results with MCS data (rx ¼ 0:25).

Fig. 7. Average exclusion area ratio with a 95% confidence interval from MCS data

and the power function fitted.
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4.3. Comparison of model predictions with experimental results

Both the semi-mechanistic MPD model and the empirical LND

model are compared to experimental data from Litster et al.

(2001, 2002) in order to assess the accuracy of the model results.

Although these two models require parameter fitting, only MCS

results are used for this purpose. The experimental data shown is

only used to assess model predictions. The experiments selected

are ex-granulator experiments as well as nucleation-only experi-

ments in a high-shear mixer. The dimensionless nucleation num-

ber in these experiments ranges between 0:5 and 2:7.

The model predictions are compared to the experimental data

in Fig. 8. The experimental data shows a narrow distribution with

a small average size at lower dimensionless nucleation numbers,

which indicates that only few drops coalesced to agglomerates.

However, a significantly broader bi-modal distribution is obtained

at higher dimensionless nucleation numbers (Wn ¼ 1:2;2:7), which

confirms the speculation that drop coalescence on the powder bed

surface can have a significant effect on the nuclei size distribution.

Nevertheless, the (first) peak of the distribution remains at a low

nuclei diameter, even at the highest nucleation number tested

(Wn ¼ 2:7). A comparison between the two experimental tech-

niques shows that the high-shear mixer experiments (Fig. 8b,e,g)

result in a slightly larger nuclei size distribution than the ex-

granulator experiments (Fig. 8a,d,f) even at the same dimension-

less nucleation number Wn. This potentially indicates nuclei

growth during the high-shear mixer experiments, which is not

considered by any of the models assessed.

The MPD model predictions diverge from the experimental

results. At lower dimensionless nucleation numbers, the

Fig. 8. Comparison of model results with experimental data (Wn dimensionless nucleation number).
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experimental nuclei size distributions are slightly overpredicted;

and with increasing dimensionless nucleation number, the MPD

model predicts a shift of the peak to larger nuclei diameters rather

than a significantly broader distribution. The LNDmodel results are

in good agreement with the experimental data at lower dimen-

sionless nucleation numbers, which are within the empirical

design space of this model (Wn 6 1:0). A comparison with experi-

mental data outside the empirical design space shows a qualitative

mismatch because bi-modal distributions are not predicted. Never-

theless, broad distributions are predicted which capture the exper-

imental data reasonably well.

The performance is also assessed quantitatively based on the

sum of squared errors. The results show that the LND model pro-

vides the most accurate predictions out of all the models evaluated

(Fig. 9). Overall, the LND model agrees well with the experimental

data, even though the experimental conditions were not fully char-

acterised and reported. Therefore, the LND model can be applied to

a wide range of wet granulation processes that operate under sim-

ilar conditions. The fact that the LND model does not only agree

with ex-granulator results but also with nucleation-only experi-

ments in a high-shear mixer shows that this model can be applied

to predict the nuclei size distribution in different wet granulation

processes.

4.4. Sensitivity analysis for the LND model

A sensitivity analysis is conducted to gain more insight into the

LNDmodel results. The sensitivity analysis is based on Monte Carlo

simulations (MCS) data which have been used to estimate the

parameter values for the LND model. These MCS are based on

assumptions about the spray characteristics which should capture

experimental conditions well. In this sensitivity analysis, the

effects of the spray characteristics on the results are studied, and

the critical assumptions, which have to be validated experimen-

tally, are identified. All MCS results shown are obtained applying

the default settings with Wn ¼ 1:0 as described in Section 2.3

unless reported otherwise.

First, the repeatability of MCS is assessed. For this purpose, the

results from 5 simulations are compared in Fig. 10. A slight quan-

titative difference between the results can be noticed at large

nuclei diameter. However, the uncertainty is rather low and the

resulting distributions are qualitatively equivalent. Consequently,

a qualitative assessment can be based on a sensitivity analysis

without averaging MCS results.

A normal spatial drop distribution with a standard deviation rx

of 1
4
is applied in the MCS. In order to understand the impact of the

spatial drop distribution on the nuclei size distribution, the stan-

dard deviation of the normal distribution is varied as shown in

Fig. 11. The results show that although the location of the (first)

peak of the nuclei size distribution remains unchanged, a much

broader or narrower nuclei size distribution can be observed when

the spatial distribution varied. While a broader spatial distribution

(rx ¼ 1
2
) results in a very narrow nuclei size distribution with no

large nuclei, a very narrow spatial distribution (rx ¼ 1
8
; 1
16
) gener-

ates a very broad spatial distribution with few very large nuclei.

With rx ¼ 1
2
, the distribution is almost uniform and the dimension-

less nucleation number is similar across the whole spray zone. At

rx ¼ 1
16
, the dimensionless nucleation number is very high at the

centre and very low at the edges, leading to a very broad nuclei size

distribution. This shows that the spatial drop distribution has a sig-

nificant impact and should therefore be well characterised for the

nozzle system of interest.

The uniform drop size assumption is assessed by introducing a

log-normal drop size distribution while maintaining a constant

Sauter mean diameter (Fig. 12). As the results show, the spray drop

size distribution has a very small impact on the nuclei size distri-

bution, which is of the same of magnitude as the uncertainty

(See Fig. 10). Overall, it can be concluded that a mono-modal drop

Fig. 9. Sum of squared errors of the model results to MCS and experimental data

(relative to Hapgood’s PD model results).

Fig. 10. Assessment of repeatability based on 5 MCS with default settings.

Fig. 11. Assessment of the impact of the spatial drop distribution on the nuclei size distribution (rx standard deviation of the normal distribution).
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size distribution can be assumed to be uniform for this purpose.

However, only log-normal drop size distributions with a maximum

logarithmic standard deviation r of 0:5 have been tested in this

sensitivity analysis. Even broader or multi-modal drop size distri-

butions could have a significant impact on the nuclei size

distribution.

The effect of increasing the mean drop diameter while keeping

the volumetric flowrate constant is also tested (Fig. 13). According

to Eq. (3), the dimensionless nucleation number decreases as a

result. As expected, the results show that an increase in drop diam-

eter results in an increase of minimum nuclei size. However, due to

the constant volumetric flowrate, the total cross-sectional area of

drops (and consequently the dimensionless nucleation number)

decreases which leads to less coalescence. The resulting nuclei size

distribution is significantly narrower with less large lumps due to

the drop diameter increase. This results show that measuring the

mean drop diameter is essential to predict the breadth of the nuclei

size distribution.

The LND model with the parameter values reported (See Sec-

tion 4.1) can be applied to any process if the MCS assumptions cap-

ture the spray characteristics well. In practice, deviations of the

spatial drop distribution and the spray drop size distribution are

expected. Considerable deviations from the MCS assumptions

might require additional MCS data to re-estimate the parameters

before the LND model can be applied.

4.5. Recommendations for nuclei models to use in PBM

Based on the results presented in this paper, we recommend the

LND model (Eqs. (7)–(9)) for systems with any spray flux from 0 to

5. The model parameters m1;m2;m3; s1; s2, and s3 are sensitive to

spatial drop distribution and will need to be recalibrated with

MCS from the values given in Eqs. (28)–(33) if the standard devia-

tion of this distribution is distinctively outside the range used in

this study (0:15 to 0:25). That aside, this is a simple, general and

very robust model for incorporation in process level population

balance models for high shear, tumbling and fluidised granulators

that meet the criteria for immersion nucleation. The spray charac-

teristics required as input for the model (spray geometry, spray

drop size, and spatial drop distribution) are relatively easy to mea-

sure using standard techniques.

There is an implicit assumption in this model that drop immer-

sion into the powder bed is fast (sp < 0:1) and it can be assumed

that the nuclei form instantaneously. This is common in practice

where a low viscosity binder is used that wets the powder bed

well. Where the binder liquid is more viscous or the powder is very

fine, we may have a case where sp > 0:1. The kinetics of the

immersion process cannot be neglected, and powder will take a

finite time to imbibe into the drop. This process can be modelled

using the model of Hounslow et al. (2009) where the LND model

can still be used to describe the drop size distribution that is the

starting point for the immersion process.

In some specialist applications such as detergent manufacture,

where extremely viscous or semi solid binders are used, binders

cannot be atomised in a nozzle. For these cases, the LND model

is not applicable. Instead, a breakage model for nuclei formation

in needed to determine the initial binder ”drop” distribution

(Davis, 2016), and Hounslow’s immersion model can still be used

to account for the kinetics by which solid is embedded into the bin-

der particle. Thus, we now have a suite of models that can be used

to cover the full range of behaviours on Hapgood’s regime map (see

Fig. 14).

Fig. 12. Assessment of the impact of the spray drop size distribution on the nuclei size distribution with a constant Sauter mean diameter (r logarithmic standard deviation

of drop size distribution).

Fig. 13. Assessment of mean drop size with a constant volumetric flowrate (Wn

dimensionless nucleation number). Fig. 14. Choice of model for granule nucleation for the full nucleation regime map.
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5. Conclusions

The LND model is able to represent MCS data very accurately at

low and high dimensionless nucleation numbers. The model

results are also in good agreement with experimental results, even

at dimensionless nucleation numbers well above 1. While the MPD

model gives acceptable predictions at low dimensionless nucle-

ation numbers, it fails to predict MCS and experimental data at

high dimensionless nucleation numbers. Both models are a signif-

icant improvement of the state of the art (Hapgood’s PD model

(Hapgood et al., 2009)), which underpredicts the nuclei size distri-

bution significantly outside the drop-nucleation regime.

The LNDmodel is suitable for determining the nuclei size distri-

bution and can be easily applied for process modelling studies. A

sensitivity analysis has shown that the spray characteristics have

a major impact on the nuclei size distribution. Especially, the spa-

tial drop distribution in the spray needs to determined because the

LNDmodel requires it as an input parameter, and the MCS assump-

tion about the drop size distribution needs to be validated experi-

mentally before applying the LND model. A PD model could reduce

the high computational effort that is required for MCS. Moreover,

selected results are in very good agreement with MCS data. Never-

theless, a coalescence criterion that captures this mechanism well

is required before the PD function can be applied for this purpose.
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