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ABSTRACT Planktonic foraminiferal species identification is central to many paleoceanographic
studies, from selecting species for geochemical research to elucidating the biotic dynamics of
microfossil communities relevant to physical oceanographic processes and interconnected phenomena
such as climate change. However, few resources exist to train students in the difficult task of discerning
amongst closely related species, resulting in diverging taxonomic schools that differ in species concepts
and boundaries. This problem is exacerbated by the limited number of taxonomic experts. Here we
document our initial progress toward removing these confounding and/or rate‐limiting factors by
generating the first extensive image library of modern planktonic foraminifera, providing digital
taxonomic training tools and resources, and automating species‐level taxonomic identification of
planktonic foraminifera via machine learning using convolution neural networks. Experts identified
34,640 images of modern (extant) planktonic foraminifera to the species level. These images are served
as species exemplars through the online portal Endless Forams (endlessforams.org) and a taxonomic
training portal hosted on the citizen science platform Zooniverse (zooniverse.org/projects/ahsiang/
endless‐forams/). A supervised machine learning classifier was then trained with ~27,000 images of
these identified planktonic foraminifera. The best‐performing model provided the correct species name
for an image in the validation set 87.4% of the time and included the correct name in its top three
guesses 97.7% of the time. Together, these resources provide a rigorous set of training tools in modern
planktonic foraminiferal taxonomy and a means of rapidly generating assemblage data via machine
learning in future studies for applications such as paleotemperature reconstruction.
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1. Introduction

When a young naturalist commences the study of a group of organisms quite unknown to him, he is at
first much perplexed to determine what differences to consider as specific, and what as varieties, for he
knows nothing of the amount and kind of variation to which a group is subject; and this shows, at
least, how very generally there is some variation.‐ C. Darwin, The Origin of Species, 1859, p. 50

The calcite tests of planktonic foraminifera provide a critical resource for paleoclimatological and paleocea-
nographic research as they are often analyzed, using a variety of geochemical techniques, to reconstruct fun-
damental values such as sea surface temperature, salinity, and atmospheric pCO2 (Kucera, 2007; Schiebel
et al., 2018), in addition to being analyzed quantitatively as an assemblage. In most geochemical applica-
tions, it is necessary to pick out specific species of a particular size range to control for differences in depth
habitat, seasonality, and symbiont ecology, among others, that influence the geochemical composition of
planktonic foraminiferal calcite (Birch et al., 2013; Edgar et al., 2017). Accurate identification of species is
thus critical for generating reliable paleoceanographic and paleoclimatic information.

Accurate species identification is, however, a nontrivial task. Even among experienced workers, taxonomic
agreement is achieved for only ~75% of individuals encountered (Al‐Sabouni et al., 2018; Fenton et al., 2018).
There are several reasons for this. Planktonic foraminifera have highly variable morphologies with
near‐continuous morphological gradations between closely related taxa (Aze et al., 2011; Poole & Wade,
2019). In some cases, like the historic “pachyderma‐dutertrei intergrade” (Hillbrecht, 1997), genetic analysis
has revealed the existence of pseudo‐cryptic species between historically named morphological end‐
members (Darling et al., 2006). In other cases, morphological variation is unrelated to genetic differentiation
(e.g., Trilobatus sacculifer; André et al., 2013) and may simply reflect the standing morphological variation in
a species or species complex. Regardless, this variation requires the practitioner to demarcate species at some
point along a morphological continuum. As a result, the circumstances of one's taxonomic training has a
significant effect on the boundary conditions of the morphospace definition of a specific species that is used
in practice. Different groups of taxonomists have developed different concepts for the morphological identity
of species over time, with self‐trained taxonomists having the most divergent opinions of species identity
(Al‐Sabouni et al., 2018). One potential reason for such diverging opinions is the limited number of
published exemplar images for species in taxonomic references and online resources.

Here we have generated the largest image database of modern planktonic foraminifera species to date
through the combined efforts of more than twenty taxonomic experts. This unprecedented data set is shared
through several online portals with the aim of unifying taxonomic concepts and providing a shared taxo-
nomic training tool. We then use supervised machine learning techniques to automate the identification
of species from images. Supervised machine learning methods have previously been used to automate spe-
cies identification for several microscopic taxa, including coccoliths (Beaufort & Dollfus, 2004), pollen grains
(Gonçalves et al., 2016; Rodriguez‐Damian et al., 2006), phytoplankton (Sosik & Olson, 2007), hymenopter-
ans (Rodner et al., 2016), diatoms (Urbánková et al., 2016), and dipterans and coleopterans (Valan et al.,
2019). However, these techniques have only been applied in a limited way (i.e., few species, low sampling,
limited image variability, and scope) to modern planktonic foraminifera (Macleod et al., 2007; Mitra et al.,
2019; Ranaweera et al., 2009; Zhong et al., 2017), preventing their use as a general tool in this field.
Computer vision provides a way to not only automate a task that relatively few researchers are trained to do
(i.e., identify all species in a sample) but to also ensure a level of consistency and, at times, accuracy that can
be difficult to achieve with human classifiers due to subjectivity and/or bias.

2. Background on Supervised Machine Learning

The field of computer vision involves training computers to parse the content of visual information and is a
core aspect of many artificial intelligence applications such as facial recognition and medical image analysis.
A common computer vision task is identifying objects in 2‐D images using a set of previously‐identified
images (i.e., a training set). The use of a training set in such tasks is called “supervised machine learning”
and allows the computer to build a model of how an input (i.e., an image) maps to a categorical output
(i.e., the identity or “class” of that image). To do this, the machine learning algorithm must determine what
attributes of the input data are relevant for the prediction task at hand. This process is called feature

10.1029/2019PA003612Paleoceanography and Paleoclimatology

HSIANG ET AL. 1158



extraction and is a form of dimensionality reduction that transforms complex data into a set of explanatory
variables that are grouped using similarity or distance metrics. The resulting model is called a “classifier.”
The accuracy of a classifier is typically tested with a small set of known images, called a “test set” or “valida-
tion set,” before it is used to predict the identity of unknown images (i.e., to assign classes to new
input objects).

Artificial neural networks (ANNs) are the key building block for modern computer vision systems.
ANNs consist of a collection of “neurons” (i.e., nodes) and edges that connect these neurons. If there
is a connection between two neurons, then the output of the first neuron serves as input for the second
neuron. Every connection has an associated weight that signifies the relative importance of the input. A
neuron performs a computation on the weighted sum of its inputs. This computation is known as an
activation function—for instance, a commonly used activation function is the Rectified Linear Unit
(ReLU), which applies the transformation f(x) = max(0,x) (equivalent to replacing negative values with
0). The output of the neuron is then passed along to the other neurons to which it is connected. The
neural networks used in computer vision are generally feed forward networks, whereby neurons are
arranged in layers and all connections flow in a single (forward) direction. In other words, neurons in
the same layer have no connections with one another. Instead, they only have connections with neurons
in adjacent layers, receiving inputs from the preceding layer and sending outputs to the following layer.
The most commonly used type of feed‐forward ANN is the multilayer perceptron, also known as a fully
connected layer. As its name suggests, every neuron in a fully connected layer has connections to every
neuron in the preceding layer.

The current best performing algorithms for feature extraction and image classification use convolutional
neural networks (CNNs; Krizhevsky et al., 2012; Hertel et al., 2017). CNNs build upon ANNs by including
layers that perform convolution operations, which serve to extract features from input images. Any image
can be represented as a matrix of pixel values. Convolution operations use these pixel values to calculate
new values using element‐wise matrix multiplication with a small matrix (aka a “filter” or “kernel”) that
sweeps over original image pixel values (Figure 1). The sums of the element‐wise multiplications (i.e., the
dot product of the filter values and the pixel values of the portion of the image the filter is currently placed
over) then form the elements of a new matrix of convolved features (also known as an “activation map” or
“feature map”). Examples of convolution operations include edge detection, sharpening, and blurring. As
convolution operations are linear, a ReLU layer is usually applied following convolution in order to intro-
duce nonlinearity into the network. This step is important because a simple linear function is limited in
its ability to capture complex mappings between the input (images) and output (classes). Although other
nonlinear activation functions exist, ReLU has been shown to perform better in most situations (Nair &
Hinton, 2010). Following the convolution and ReLU layers are pooling layers that are used to perform down-
sampling (i.e., dimension reduction), removing extraneous features while retaining the most relevant infor-
mation. Commonly used pooling operations include max pooling (whereby the highest value in a
neighborhood of pixels is retained and all others discarded) and average pooling (whereby the average of
all values in a neighborhood of pixels is calculated and retained).

Combined, the convolution, ReLU, and pooling layers comprise the feature extraction portion of the CNN,
producing as output the high‐level features that are then used to perform classification. The values com-
puted by the network are then processed using fully connected layers, generating a vector of probabilities
reflecting the probability that a given image falls in any given class. This complete process (from input to fea-
ture extraction to classification) is known as forward propagation.

The training set provides the CNN with known examples of the correct mapping between image values and
weights and the final classification (i.e., the true probability vector). When the CNN is initialized, all weights
and filters are randomly assigned. The network then takes the input images and runs the first forward pro-
pagation step. As the weights and filters are random at this point, the output is a vector of random class prob-
abilities for each image. The total error (i.e., the sum of the differences between the true probability vector
and the output probability vector) is calculated. The network then performs backpropagation, which is
the process of updating all the weights and filters using gradient descent in order to minimize the total error.
One complete forward propagation and backpropagation of the entire data set is called an epoch. Ideally, all
images would be passed through the neural network at once to result in the most accurate backpropagation
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Figure 1. Example of how convolution is performed in a convolutional neural network. (a) An image can be represented
as amatrix of pixel (px) values. Here we have a 4px by 4px image represented as a 4 × 4matrix. We use an example filter, or
kernel, that is represented by the 2 × 2 matrix shown. (b) Convolution is performed by sweeping the filter across the
image and summing the resulting values from element‐wise multiplication of the values of the image matrix that the filter
overlaps with the corresponding filter values. These sums are then saved to a new matrix that has one entry for every
step of the convolution process. Here we use a stride of 1px, meaning that the filter moves 1px in each step. This is repeated
until the filter has been passed over the entire image. (c) The resultingmatrix of sums is the convolved feature, also known
as an “activation map” or “feature map.”
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updates possible. However, in practice, this is computationally intractable, and the data must be broken up
into separate smaller batches to feed into the network. In general, the larger the batch size, the better.
However, the maximum batch size is limited by the amount of memory available to hold all of the data at
once. The number of batches required to complete a single epoch is called the number of iterations. For
example, a data set containing 1,000 images could be split into five batches of 200 images. Training a
CNN using this data set would then take five iterations to complete one epoch. The number of epochs
required to adequately train a network is variable and depends on the characteristics of the data set and
the parameters associated with the gradient descent algorithm being used.

By updating weights and kernels in the backpropagation to reduce classification error, the network learns
how to accurately classify the training images, building an association between a particular collection of
weights and kernels and a particular output class. The best‐performing model is then used to classify the
images in the validation data set. The performance of the model on the validation set thus gives us an idea
of how well the model performs, and what sort of accuracies we might expect if the model was used to clas-
sify entirely novel images. Model performance is evaluated by looking at validation accuracy (i.e., the pro-
portion of images in the validation set that are correctly identified by the trained model) and validation loss
(i.e., the sum of errors for each image in the validation set, where error is determined by a loss function such
as cross‐entropy; see supporting information Text S2).

The 16‐layer VGG16 (named after the Visual Geometry Group at Oxford University) CNN (Simonyan &
Zisserman, 2014) is a commonly used image classification neural network. Although VGG16 is a relatively
shallow network, its development was critical in showing that, in general, the deeper a neural network (i.e.,
the more layers it contains), the more accurate its performance. However, training difficulty and computa-
tional costs (i.e., time) increase with neural network depth. Residual Networks (ResNets; He et al., 2015) and
Densely Connected Convolutional Networks (DenseNets; Huang et al., 2016) are state‐of‐the‐art CNNs that
have helped alleviate this computational cost and improve performance. ResNets and DenseNets containing
hundreds of layers are now possible. However, no algorithm is universally ideal for all machine learning pro-
blems (Wolpert & Macready, 1997). A certain amount of experimentation with algorithm choice is thus a
necessity. Training deep CNNs also requires extremely large amounts of data to meaningfully infer values
for the large number of model parameters (and, correspondingly, computational resources). As a result, dee-
per networks may not necessarily be preferable for all problems.

One technique that eases computational burden and allows for robust models to be trained using relatively
small data sets is called transfer learning. Transfer learning uses weights from a model previously trained
using another data set on a new task; these weights are “frozen” in the new model so that they are not train-
able, thus reducing the number of parameters that must be estimated. New images are then used only to
train the unfrozen layers at the end of the CNN in order to fine‐tune the model to the task at hand. This
can be an efficient and effective strategy when one does not have a very large data set with which to train
a CNN from scratch. For example, ImageNet, which contains over 14 million images of various objects
and activities, has been used to train many CNNs, and the resulting weights are freely available. Transfer
learning thus allows accurate models to be trained with hundreds to thousands, rather than millions,
of images.

In this study, we generate a large image data set of planktonic foraminifera with associated high‐quality spe-
cies labels assigned by taxonomic experts. We then use these data to train a supervised machine learning
classifier using deep CNNs that is able to automatically identify planktonic foraminifera with high accura-
cies that are comparable to those of human experts.

3. Methods

Planktonic foraminiferal images were obtained from two large databases: a North Atlantic coretop collection
from the Yale Peabody Museum (hereafter, YPM Coretop Collection) and the Henry A. Buckley collection
from the Natural History Museum, London (hereafter, Buckley Collection).

3.1. Species Identification of the YPM Coretop Collection

The YPM Coretop Collection is a data set of 124,230 object images collected by Elder et al. (2018) from the
≥150‐μm size fraction of 34 Atlantic coretop samples. Of these objects, 61,849 were identified as complete
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or damaged planktonic foraminifera by human classifiers. To identify these images to the species level, we
used the online platform Zooniverse to create a private portal for taxonomic experts to identify images. As
several taxonomies exist for extant planktonic foraminifera, we standardized the species list by using the
SCOR/IGBP Working Group 138 taxonomy (Hottinger et al., 2006). Further details regarding the
Zooniverse interface and data collection are available in the supporting information.

To collect statistics on classifier accuracy and avoid inaccurate labels resulting from single‐user errors, four
independent taxonomists classified each image before it was considered complete. Classifiers were required
to identify each image they encountered. They were not permitted to respond with “I do not know” and were
advised to not skip images (although this was possible by refreshing the page). This is because the classifica-
tions themselves made difficult‐to‐classify individuals apparent, as the truly unidentifiable individuals were
unlikely to be called the same thing by four independent experts. Additionally, even uncertain responses can
provide useful information. For example, if the three labels assigned to an individual were “Globigerinoides
ruber,” “Globigerinoides elongatus,” and “Globigerinoides conglobatus,” it is very likely that the individual
belongs to the genus Globigerinoides, although the exact species identity of the individual is ambiguous.

An email was sent to the planktonic foraminiferal community to invite self‐identified experts to the project.
A total of 24 taxonomists submitted at least one classification and of these, 16 submitted more than 5,000
classifications and are co‐authors on this manuscript. In sum, 140,616 unique classifications were collected
on the 40,000 unique images uploaded. The raw data was processed to determine howmany objects received
four independent classifications, and what degree of agreement existed between the independent object clas-
sifications. All objects with 75% agreement or higher were considered to have high‐quality classifications
and were retained for CNN training and validation. The final set of YPM Coretop Collection images with
high‐quality species labels includes representatives from 34 species and comprises a total of
24,569 individuals.

3.2. Species Identification of the Buckley Collection

We included images of planktonic foraminifera from the Henry A. Buckley collection at the Natural History
Museum in London, which includes samples from various localities worldwide, primarily from the Pacific,
Atlantic, and Indian oceans (see Rillo et al., 2016, for details regarding the Buckley specimens). A total of
1,355 slides containing identified modern specimens were segmented using AutoMorph (Hsiang et al.,
2017; available at https://github.com/HullLab/AutoMorph) for inclusion in the machine learning data set.
All slides were segmented using an object size range of 50‐800 pixels and a test threshold value range of
0.5–0.7, incremented by 0.01, resulting in 30 segmentations per slide. The segmentation results were exam-
ined by eye to determine the ideal threshold value that maximizes the number of correctly identified forami-
nifera and minimizes the number of spurious objects segmented by the algorithm. A total of 17,383 objects
were segmented out of the 1,355 modern slides.

After segmentation, A. B. and M. C. R. examined all segmented objects using a modified version of the
Specify software (Hsiang et al., 2016) in order to (1) flag spurious identified objects for removal (usually bits
of background or slide labels) and (2) mark whether the original species identification provided by Buckley
matched modern species concepts unambiguously. Objects for which both A. B. and M. C. R. agreed with
Buckley's original label were retained for the final image data set, resulting in a total of 10,071 images.
For certain species, Buckley used antiquated names that mapped unambiguously onto modern synonyms;
these names were updated to follow the SCOR taxonomy (Table S1), and the species images were included
in the final data set. The final Buckley data set includes representatives from 31 species, two of which
(Globigerinella adamsi and Tenuitella iota) are not found in the YPM data set.

3.3. Supervised Machine Learning

Following convention, we withheld 20% of the combined YPM + Buckley data set as a test data set (i.e., vali-
dation set), with the remaining 80% used for training. For the YPM data set, 20% of the data set had already
been designated as withheld objects during data set creation (see Elder et al., 2018). We used this list to split
those images with high‐quality species labels into a test set (i.e., all images with originally “withheld” object
IDs) and a training set. This resulted in 4,889 test objects and 19,680 training objects (24,569 objects total).
For the Buckley data set, 20% of the 10,071 images (2,014 total) were randomly selected to be part of the test
set. The remaining images (8,057 total) comprised the training set. We then merged the YPM and Buckley
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data sets. This merged data set contains 34,640 images total, with a training set of 27,737 images and a test set
of 6,903 images. A total of 35 species (+1 “Not a planktonic foraminifer” option = 36 total classes) are repre-
sented. Table S2 contains a breakdown of the number of representatives by species in the training set. Our
sampling represents ~73% coverage of the 48 total species defined in the SCOR taxonomy, with the missing
species being either extremely rare or typically smaller than the size fraction imaged and classified here.

We initially tested three CNNs: VGG16 (Simonyan & Zisserman, 2014), DenseNet121 (Huang et al., 2016),
and InceptionV3 (Szegedy et al., 2015). These CNNs are commonly used neural networks for image classifi-
cation. We used the implementation of these CNNs from the Keras Python API (Chollet et al., 2015) using
the GPU‐enabled TensorFlow (Abadi et al., 2016) backend. Details on all model structures and analysis para-
meters can be found in Text S2 of the supporting information. Table 1 summarizes all supervised machine
learning analyses that were run. Treatments and parameter values were optimized iteratively, with the opti-
mally performing value retained from each testing cycle for the next. For instance, we first tested the effect of
image size on accuracy by holding all other treatments and parameter values constant (analyses 1–3 in
Table 1). As an image size of 160 × 160 pixels yielded the highest validation accuracy, we set the image size
to 160 × 160 pixels for all remaining analyses. We performed these tests in the following order: image size,
dropout, learning rate, L1/L2 regularization, augmentation, and batch size (see supporting information Text
S2). For the final analyses, we also increased the patience value of the early stopping algorithm to 10. All ana-
lyses were run on the Beella machine in the Hull Lab in the Department of Geology and Geophysics depart-
ment at Yale University (6‐core 2.4GHz CPU, 32 GB RAM, 2 NVIDIA GeForce GTX 1080 GPUs [8 GB],
Ubuntu 15.04.5 LTS). The code for the machine learning analyses is available on GitHub (https://www.
github.com/ahsiang/foram‐classifier).

3.4. Taxonomic Training Tools and Resources

The 32,626 training set images are available through the website Endless Forams (endlessforams.org). This
website was designed to deliver as many species examples as a user requests, up to the total number of
images available for a species, for taxonomic training purposes. By looking at many, or all, of the images
available for any given species, researchers will be able to gain an understanding of the extent of morpholo-
gical variability that is generally accepted amongst taxonomists within any given species. We have also
designed an extensive taxonomic training portal (available at endlessforams.org) for workers that utilizes
the training set images. Users can then use the public‐facing Zooniverse portal (zooniverse.org/projects/
ahsiang/endless‐forams) to participate in classifying the >14,000 remaining unclassified planktonic forami-
nifera images from the YPM Coretop Collection. Because this new Zooniverse portal is public‐facing, all
images require 15 identifications before being retired and considered fully “classified.” The portal will be
monitored regularly, and any retired images with <75% agreement will be reuploaded to the portal, until
eventually the only images left in the portal will be the truly ambiguous, unclassifiable objects.

4. Results
4.1. Expert Species Identification

A total of 34,067 images were fully identified (i.e., four classifications obtained) from the YPM Coretop
Collection, of which 1,604 (4.71% of the total) had 0% agreement (i.e., all four identifiers disagreed on the
species identification), 7,894 (23.17%) had 50% agreement, 9,578 (28.12%) had 75% agreement, and 14,991
(44.00%) had 100% agreement. This resulted in a data set of 24,569 unique images (72.12% of the total data
set) with high‐quality labels (i.e., three or four of four identifiers agreed on the classification), representing
34 species. A human confusion matrix (Figure 2) was generated using the objects with high‐quality labels by
summing the number of identifications for each of the 34 species and determining the proportion of the iden-
tifications are correct or incorrect. For instance, the final data set contained 343 images that were identified
as Globigerinoides elongatus. These images required a total of 1,372 identifications (=343 × 4), of which 81%
were the “correct” identification (i.e., G. elongatus). The remaining 19% of identifications were incorrect,
with most being G. ruber (18%) and the rest being G. conglobatus (1%). In general, most of the classifications
are correct, with accuracy rates ranging from 75% to 98% (average accuracy: 85.9%), as only those individuals
with 75% agreement or more were considered “identified.” Species with accuracy rates ≤80% were relatively
rare in the data set as well: Globigerinella calida: 78% accuracy, 135 individuals; Globigerinita uvula: 75%, 7
individuals; Globorotalia ungulata: 80%, 31 individuals; Globorotaloides hexagonus: 75%, 2 individuals;
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Table 1
Supervised Machine Learning Analyses

Analysis
Number CNN used

Image size
(pixels)

Batch
size

Layers
frozen Dropout

Dropout
value Learning rate

Adjustment
factor

L1/L2
regularization

Lambda
value

1 VGG16 64 × 64 100 7 No ‐ 0.0001 ‐ No ‐

2 VGG16 96 × 96 100 7 No ‐ 0.0001 ‐ No ‐

3 VGG16 128 × 128 100 7 No ‐ 0.0001 ‐ No ‐

4 VGG16 160 × 160 100 7 No ‐ 0.0001 ‐ No ‐

5 VGG16 160 × 160 100 7 Yes 0.1 0.0001 ‐ No ‐

6 VGG16 160 × 160 100 7 Yes 0.01 0.0001 ‐ No ‐

7 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ No ‐

8 VGG16 160 × 160 100 7 Yes 0.9 0.0001 ‐ No ‐

9 VGG16 160 × 160 100 7 Yes 0.5 0.001 ‐ No ‐

10 VGG16 160 × 160 100 7 Yes 0.5 0.00001 ‐ No ‐

11 VGG16 160 × 160 100 7 Yes 0.5 0.00005 ‐ No ‐

12 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ Yes 0.01

13 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ Yes 0.0001

14 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ Yes 0.00001

15 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ Yes 0.0000001

16 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ No ‐

17 VGG16 160 × 160 100 7 Yes 0.5 0.0001 ‐ No ‐

18 VGG16 160 × 160 100 7 No ‐ 0.0001 ‐ No ‐

19 VGG16 160 × 160 100 7 Yes 0.5 Self‐regulating 0.9 No ‐

20 VGG16 160 × 160 100 7 Yes 0.5 Self‐regulating 0.5 No ‐

21 VGG16 160 × 160 200 7 Yes 0.5 Self‐regulating 0.5 No ‐

22 VGG16 160 × 160 250 7 Yes 0.5 Self‐regulating 0.5 No ‐

23 VGG16 160 × 160 200 7 Yes 0.5 Self‐regulating 0.5 No ‐

24 InceptionV3 139 × 139 100 249 Yes 0.5 0.0001 ‐ No ‐

25 DenseNet121 299 × 299 100 313 Yes 0.5 0.0001 ‐ No ‐

Analysis
number Augmentation

Num. Aug.
treatments

Early‐stopping
patience

Epochs
ran

Max.
training
accuracy

Min.
training
loss

Max.
validation
accuracy

Min.
validation

loss

1 No ‐ 5 15 0.97 0.08 0.79 0.77

2 No ‐ 5 11 0.95 0.13 0.80 0.66

3 No ‐ 5 32 0.99 0.03 0.83 0.63

4 No ‐ 5 32 0.99 0.03 0.85 0.63

5 No ‐ 5 19 0.98 0.05 0.84 0.56

6 No ‐ 5 29 0.99 0.03 0.84 0.59

7 No ‐ 5 27 0.99 0.04 0.86 0.55

8 No ‐ 5 30 0.98 0.07 0.83 0.76

9 No ‐ 5 40 0.84 0.46 0.73 0.93

10 No ‐ 5 27 0.97 0.11 0.85 0.55

11 No ‐ 5 17 0.98 0.07 0.84 0.56

12 No ‐ 5 18 0.21 2.94 0.23 2.94

13 No ‐ 5 15 0.97 0.15 0.80 0.81

14 No ‐ 5 15 0.97 0.12 0.82 0.65

15 No ‐ 5 15 0.97 0.08 0.84 0.60

16 Yes 5 5 14 0.90 0.31 0.82 0.59

17 Yes 2 5 24 0.96 0.11 0.84 0.58

18 Yes 2 5 10 0.91 0.27 0.81 0.58

19 No ‐ 5 23 0.99 0.02 0.85 0.57

20 No ‐ 5 28 1.00 2.00 × 10−4 0.87 0.59

21 No ‐ 5 35 1.00 6.00 × 10−4 0.86 0.61
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Globoturborotalita tenella: 78%, 107 individuals; and Globoquadrina conglomerata: 75%, 1 individual). In
most cases, misidentifications occurred within the same genus, although these misidentifications are not
necessarily symmetrical. For instance, while G. elongatus is misidentified as G. ruber 18% of the time, the
reverse happens only 5% of the time.

Table S3 shows anonymized user accuracy rates. The range for user accuracies of high‐quality labels (i.e., the
proportion of correct labels each user contributed, for all objects with 75% or 100% agreement)
was 63.8%–85.2%.

4.2. Supervised Machine Learning Model Training

Although we began by testing the VGG16 (analysis #1 in Table 1), InceptionV3 (analysis #24), and
DenseNet121 (analysis #25) CNN architectures, it quickly became clear that the latter two networks were
affected by strong overfitting, as the validation accuracy was always significantly lower than the training

Figure 2. The human confusion matrix, showing results from 24,569 individuals from the YPM coretop data set with high‐quality (i.e., ≥75% classifier agreement)
species labels. The y axis lists the species comprised by the high‐quality (or correct) identifications, followed by the number of images representing that species. The
x axis is the list of all species that objects were potentially identified as. Each cell of the matrix represents the proportion of identifications for each species (y axis)
that are identified as the corresponding species on the x axis (e.g., 88% of the IDs collected for the 2,269 images of G. bulloideswere correct and 4% of those IDs were
incorrectly selected to be G. falconensis). The color map is on a log‐scale and shows higher (bluer/darker) versus lower proportions (yellower/lighter).

Analysis
number Augmentation

Num. Aug.
treatments

Early‐stopping
patience

Epochs
ran

Max.
training
accuracy

Min.
training
loss

Max.
validation
accuracy

Min.
validation

loss

22 No ‐ 5 32 1.00 2.00 × 10−3 0.86 0.62

23 No ‐ 10 44 1.00 3.00 × 10−4 0.87 0.56

24 No ‐ 5 20 1.00 1.2 × 10−3 0.48 1.84

25 No ‐ 5 16 1.00 0.04 0.34 2.52
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accuracy. Due to these preliminary results, we decided to move forward with the VGG16 CNN, as it does not
experience the same degree of model overfitting that we observed with DenseNet121 and InceptionV3 and
also exhibited the highest initial validation accuracy (78.96%).

Our results show a positive effect of image size on validation accuracy at low pixel counts (analyses #1–4 in
Table 1) with validation accuracy increasing from 78.96% at 64 × 64 pixels to 84.77% at 160 × 160 pixels. As
training accuracy, training loss, and validation loss do not improve appreciably between an image size of 124
× 124 pixels versus 160 × 160 pixels, we chose to cap the image size at 160 × 160 pixels, as increasing image
size requires a corresponding increase in memory usage and processing time. Next, we tested the effect of
adding dropout regularization with different dropout proportions (analyses #5–8). The best performing ana-
lysis had a dropout value of 0.5, which resulted in a validation accuracy of 85.59%. For the learning rate tests
(analyses #9–11), a relatively high learning rate of 0.01 resulted in the lowest validation accuracy (72.80%).
As the lower learning rates of 1.0 × 10−5 and 5.0 × 10−5 did not result in higher validation accuracies than the
intermediate rate of 1 × 10−4, we retained an intermediate rate for the following analyses, as low learning
rates can lead to slow convergence. L1/L2 regularization (analyses #12–15) also did not improve validation
accuracies, and in fact, a lambda value of 0.01 resulted in a precipitous drop in both training and validation
accuracy (21.40% and 22.93%, respectively). We thus chose to proceed without the use of
L1/L2 regularization.

We compared data augmentation using five versus two treatments (analyses #16–17) and found that while
the two‐treatment method performed better than the five‐treatment method (validation accuracy of 84.36%
versus 82.35%), neither resulted in substantially increased validation accuracy than the analyses without
data augmentation. Because data augmentation is a form of regularization, it can sometimes lead to under-
fitting when used in combination with other regularization techniques such as dropout and L1/L2 regular-
ization. As such, we also tested the effect of the two‐treatment data augmentation without the 0.5 dropout
layer (analysis #18). However, this resulted in a lower validation accuracy of 81.07%. We thus decided to
retain the dropout regularization without the data augmentation, as dropout appears to have the greatest
effect in reducing overfitting in our data set. We then tested a self‐adjusting learning rate and found that
it led to a significantly improved validation accuracy of 87.32% in the 0.5 adjustment factor case (analysis
#20). Finally, we found that increasing the batch size to 200 and 250 (analyses #21–22) led to relatively high
validation accuracies (>85%) and very high training accuracies (>99%) and low loss (6.0 × 10−4–2.0 × 10−3).
The final analysis (#23) combining the best performing settings resulted in a training accuracy of 99.99%, a
training loss of 3.0 × 10−4, a validation accuracy of 87.41%, and a validation loss of 0.5638. We also calculated
the proportion of objects for which the correct species identity is found within the top three guesses made by
themodel (i.e., the top‐3 accuracy) and found a last run top 3 training accuracy of 100% and a top 3 validation
accuracy of 97.66%. Figure 3 shows the evolution of all these metrics through the 44 epochs that this final
analysis was trained. The final model weights, along with the code used for training and validation, can
be accessed at https://www.github.com/ahsiang/foram‐classifier website.

The machine confusion matrix is shown in Figure 4. Some differences in the general pattern of misidentifi-
cations between the machine and human confusion matrices present themselves. While the human misi-
dentifications tend to be phylogenetically conservative (i.e., when individuals are misidentified, they are
usually misidentified as another species from the same genus), the misidentifications by the machine are
more liberal—for instance, 21% of the validation specimens of Globigerinella calida are misidentified as
Globigerina falconensis. The model tended to confuse species in this manner when they have relatively
low sampling: the average training sample size of species with validation accuracies <70% is 130, compared
with an average training sample size of 1,184 for those species with validation accuracies >70%. The accu-
racy of human classifiers versus the machine model on the validation set for each species is shown
in Figures 5a–5b.

Another interesting result is thatGloborotalia ungulata is correctly identified by the machine only 33% of the
time and mistaken as Globorotalia menardii the other 67% of the time. It is the only species that is always
misidentified as a single alternate species at a greater frequency than it is correctly identified. Human iden-
tifiers also commonly misidentify G. ungulata as G. menardii (18% misidentifications), and the machine is
likely further misled due to the much larger set of training images for G. menardii than for G. ungulata
(1,090 vs. 25; see Discussion on the class imbalance problem, below).
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5. Discussion
5.1. Building and Mobilizing Large‐Scale Taxonomic Resources

Zooniverse was an effective platform for obtaining taxonomic identifications on digital images from experts.
Given the paucity of images available for planktonic foraminiferal species, it is noteworthy that this project
generated >34,000 identifications in just three months. Large‐scale digital mobilization efforts like this one
provide one means of capturing our community expertise for training the next generation of scientists and
for automating some aspects of our work. As we show below, once generated, large‐scale data products such
as these can be used to automate future classification tasks through machine learning. The portals we pro-
vide for both the raw images (endlessforams.org) and taxonomic training (zooniverse.org/projects/ahsiang/
endless‐forams) are targeted toward increasing the expertise and consistency of single (or limited)‐taxon
experts (e.g., many geochemists), as well as taxonomists, by illustrating the range of variation accepted in
each species concept (Figure 6) and providing a common benchmark to reduce differences amongst
taxonomic schools.

In general, we would repeat the same portal design for future projects with the following exceptions. Given
the difficulty of taxonomic identification from digital images (i.e., taxonomists like to rotate specimens to see

Figure 3. Plots showing evolution of top 1 accuracy, loss, and top 3 accuracy with epoch number duringmodel training using the VGG16 CNNwith an image size of
160 × 160 pixels, a batch size of 200, 0.5 dropout regularization, a self‐adjusting learning rate with an adjustment factor of 0.5, and early stopping with a patience of
10. A total of 44 epochs were completed before the early stopping algorithm stopped the run. Themaximum top 1 training accuracy was 99.99%; themaximum top 1
validation accuracy was 87.41%; the minimum training loss was 0.0003; the minimum validation loss was 0.5638; the maximum top 3 training accuracy was 100%;
and the maximum top 3 validation accuracy was 97.66%.
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key taxonomic features), partial occlusion by sediment or poor preservation made species‐specific
identification very difficult. Methods for dealing with poor preservation in the context of digital data
mobilization include filtering out poorly‐preserved samples or sites or classifying at the generic rather
than species level. We also had remixing in some samples, and because we did not include a “remixed”
option for classifiers, experts were forced to assign modern names to ancient taxa in these instances. A
remixed option, along with the existing not a planktonic foraminifer option, will be included in all
future studies.

The human by‐user accuracy rates that we observe (63.8%–85.2%; average 71.4%) are well in line with those
reported by previous studies on the performance of human classifiers on large‐scale taxonomic identification
tasks. In a study on species identification of six species of Dinophysis dinoflagellates, Culverhouse et al.
(2003) report an average accuracy rate of 72% amongst 16 taxonomic experts. A study examining expert
versus nonexpert performance on species identification in bumblebees found accuracy rates of below
60% for both groups (Austen et al., 2016). Finally, Al‐Sabouni et al. (2018) report average accuracies of
69% (>125‐μm size fraction) and 77% (>150‐μm size fraction) in a study of 21 experts identifying 300 plank-
tonic foraminifera specimens from slides, with a 7% drop in accuracy between slides and digital photos.
The high level of accuracy found by Al‐Sabouni et al. is notable, given the widely held perception that

Figure 4. The machine confusion matrix, showing results from the validation set, which contains 80% of the images with high‐quality labels from the combined
YPM coretop data set and the Buckley data set. The y axis shows the “correct” species labels followed by the number of representative images in the validation
set. The x axis shows the corresponding predicted labels, with eachmatrix cell showing the proportion of validation objects identified as each species (e.g., 86% of the
536 validation images ofG. bulloideswere correctly identified asG. bulloides and 4%were incorrectly identified asG. falconensis). The color map is on a log‐scale and
shows higher (bluer/darker) vs. lower proportions (yellower/lighter).
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Figure 5. Cross‐plots comparing machine and human classifier performance. (a) Comparison of machine accuracy rates (i.e., proportion of validation images cor-
rectly identified) versus human accuracy rates (i.e., proportion of correct identifications out of all identifications collected for the objects with high‐quality species
labels). “NPF” = Not a Planktonic Foraminifera. (b) Close‐up of the box in panel (a). (c) Relationship between the number of samples per species and the human
accuracy rate. (d) Relationship between the number of training samples per species and the machine accuracy rate. (e) Plot showing the relationship between the
number of specimens sampled per species and the total number of human misidentifications that fall in that species category. For instance, the point marked with
the arrow represents Globigerinoides ruber, which has 6,425 representatives in the data set. Of all the identifications scored for the other 33 species in the data set, a
total of 24,202 of identifications are mistakenly scored as G. ruber. There is a strong correlation (R2 = 0.996; p < 2.2 × 10−16) between the number of representative
specimens per species and the total number of misidentifications that fall into that species category. (f) Analogous plot to (e) but for the machine validation set and
misidentifications. The correlation between the number of representative samples for a class and the number of misidentifications that fall in that class is much
weaker for the machine classifier (R2 = 0.667; p = 1.253 × 10−9) than for the human classifiers. The green line in all plots represents the identity line.
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planktonic foraminifera have intergrading morphologies. In contrast, Mitra et al. (2019) report classification
performances for six experts (>15 years of experience) and novices (0.5–2 years of experience) identifying
540 specimens and find F1 scores (harmonic mean of precision and recall) of 39%–85% (mean 63%) for
experts and 47%–64% (mean 53%) for novices. The relatively lower accuracies reported by Mitra et al. may
result from the option classifiers were given to choose “Not Identifiable,” which may cause conservative
classifiers to avoid making decisions if they are uncertain, leading to depressed recall rates (i.e., more false
negatives). Furthermore, as the original identities of the images used by Mitra et al. were determined by
only a single expert, the accuracy rates are dependent on the accuracy of this original expert. The “true”
identities of the specimens used in our study are determined from the aggregate classifications of four
independent, random classifiers per specimen. As these experts may have differing species concepts, we
can be reasonably certain in identifications that have ≥75% agreement, because the majority of experts

Figure 6. Plates showing examples of the range of morphological, preservational, and imaging (orientation, color, lighting, etc.) variation within a given species in
the Yale data set. Representatives from four example species (Globigerinoides ruber, Globigerina bulloides, Orbulina universa, and Globorotalia menardii) are shown
here. The pink specimen of G. bulloides comes from a slide where all specimens had been stained with Rose Bengal.
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agree on the identity despite these differing species concepts. In contrast, a single expert has only a single
species concept, and thus may assign identities that would reasonably be contradicted by another expert
with a slightly different species concept (e.g., different experts may draw the line at a different point along
an intergrading morphological continuum). However, the converse can also be true. Some species may only
be reliably identified by a few core experts in the field but commonly misidentified by most practitioners. In
these cases, our approach of naming by consensus would bias the “extreme specialist” species toward being
misidentified. We noticed, for instance, that there are a number of images classified as Globigerina bulloides
that should be listed as Globigerina falconensis. G. falconensis is, however, much rarer and is therefore not as
well‐known to even the expert taxonomists. Furthermore, the unequal distribution of identifications across
experts (i.e., certain experts identifying significantly more objects than others) could potentially introduce
biased representation of species concepts in the data set. However, using consensus among aggregate iden-
tifications serves as a first‐order buffer against such biases and should be the standard for generating identi-
fication data of this kind moving forward.

5.2. Human Versus Machine Classification

We find that human misidentifications (Figure 2) are almost always asymmetrical, with a bias toward
species with higher representation in the data set. For instance, both Globorotalia tumida (70 individuals)
and G. ungulata (31 individuals) are most often misidentified as G. menardii (309 individuals), with
misidentification rates of 8% and 18%, respectively. The reverse, where G. menardii is mistaken as G. tumida
orG. ungulata, happens less often (5% and 3%, respectively). While there is not a linear relationship between
accuracy rate and individuals sampled (Figure 5c), there is a very strong correlation (R2 = 0.996; p < 2.2 ×
10−16) between the number of representative samples of a species and the number of misidentifications that
fall under that species (Figure 5e). That is, Globigerinoides ruber, which has the most individuals sampled
(6,425), is also the species that other species are most likely to be misidentified as—in this case, there were
24,202 identifications of other species that were misidentified as G. ruber. There are several possible causes
for the relatively lower accuracy rates of undersampled species, including

1. Higher representation leads to increased recognizability. That is, the expert human classifiers in our
study are likely to be better at identifying common species due to the depth of their experience identifying
these species in the past. If there are many representatives of a species, people will have a well‐developed
concept of what variation looks like within the species and will thus be more proficient at identifying it
from images. In contrast, for rare species, the human classifier may simply have had few or no encounters
with these species in the past and fail to recognize the species as distinct from a close relative or be unable
to rectify a recognized knowledge gap from the limited number of images and views available from taxo-
nomic resources.

2. Higher representation leads to identification bias. In other words, if human classifiers have seen many
more of Globigerinella siphonifera in the data set, they are more likely to identify G. calida as G. siphoni-
fera than vice versa. This may also happen as a result of human knowledge about background meta‐data.
For instance, if classifiers have a preconceived idea that G. siphonifera is more abundant in the data set
than G. calida, this may lead them to preferentially identify individuals as G. siphonifera.

3. There is less native taxonomic clarity for undersampled forms. In other words, rare taxa aremore likely to
resemble other more abundant species, than abundant species are to resemble each other, for biological
reasons such as cryptic speciation.

4. Rare species that are the result of recently defined splits in taxonomic boundaries may be difficult to sepa-
rate from their “parent” species. For instance, G. elongatus was reinstated as a taxon in 2011 (Aurahs
et al.), whereas previously it had been grouped under G. ruber sensu lato. Classifiers who were trained
prior to the reinstatement would thus likely classifyG. elongatus individuals asG. ruber. In this particular
case, the problem is also amplified by the ambiguity of the line betweenG. elongatus and G. ruber, as they
form an intergrading species plexus (Bonfardeci et al., 2018). Furthermore, the more elongate spiral on
the dorsal side that is often used to diagnose G. elongatus versus G. ruber is not always visible in images
taken from the umbilical side, as is the case with the YPM and Buckley images used here.

Discriminating between these possible causes is beyond the scope of this study. However, the strong correla-
tion between the number of sampled individuals per species and the number of identifications misattributed
to that species that we observe suggests that sampling‐dependent identification bias likely plays a role.
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Interestingly, an analogous problem occurs when using machine learning methods. Themachine equivalent
of sampling‐dependent human identification bias is the unbalanced data or class imbalance problem,
whereby the numbers of representative samples in each class are highly skewed (i.e., certain classes have
thousands of images and others have only a handful). Highly skewed data sets can lead to inductive bias that
favors the more highly sampled classes, leading to poor predictive performance on the less well‐sampled
minority classes (He & Garcia, 2009). Oversampling, which involves randomly replicating samples from
minority classes, is one of the most common techniques for dealing with class imbalance. While oversam-
pling can lead to problems with overfitting in classical machine models, some studies suggest that this lar-
gely does not affect modern CNNs (Buda et al., 2018). More advanced techniques such as Class
Rectification Loss (Dong et al., 2018) have also been developed to deal with the class imbalance problem.
The data set we used for training the CNN here is highly skewed (Fig. S2), with the most abundant class hav-
ing 5,914 samples and the least abundant class having four samples. Similar to the human classifiers, there is
not a linear relationship between the number of species samples and accuracy (Figure 5d). However, when
we look at the relationship between sampling andmisidentification, we find that the correlation between the
two is less pronounced than in the human identifications, with an R2 value of only 0.668 (p = 1.253 × 10−9;
Figure 5f). These results suggest that the machine classifier suffers less from sampling and identification bias
than human classifiers do. However, the average of all the single‐species accuracies (i.e., the proportion of
correct identifications for a given species) is lower for the machine model (70.0%) than the human classifiers
(86.2%), due to the low accuracies returned for the undersampled species. Given that there is a high correla-
tion between human classification performance and sample size, it is likely that larger sample sizes would
improve these accuracies. That is, if humans are themselves poor at identifying rare species, then the
human‐generated data used to train the machine may be themselves of relatively poor quality (i.e., the “gar-
bage in, garbage out” principle). Our results suggest that larger samples lead to more robust species concepts
in human classifiers, which would in turn lead to higher quality data and thus higher machine accuracies.

The advantage of the machine approach thus lies in its high accuracy, reproducibility, and bias avoidance.
Human accuracies are highly dependent on individual performance and often in immeasurable ways. For
instance, Austen et al. (2018) found that self‐reported user ability and experience had no correlation with
actual performance in classification in the identification of bumblebees. Similarly, Al‐Sabouni et al. (2018)
find that increased experience does not correspond with higher user identification accuracies in planktonic
foraminifera. Austen et al. also noted that experts with field experience tended to have higher identification
accuracies than those who had gained their taxonomic knowledge primarily from books, a finding that reca-
pitulates Culverhouse et al.'s (2003) report that in a test of distinguishing between the dinoflagellates
Ceratium longipes and C. arcticum, self‐consistency rates are much higher for “competent” experts
(94%–99%) versus “book” experts (67%–83%), although the naming of these categories does suggest a certain
bias in the authors. Dinoflagellate expert consistency ranged widely from 43% to 95% across eight experts. In
contrast, the consistency of the Dinoflagellate Categorisation by Artificial Neural Network (DiCANN) sys-
tem for the same task was 99%. Similarly, the overall accuracy rate of our best‐performing model in this
study is already higher than the highest individual human participant's accuracy (i.e., 87.4% versus 85.2%
of images encountered were correctly classified by the model vs. human classifiers, respectively), even
though we use primarily “out‐of‐the‐box” methods packaged in the Keras framework. Higher validation
accuracies are thus likely with more sophisticated approaches (e.g., predefined kernels, changing image size
during training, and fully convolutional networks) in future studies.

Our results suggest that human classifiers tend to be more phylogenetically conservative in their mistakes,
withmost mistaken identifications occurring within the same genus as the correct identification. In contrast,
the mistakes made by the machine classifier often fall outside of the correct genus. However, it appears that
these mistakes are often not completely random when considered in a phylogenetic and/or taxonomic con-
text. For instance, 18% of the G. calida specimens were identified as Globigerinella siphonifera, which G.
calida is thought to have evolved from (Aze et al., 2011; Kennett & Srinivasan, 1983). Additionally, both
Tenuitella iota and Turborotalita humilis are often confused by the model for Globigerinita glutinata (33%
and 31%, respectively). However, G. glutinata likely descended from Tenuitella munda in the lower
Oligocene (Jenkins, 1965; Jenkins & Srinivasan, 1986; Pearson et al., 2018). In Parker's (1962) original
description, T. iota was placed in the Globigerinita genus. It thus appears that, although the model is prone
to misidentifying species when it has only a small training set to work from, its misidentifications are often
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biologically and/or taxonomically relevant, grouping morphotypes that taxonomic experts have pondered
over themselves. The Parker, 1962 taxonomy was built on the basis of relatively little information due to
technological limitations. For instance, modern scanning electron microscope (SEM) methods were applied
to planktonic foraminifera for the first time by Honjo and Berggren (1967), and later developments along
these lines (Steineck & Fleischer, 1978) led to the establishment of test wall texture as an important criterion
for taxonomic identification. This additional information allowed taxonomists to clarify some of these
ambiguous species boundaries. The biologically relevant mistakes made by the machine classifier may thus
be seen as analogous to those made in pre‐SEM taxonomies, resulting from limitations in the training data
set. Future work exploring the type, quality, and composition of the training data will likely lead to further
gains in the accuracy rate of automated classifiers.

The particular advantage in the machine approach is that it is highly portable, reusable, and scalable. A
model can be trained anywhere—say, at an institution with a large collection of specimens that can be
digitized and identified—and then deployed anywhere in the world. Furthermore, once the hard work of
training a model is done, using that model to predict labels for a novel batch of images is relatively trivial
in terms of computational resources and time. The machine approach thus effectively removes the
bottleneck of needing a team of taxonomic experts to identify specimens before downstream analyses can
be done. Of course, the taxonomic experts are still necessary to generate the high‐quality training data for
the models. However, where a robust model trained using expert‐generated data exists, institutions and indi-
viduals without access to taxonomic expertise can potentially conduct research that requires taxonomic
information. The other obvious advantage to automated machine methods is the ability to generate taxo-
nomic information for very large data sets very quickly, which is a growing necessity as high‐throughput
imaging methods continue to advance.

5.3. Machine Learning Implementation Considerations Specific to Biological Taxonomy
and Systematics

Most applications of supervised image classification to date focus on nonbiological problems, such as real‐
time object discrimination for building autonomous driving systems or recognizing handwritten letters
and numbers. Most biological applications are in the field of medicine and disease diagnosis. The use of auto-
mated computer vision methods for taxonomic tasks such as species identification has unique considera-
tions, a few of which we touch upon here.

Although data augmentation did not appreciably increase our accuracy rates in this study, it is a commonly
used strategy in supervised image classification, particularly when the training data set is small. However,
data augmentation must be implemented carefully with regard to the classification task being performed.
For instance, a common data augmentation treatment to implement is horizontal flipping. However, this
can potentially cause problems when attempting to classify organisms that demonstrate chirality. While
chirality is irrelevant when training a model to distinguish between, say, cats and dogs, it can be an impor-
tant distinguishing trait when training a model to distinguish between highly similar forms that differ in
coiling direction, such as Neogloboquadrina pachyderma versus N. incompta (Darling et al., 2006). Similar
issues occur when training models to classify written letters—for example, certain Arabic letters can be con-
fused by rotation or flipping (Mudhsh & Almodfer, 2017), as can the numbers 6 and 9 (Simonyan &
Zisserman, 2014). Care must thus be taken in the choice of data augmentation strategies. New techniques
such as Smart Augmentation (Lemley et al., 2017), which generates augmented data during training that
minimizes loss, can also automate this process to reduce error and confusion.

Relative size and aspect ratio are also important traits to traditional taxonomic determination. In
foraminifera, size can be an important determiner of species identifications, as different size fractions con-
tain different relative abundances of certain species (Peeters et al., 1999) and species growth stages
(Brummer et al., 1986, 1987). However, due to the nature of the convolutional layers in CNNs, all images
are first resized to the same size, effectively erasing this biologically relevant information. Techniques such
as attribute‐based classification (Lampert et al., 2014), which performs classifications based on pretrained
semantic attributes such as color and shape, may potentially be used to attach taxonomically relevant infor-
mation such as size to images to aid in classification. As automated taxonomy using computer vision is still a
relatively nascent field, the potential for fruitful studies using existing computer science technologies and
theory is vast.
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5.4. Moving Forward With Automated Taxonomic Methods in Paleoceanography

High‐quality data on the distribution, abundance, and community composition of marine microfossils such
as planktonic foraminifera in surface sediments are essential for understanding macroevolutionary and
macroecological patterns and processes in the global ocean, with widespread application to
paleoceanographic and paleoclimatic research. Previous work bringing machine learning methods to bear
on the automatic recognition of coccolithophores (Beaufort & Dollfus, 2004) have allowed for the successful
application of these methods to paleoceanographic studies. In particular, these methods have been used to
investigate glacial‐interglacial variability in primary ocean productivity as it relates to glacial‐interglacial
cycles in the Late Pleistocene (Beaufort et al., 2001) and measuring the sensitivity of coccolithophore
calcification to changing ocean carbonate chemistry over the last 40,000 years and in the modern day, with
implications for the response of calcifying organisms to ocean acidification (Beaufort et al., 2011). This
success demonstrates the importance and feasibility of applying machine learning to planktonic foramini-
fera, for which similar concerns and applications exist.

Planktonic foraminifera have yet to be studied extensively using machine learning, in part due to the diffi-
culty of obtaining well‐resolved digital images. Although several systems for finely resolving foraminifera
have been developed (e.g., Harrison et al., 2011; Knappertsbusch, 2007; Knappertsbusch et al., 2009; Mitra
et al., 2019), they are relatively slow for whole slide scanning and processing. The AutoMorph system we
use here is a compromise that uses image stacking to produce a good‐quality image similar to what can be
produced from a high‐end light microscope. Although the produced images have some imperfections, the
speed of our system allows us to generate large amounts of image data in a short amount of time. The data
set we present here is the largest collection of Recent planktonic foraminifera images with associated high‐
quality expert‐identified species labels to date. This data set is of high value in and of itself, and 2‐D and 3‐D
morphological measurements for all individuals extracted using AutoMorph can be cross‐referenced from
Elder et al. (2018) for morphometric and paleoceanographic applications. The Endless Forams portal we
have developed also makes it easy for users to download our images for novel applications or extensions
of the work presented here (e.g., reclassifying images according to morphologically recognizable genotypes
or other classification schemes in order to retrain the classifier to recognize more finely subdivided groups,
such as pink vs. white varieties of G. ruber).

The automated species identification model using supervised machine learning that we describe here repre-
sents an important step toward a future in which the widespread use of such methods relieves a great deal of
the human labor burden of taxonomic identification of planktonic foraminifera. Automated methods make
the prospect of quickly generating “Big” data sets for application to pressing scientific questions possible. For
example, the methods discussed here and the machine learning classifier we have trained could be used in
conjunction with flow cytometry in order to rapidly produce large data sets for geochemical analyses.
Moreover, technological advances and innovative workflows are allowing natural history museums to enter
a new age of mass digitization of their collections (e.g., Hudson et al., 2015; Rillo et al., 2016), further con-
tributing to the availability of abundant image data. Rapid, automated methods and pipelines such as the
ones we describe here are a growing necessity not only as high‐throughput imaging methods produce ever
more data, but also in a world where rates of ecological turnover in the oceans are ever increasing as a result
of a quickly changing environment.

Data Availability

All training set images can be found on the Endless Forams database (endlessforams.org). Code and weights
for the best‐performing machine learning model can be found on GitHub (https://www.github.com/
ahsiang/foram‐classifier). Supporting tables and figures can be found in the supporting information.
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