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Abstract 19 
Controlled environment studies show that arbuscular mycorrhizal fungi (AMF) may 20 

contribute to plant nitrogen (N) uptake, but the role of these near-ubiquitous symbionts in 21 
crop plant N nutrition under natural field conditions remains largely unknown. In a field trial, 22 

we tested the effects of N fertilisation and barley (Hordeum vulgare L.) cultivar identity on the 23 

contribution of AMF to barley N uptake using 15N tracers added to rhizosphere soil 24 
compartments. AMF were shown capable of significantly increasing plant 15N acquisition 25 

from root exclusion zones, and this was influenced by nitrogen addition type, N fertiliser 26 
application rate and barley cultivar identity. Our data demonstrate a previously overlooked 27 

potential route of crop plant N uptake which may be influenced substantially and rapidly in 28 

response to shifting agricultural management practices. 29 

 30 
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Introduction 34 

Nitrogen (N) is usually the most limiting mineral nutrient to plant growth (Agren et al., 2012) 35 

and maintaining modern agricultural production requires frequent and substantial application 36 
of fertiliser to farm soils.  In various forms an estimated 50 MT year -1 fertiliser N is applied to 37 

agricultural land worldwide (Ladha et al., 2016). Assimilation of applied N by crops may be 38 

under 50 % (Ladha et al., 2005, Masclaux-Daubresse et al., 2010); a significant fraction of 39 
this applied N is wasted – lost through processes including volatilisation, microbial 40 

immobilisation, runoff and leaching (Ladha et al., 2016, Cameron et al., 2013). There is 41 
economic and ecological pressure on farmers to optimise the N uptake efficiency of crop 42 

plants (Hawkesford, 2014) and by reducing the reliance on non-renewable inputs, improve 43 

the sustainability of agriculture (Pretty, 2008). This progress will require the integration of 44 
biological and ecological processes into agriculture, and better understanding of soil 45 

microbial communities and their roles in nutrient cycling (Rillig et al., 2016, Pretty, 2018). 46 

As near-ubiquitous symbionts of cereal crops, arbuscular mycorrhizal fungi (AMF) are prime 47 

targets to investigate the role of soil biota in improving agricultural sustainability (Gosling et 48 

al., 2006, Thirkell et al., 2017, Rillig et al., 2019). The majority of land plant species engage 49 
in symbiosis with these fungi, which may aid plants’ mineral nutrient uptake from soils, in 50 

exchange for photosynthetic carbon (C) from their plant hosts (Smith and Read, 2008). The 51 
influence that AMF mycelia may exert over nutrient dynamics in agricultural systems is not 52 

limited to direct effects on plant nutrient acquisition however; the presence of AMF has been 53 

shown to reduce mineral fertiliser leaching (Cavagnaro et al., 2015) and to influence 54 
greenhouse gas emissions (Storer et al., 2018). While the role of AMF in biogeochemical 55 

cycles is undoubtedly complex, of pressing need is to determine the extent to which plants 56 

rely on these symbionts for mineral nutrient acquisition. 57 

It is well established that AMF can contribute to plant N uptake (Ames et al., 1983, Hodge et 58 
al., 2001, Leigh et al., 2009, Thirkell et al., 2016), but the extent to which this takes place, 59 

and whether it is ecologically or agriculturally relevant is unclear (Smith and Smith, 2011a). 60 

This is in part due to relatively little experimental attention. There remains in the literature a 61 
focus on the role of AMF in plant phosphorus (P) uptake (Smith and Smith, 2011a, 62 

Karasawa et al., 2012, Ezawa and Saito, 2018), and consideration of symbiotic N uptake is 63 

often restricted to diazotrophic bacteria while AMF are often overlooked (Garcia et al., 2016). 64 

Improved access to poorly-mobile soil P is, in most instances, the primary benefit of AMF to 65 

their plant hosts (Smith and Read, 2008). The relative immobility of inorganic P (Pi) in soil 66 
means that plant uptake of Pi from the rhizosphere can outpace Pi diffusion from the 67 

surrounding bulk soil and the subsequent P-depletion zones that form around the root are 68 
narrow and sharply defined. By engaging in symbiosis with AMF, with a mycelium spreading 69 

several centimetres beyond the rhizosphere, the plant effectively increases the volume of 70 

soil from which it can acquire nutrients, particularly poorly mobile ions such as Pi (Sanders 71 
and Tinker, 1973, Hodge, 2017). Nitrate (NO3

-) and ammonium (NH4
+), the predominant 72 

forms in which plants and fungi acquire N (Marschner, 2011), are more mobile in soil than 73 
orthophosphate (Tinker and Nye, 2000). Despite this, a zone of N-depletion may still form 74 

around the root (Brackin et al., 2017), in which case AMF may facilitate improved N capture 75 

for their plant hosts. With smaller diameters than plant roots, AMF hyphae may also 76 
penetrate soil micropores more effectively than a plant root, and thereby be present when 77 

inorganic N forms are released through microbial decomposition processes and effectively 78 

scavenge for this released inorganic N (Hodge, 2014). 79 

Results from microcosm studies are conflicting as to the importance of AMF in plant N 80 

uptake  (Hodge and Storer, 2015). While a number of studies have shown no improvement 81 
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of N uptake by AM plants versus non-mycorrhizal counterparts (Cui and Caldwell, 1996a, 82 
Cui and Caldwell, 1996b, Reynolds et al., 2005 Kahkola et al., 2012), it is possible that AMF 83 

make an invisible contribution to nutrient acquisition which cannot easily be identified without 84 
the use of isotope tracing techniques. Mycorrhizal downregulation of plant root phosphate 85 

transporters has been identified in a number of studies (Smith et al., 2003, Smith et al., 86 

2004). In this situation, AMF may be responsible for the majority of a plant’s P acquisition, 87 
but root transporter downregulation may result in reduced plant P uptake compared to non-88 

mycorrhizal control plants (Smith et al., 2003, Smith et al., 2004). Whether a similar 89 
phenomenon occurs in mycorrhizal root N uptake remains unclear. Isotope tracing data 90 

does, however, show that AMF can transfer substantial amount of N to a host plant (Leigh et 91 

al., 2009, Thirkell et al., 2016), while the contribution of AMF to field-grown plant N uptake is 92 

unknown.  93 

AMF are capable of acquiring N from decomposing organic sources (Leigh et al., 2009, 94 
Hodge and Fitter, 2010, Barrett et al., 2014, Thirkell et al., 2016) and even to acquire some 95 

organic N directly from the hyphosphere, notably as amino acids (Hawkins et al., 2000, 96 

Breuninger et al., 2004, Whiteside et al., 2012a, Whiteside et al., 2012b, Tisserant et al., 97 
2012) and perhaps as dipeptides (Belmondo et al., 2014). As in plants however, the vast 98 

majority of N acquired by AMF is thought to be as NO3
- or NH4

+ (Govindarajulu et al., 2005, 99 
Bucking and Kafle, 2015) Greater N uptake as NO3

- might be expected as it is usually more 100 

abundant than NH4
+ because of rapid nitrification (Marschner, 2011). However, because N 101 

acquired as NO3
- must be reduced to NH4

+ before further assimilation, it should be 102 
energetically favourable for AMF to acquire N as NH4

+ (Hodge et al., 2010, Courty et al., 103 

2015). Corroborative data remains equivocal as to AMF ‘preference’ for N types (Johansen 104 
et al., 1993, Hawkins and George, 2001). As NO3

- and NH4
+ are the most commonly-used 105 

forms of fertiliser in Western agriculture, the need to understand mycorrhizal plant 106 

acquisition of these N sources is pressing.  107 

Nutrient trade between partners in AM symbioses shows considerable variation in response 108 

to biotic factors such as plant and fungal genotype (Smith et al., 2004), in addition to abiotic 109 
factors including soil nutrient status (Johnson et al., 2015). Despite substantial experimental 110 

data, predictability of the extent to which plants benefit from AMF colonisation remains poor. 111 
For example, no universally beneficial fungal isolate has been identified and comparatively 112 

few plants are obligate symbionts with AMF. 113 

Despite the widespread distribution of AMF (Smith and Read, 2008, Davison et al., 2015) 114 
and the readiness with which they colonise most staple crop plant roots (Smith and Smith, 115 

2011a), little is understood about the function of AMF in the field (Lekberg and Helgason, 116 
2018, Ryan and Graham, 2018). Most published material on the function of AMF is derived 117 

from studies conducted under controlled conditions, often comparing AM plants with non-AM 118 

controls. While such experiments have provided much valuable data and insight, their 119 
findings cannot directly be extrapolated to the field scale, as the occurrence of non-AM 120 

cereals in most arable soils is unlikely (Smith and Smith, 2011a). Despite disruptive 121 
practices such as tilling and the application of fungicides, there remains a substantial AMF 122 

spore bank (and therefore inoculum potential) in agricultural soils (Sosa-Hernandez et al., 123 

2018) and it is very likely that plants in arable field soil will be colonised by AMF (Smith and 124 
Smith, 2011a). Further research is needed to begin to understand how AMF might affect 125 

crop plant nutrient uptake in situ.  126 

Adding 15N isotope tracers to mesh-walled soil compartments in a field trial, we examined 127 

the role of AMF in the N acquisition by barley (Hordeum vulgare L.) cultivars ‘Meridian’ and 128 

‘Maris Otter’. Isotopic 15N labelling was carried out in plots receiving contrasting N 129 
application rates to test the impact of N availability on nutrient transfer in the symbiosis, 130 
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testing the hypothesis that increased N fertilisation would result in more AMF transfer of N to 131 
host plants. N tracers were added as NH4

+ or NO3
- to investigate the relative uptake and 132 

transfer of different N sources by AMF. 133 

Materials and Methods 134 

Field trial design 135 

Data were gathered from a larger field trial, designed and implemented at Sancton, East 136 
Riding of Yorkshire (co-ordinates 53°51'10.2"N 0°35'29.1"W), by ADAS (Pendeford, 137 

Wolverhampton, UK). The ADAS trial was set up to test how barley yield compares among 6 138 
application rates of ammonium nitrate (NH4NO3) fertiliser (Nitram, CF Fertiliser, Ince, 139 

Cheshire, UK) ranging from 0 – 300 kg ha-1. The soil at the trial site comprises a silty 140 

rendzina, with a significant proportion of chalk fragments (UKSO, 2016). Soil mineral N, 141 
quantified shortly before sowing, was 29.9 kg N Ha-1, of which 28 kg was nitrate-N and 1.9 142 

kg ammonium-N. The field site on which the trial was based is a commercial arable farm, 143 
with barley (Hordeum vulgare L.), oilseed rape (Brassica napus L.) and wheat (Triticum 144 

aestivum L.) grown in a rotation. 145 

The ADAS trial used plots measuring 12 m x 1.5 m, clustered in groups of 6 by N application 146 
rate, with each variety represented once per cluster. Each N application rate was applied to 147 

3 replicate clusters, of 6 varieties, meaning 18 clusters in total, with a combined area of 1944 148 
m2. Experimental clusters of N application rates were separated to each side by buffer zones 149 

6 m wide, and at each end by buffer zones 3 m long (Fig.1). Owing to the logistical 150 

challenges of sampling the entire trial, the experimental work presented here is gathered 151 
from two of the N application rates (60 kg ha-1 (N rate 2 in Fig. 1), and 280 kg ha-1(N rate 5 in 152 

Fig. 1)), and two of the barley cultivars: KWS Meridian (KWS UK Ltd, Thriplow, 153 
Hertfordshire, UK), a 6-row feedstock barley; and Maris Otter (Robin Appel, Waltham Chase, 154 

Hampshire, UK), a 2-row malting barley, giving 4 treatment groups, with 3 replicate plots per 155 
treatment. Meridian and Maris Otter were chosen from the panel of 6 cultivars available in 156 

the trial as they represent contrasting ages of barley varieties, developed in the 1960s and 157 

2000s respectively. Further, Maris Otter is a malting barley, characterised by a low grain 158 
protein content, while Meridian was developed as a feedstock barley, with a higher grain 159 

protein (and therefore N) content. Experimental sampling and isotope labelling were carried 160 
out during the post-anthesis, grain filling period - approximate growth stages 70-80 (Zadoks, 161 

1985). 162 

Intraradical and extraradical AMF quantification 163 
AMF colonisation of both barley varieties was confirmed and then quantified by staining of 164 

roots collected from the trial plots. Roots were collected from between 5 and 15 cm below 165 
the surface. After clearing in 10 % (w/v) KOH for 20 minutes at 70 °C, roots were rinsed in 166 

de-ionised water, acidified in 1 % (v/v) HCl at 25 °C for 10 minutes and then stained in 167 

Trypan Blue at 25 °C for 20 minutes. Roots were then rinsed again in de-ionised water 168 
before being left in a 50 % (v/v) glycerol solution for 24 hours, before being mounted onto 169 

microscope slides to allow quantification of root length colonisation (RLC) using the gridline 170 

intersect method (McGonigle et al., 1990). 171 

Soil samples were collected from between 5 and 15 cm below the soil surface. As AMF 172 

hyphal turnover can be rapid, (Staddon et al., 2003), hyphal extraction took place within 6 173 
hours of collection to minimise loss due to decomposition. Extraradical hyphal quantity in the 174 

plots was determined using an adapted method from Staddon et al. (1999). Briefly, samples 175 
of known mass (5-10 g) were suspended in 500 mL of de-ionised water and agitated with a 176 

magnetic stirrer plate in order to free the hyphae from soil particles. From this, 200 mL was 177 

decanted to a smaller beaker on a magnetic stirrer. Aliquots (10 mL) were removed and 178 
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vacuum filtered through 0.45 µm nylon mesh (Anachem, Bedfordshire, UK) and hyphal 179 

length density (HLD) was quantified using the gridline intersect method (Hodge, 2001). 180 

15N stable isotope labelling 181 
The AMF contribution to barley N uptake was investigated by adding a solution of 15N (as 182 

either (15NH4)2SO4 or K15NO3), into mesh-walled cores, into which AMF hyphae could access 183 

but plant roots could not, or (as controls for diffusion and mass flow of the added N) cores 184 
into which neither AMF hyphae or roots could access. Isotopic 15N was added in the form of 185 

Long Ashton nutrient solution (LAS) (Smith et al., 1983), which can be prepared variously to 186 
provide 15N as 15NH4

+ or 15NO3
- in equimolar concentrations. The LAS was made to the 187 

standard protocols except N being 300% the original concentrations. Each core received 5 188 

mL of LAS, containing 0.683 mg 15N. (Long Ashton nutrient solution protocol is included in 189 

Supplementary Information document 1) 190 

Hyphal access cores were constructed following an adapted method from Johnson et al. 191 
(2001). Lengths of PVC tubing (length 85 mm, internal diameter 13 mm, external diameter 192 

16 mm; internal volume 9.9 cm3) with 2 windows cut in the sides of the lower 2/3 of the tube 193 

so that 50 % of the side area was open, were wrapped in a 20 µm nylon mesh (John Stanier 194 
and Co., Whitefield, Manchester, UK), fixed with Tensol adhesive cement (Bostik Inc., 195 

Wauwatosa, Wisconsin, USA). The open bottom end of each tube was covered with the 196 
same size mesh. Control cores, which allowed diffusion and mass flow of solutes but 197 

prevent hyphal ingrowth, were covered with 0.45 µm nitrocellulose membrane mesh to 198 

prevent root and hyphal ingrowth. Cores were filled with a 1/1 (v/v) mixture of silica sand and 199 
TerraGreen® (calcinated attapulgite clay, Oil-Dri, Cambridgeshire, UK), which had been 200 

sterilised by autoclaving (121 °C for 44 minutes), providing a uniform substrate into which 201 

the 15N solutions could be added. 202 

Each of these cores was then placed inside another, slightly larger core, constructed in the 203 
same manner (length 75 mm internal diameter 18, external diameter 21). These cores were 204 

also covered in a 20 µm nylon mesh. Such a ‘core in a core’ design allows the placement of 205 

zones of defined and uniform size into the soil, to which 15N label solutions could be added. 206 
A small (approx. 1 mm) air gap is made between the external mesh wall of one core and the 207 

internal mesh wall of the other, which should reduce the rapid diffusion of N from the site of 208 
addition, which has been a problem in studies where 15N has been added (Smith and Smith, 209 

2011b). Diffusion and mass flow are unlikely to be prevented entirely, as the pressure of soil 210 

on the sides of the core may push the mesh together so that the two layers of mesh make 211 
contact. However, the system provides a more stable labelling zone than using a single 212 

core, where one mesh layer may be easily damaged (Johnson et al., 2001). 213 

Each of the 12 experimental plots received four cores (1. No AMF Access + 15NH4
+; 2. AMF 214 

Access + 15NH4
+; 3. No AMF Access + 15NO3

-; 4. AMF Access + 15NO3
-), spaced 3 m apart to 215 

avoid contamination of 15N from neighbouring cores (Fig. 2). Placement of cores took place 216 
8 weeks before label addition, to allow hyphal ingrowth from the bulk soil. A piece of tape 217 

was placed over the top of cores to minimise contamination. This tape was removed for 15N 218 

addition and then replaced. 219 

Sample collection and preparation 220 

After 7 days, the nearest plant to each labelling core was cut at ground level and removed, 221 
dried at 70 °C for 48 hours and homogenised in a kitchen blender (Morphy Richards, 222 

Mexborough, South Yorkshire, UK) then in a ball mill (MM400 Ball Mill, Retsch GmbH, Haan, 223 
Germany). Homogenised shoot samples of known mass (3 mg ± 0.5 mg) were used to 224 

quantify 15N and N content, performed by isotope ratio mass spectrometry (IRMS) (PDZ 225 

2020, Sercon Ltd, Crewe, UK). 226 
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Statistical analysis 227 
For all data, statistical analysis was performed using the “R 3.1.0” statistical package, 228 

through the “RStudio” integrated development environment (R foundation for Statistical 229 
Computing, Vienna, Austria). Data were tested for normality using Shapiro-Wilk and 230 

Kolmogorov-Smirnov tests, and Levene’s test was used to confirm homogeneity of variance. 231 

Where these tests suggested data did not match test assumptions, data were square-root or 232 
log-transformed prior to analysis. Data for root length colonisation, hyphal length density, 233 

barley N concentration and biomass were tested by two-way ANOVA, using N addition rate 234 
and barley variety as explanatory variables. As two additional explanatory variables were 235 

added in the trial for 15N uptake (N addition type, ammonium / nitrate; AM treatment, access 236 

/ no access), and the small number of replicates in the ADAS field trial, it was not possible to 237 
test these factors and the N addition rate and barley cultivar at once. As such, data were 238 

split into barley cultivar and N application rate for the 15N data and tested by two-way 239 
ANOVA. Here, 15N enrichment was the response variable, while N type and AMF access 240 

treatment were the explanatory variables. 241 

Results 242 

Shoot acquisition of 15N added to mesh cores was significantly improved by allowing AMF 243 

access into cores, but only when added as 15NO3
-, and only in the High-N plots of Meridian 244 

barley (Fig. 3). T-tests indicate that only in High-N Meridian plots receiving 15NO3
- were 15N 245 

enrichment levels greater in AM access treatment than in no access controls (T2 = 4.48, p = 246 

0.023)(Supplementary Information, Figure 1). Two-way ANOVA showed that in High-N 247 
Meridian, there was a significant effect of N source (F1,8 = 12.73, p = 0.007) and AMF access 248 

to cores (F1,8 = 27.86, p = 0.007). There was also a significant interaction between N source 249 
and AMF access (F1,8 = 14.25, p = 0.005) (Fig. 3). In High-N Meridian with AMF access, the 250 

harvested plants, i.e. those individuals closest to the core to which the isotope label was 251 
added, acquired on average 1.62% of the 15N supplied. Other treatment groups saw no 252 

greater plant uptake of 15N where AMF could access the isotope label than in no-access 253 

controls. Excepting High-N Meridian plots, mean shoot 15N content did not differ among 254 
treatments and controls, indicating similar plant acquisition of N following diffusion/mass flow 255 

out and into the soil, but minimal fungal-mediated uptake. 256 

All plant roots studied were found to be colonised by AMF, indicating a substantial inoculum 257 

potential of the soil at the trial site, although no differences were found between cultivar or 258 

N-rate treatments (p > 0.05). Mean colonisation was 33.7 % (± 3.52 % SEM) across all 259 
treatment groups (Fig. 4). Extraradical mycelium (ERM) hyphal densities, measured in the 260 

zones to which 15N was added, were not different among treatment groups (p > 0.05). Mean 261 
ERM hyphal density across all treatments was 2.49 m g-1 DW soil (± 0.31 m g-1 SEM). In 262 

both cultivars, High-N plots supported ~ 60 % higher shoot N content than Low-N plots (F1,8 263 

= 74.55, p < 0.001), and shoot N concentration was significantly higher in High-N than Low-264 
N plots (F1,8 = 84.28, p < 0.001). Mean shoot N concentration was 9.30 mg g-1 DW in Low-N 265 

blocks of Maris Otter, and 14.75 mg g-1 DW in the High-N. Meridian showed a very similar 266 
trend, as N concentration increased from 9.57 mg g-1 DW in Low-N plots to 14.38 mg g-1 DW 267 

in the High N. Shoot N concentration and content did not differ between the two cultivars 268 

tested. Shoot DW did not differ between the varieties or the N addition rates. 269 

Discussion 270 

The enrichment of 15N in barley shoots suggests a role for AM-facilitated N acquisition by 271 
crop plants, a phenomenon not previously observed in a field setting. Moreover, our data 272 

suggest this route of N uptake is dependent upon barley cultivar identity, the N form added 273 

and the rate at which  N has previously been applied to the plots. AMF have been shown to 274 
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transfer substantial quantities of N to plants in root organ culture experiments (Jin et al., 275 
2005) although caution must be exercised before extrapolating these values to crop plant 276 

systems as they are far-removed from realistic mycorrhizal physiology. Whole-plant 277 
microcosm studies conducted under greenhouse conditions have given mixed results as to 278 

whether AMs may contribute to plant N nutrition (Hodge and Storer, 2015). Our data provide 279 

the first suggestion that AMF may have a role in cereal crop N uptake in the field. Our data 280 
also suggest that short-term changes in N fertilisation regimes can elicit shifts in AM 281 

functioning. 282 

While our data suggest a preference for AMF to transfer N to plants when provided to this 283 

system as NO3
- rather than NH4

+, previous experimental evidence as to inorganic N source 284 

preference by AMF is equivocal (Johansen et al., 1993, Hawkins and George, 2001). Higher 285 
uptake of NO3

- than NH4
+ is contrary to models which suggest NH4

+ acquisition should be 286 

less energetically expensive (Govindarajulu et al., 2005). Hyphal NH4
+ uptake may be 287 

retarded by problems of charge balancing that are perhaps not encountered when N is 288 

acquired as NO3
-. Simultaneous uptake of NO3

- and cations such as K+, Ca2+ or Mg2+ from 289 

the soil may avoid changes in electrochemical potential across exchange surfaces, allowing 290 
N acquisition. Meanwhile, NH4

+ uptake would require proton secretion (or anion uptake), 291 

which may shift soil pH making further NH4
+ uptake more difficult. Nitrate-N comprised over 292 

90 % of the available N in the soil before the trial was planted, a trend which is not unusual, 293 

as NO3
- often dominates inorganic N pools in arable soils (Marschner, 2011). These relative 294 

abundances of N sources may have led to AMF hyphal physiology being acclimated to 295 
nitrate uptake (Garraway and Evans, 1984), meaning suddenly-available NH4

+ could not be 296 

acquired effectively. Although the movement and cycling of nitrate and ammonium are 297 
known to be influenced by soil moisture (Homyak et al., 2017), precipitation data for the site 298 

(Supplementary Information, Table 1) indicates no extraordinary rainfall in the weeks over 299 

which the experiment took place, suggesting this was of minor importance here. 300 

While recovery of only 1.6% of the 15N label seems low, total 15N recovery is likely to have 301 

been greater than the data suggests. Our data are derived from the aboveground tissue of 302 
one plant proximal to the mesh-walled core into which isotopes were added, and it is 303 

probable that the roots of numerous plants would have been in close proximity to the core. 304 
As such, further 15N is likely to have been acquired by multiple plants. Furthermore, greater 305 
15N uptake into plant shoots may have been recorded if the shoot tissue samples had been 306 

taken longer after 15N addition to the mesh-walled cores. 307 

Mesh-walled exclusion cores have been used to quantify AMF-plant nutrient dynamics in a 308 

number of studies (Johnson et al., 2001, Field et al., 2012, Field et al., 2016), and are of 309 
particular utility where the establishment of truly non-mycorrhizal control plants is not 310 

feasible, as in this study. The use of a 0.45 µm nitrocellulose membrane to exclude AMF in-311 

growth to soil compartments is a well-established methodology in the literature (Hodge et al., 312 
2001, Leigh et al., 2009, Thirkell et al., 2016, Storer et al., 2018), although some concerns 313 

arise in relation to the effects of such small pore sizes on solute movement, although in the 314 
case of studies investigating mycorrhizal P uptake, such effects have been determined to be 315 

insignificant (see Zhang et al., 2016, Svenningsen et al., 2018). Our data show increased 316 

plant 15N uptake in plots only where N was supplied as nitrate, to Meridian barley, and in 317 
plots which had received high rates of N fertiliser (Figure 3). Were the movement of N 318 

through these systems determined by the porosity of the membranes used in ‘no access’ 319 
treatments, we might expect 15N enrichment in all plots which received 15NO3

- , which is not 320 

the case. Alternative control treatments to disentangle the effects of AMF on plant nutrition 321 

might be tested further in future studies to determine the relative merits of each method. 322 
Non-mycorrhiza-forming mutants of a number of cereals have been developed (Paszkowski 323 

et al., 2006, Watts-Williams and Cavagnaro, 2015) but to data no mycorrhiza-defective 324 
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barley mutants are available against which data from hyphal exclusion experiments can be 325 
compared. Furthermore, an AMF-colonised plant is morphologically (Gutjahr et al., 2009) 326 

and physiologically (Luginbuehl and Oldroyd, 2017) distinct from one which remains 327 
uncolonised, and comparisons between AM and mycorrhiza-defective mutants may 328 

erroneously conflate these differences and ascribe all contrasts to the lack of mycorrhizas. 329 

Combinations of experimental approaches may be employed here to improve the rigour of 330 
field experimentation, although the logistics of such trials may prove represent a significant 331 

challenge. 332 

Identifying the mechanisms responsible for differential nitrogen transfer from fungus to plant 333 

are beyond the scope of this study, but a number of possibilities may be considered. 334 

Numerous studies have demonstrated shifts in AMF community composition or structure 335 
following N fertilisation, in grassland (Egerton-Warburton and Allen, 2000, Egerton-336 

Warburton et al., 2007, Antoninka et al., 2011, Jiang et al., 2018) and arable systems 337 
(Verbruggen et al., 2010, Avio et al., 2013, Liu et al., 2014, Williams et al., 2017). As AMF 338 

isolates are known to be functionally different (Avio et al., 2006, Mensah et al., 2015) any N-339 

driven shifts in AMF community have the potential to influence the N cycling in the system. 340 
Future experimental testing of the AMF community composition within cereal roots, 341 

combined with isotopic tracer studies may elucidate any link between the structure and 342 

function of AMF communities in agronomic systems.  343 

Conclusions 344 

Our data show that AMF transfer of N to plant hosts is influenced by agricultural 345 
management decisions, here the cultivar of barley and the rate at which inorganic N fertiliser 346 

is supplied. The extent to which symbiotic soil microbes might enhance total nutrient uptake 347 
in the field remains to be tested; despite demonstrating a mechanism by which plants 348 

acquire N, our data cannot indicate whether non-AMF plants in the same field conditions 349 
might show enhanced nutrition. Further experimental investigation is required for a wider 350 

perspective on the influence of these fungi on their crop plant hosts, and therefore their 351 

importance in agricultural systems. 352 
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Figure 1. ADAS experiment established at Sancton, East Riding of Yorkshire, UK. Six barley 371 
(Hordeum vulgare L.) cultivars were planted at the trial site, and received one of 6 N addition 372 

rates, ranging from 0 to 300 kg ha-1. Each combination of barley cultivar and N rate was 373 
replicated 3 times. Each plot has 3 numbers, denoting: plot identity, N addition rate and 374 

barley cultivar, reading top to bottom. Nitrogen addition rate ‘2’ represents 60 kg ha -1 and ‘5’ 375 

is 280 kg ha-1. Plot colours also represent N addition rate. Meridian barley is denoted by ‘4’ 376 
and Maris Otter by ‘5’. Asterisks (*) represent plots from which root samples were taken for 377 

analysis of root length colonisation and to which 15N tracer was added. Reproduced with 378 

permission by Kate Storer, ADAS. 379 

Figure 2. Diagram of 15N addition experiment. PVC cores were inserted adjacent to barley 380 

(Hordeum vulgare L.) plants, four cores per plot, spaced 3 m apart. Cores were organised as 381 
follows A1 – AMF Access + Ammonium (NH4

+); A2 - No AMF Access + Nitrate (NO3
-); A3 - 382 

AMF Access + NO3
-; A4 - No AMF Access + NH4

+ Each core received 0.683 mg 15N added 383 
as Long Ashtons nutrient solution. Plant shoots closest to the core (B1-4) were removed, 384 

dried and homogenised for N analysis. Blue boxes (B1-4) represent shoot samples taken. 385 

Figure 3. Excess 15N content in Maris Otter and Meridian shoots (calculated by subtracting 386 
shoot 15N content in each ‘Access’ unit from the mean of the corresponding values in the ‘No 387 

Access’ units). Shoot 15N enrichment was significantly higher than ‘no access’ controls when 388 
supplied as nitrate to Meridian barley in High-N plots. Circles represent individual data 389 

points, boxplot centre bars represent the median values. High-N + ammonium groups are 390 

represented by white bars, High-N + nitrate by light blue bars, Low-N + ammonium by dark 391 
grey bars and Low-N + nitrate by dark blue bars. Data shown are means ± SEM, n = 3. Bars 392 

sharing the same letter are not significantly different. 393 

Figure 4. Percentage root length colonisation, as determined by Trypan Blue staining, was 394 

not significantly different between treatments. All inspected plants were colonised by 395 
arbuscular mycorrhizal fungi (AMF), confirmed by presence of characteristic structures, 396 

arbuscules and vesicles. Mean colonisation ranged from 28.5 % in Maris Otter in Low N, to 397 

38.0 % in Meridian Low-N, but no groups were significantly different. Circles represent 398 
individual data points. High-N groups are denoted by green bars, Low-N groups are denoted 399 

by yellow bars. “N.S.D.” indicates that there were no significant differences among treatment 400 

means. Data shown are means ± SEM, n = 3. 401 
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