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ABSTRACT
There is now compelling evidence that many arthropods pattern their
segments using a clock-and-wavefront mechanism, analogous to that
operating during vertebrate somitogenesis. In this Review, we
discuss how the arthropod segmentation clock generates a
repeating sequence of pair-rule gene expression, and how this is
converted into a segment-polarity pattern by ‘timing factor’wavefronts
associated with axial extension. We argue that the gene regulatory
network that patterns segments may be relatively conserved,
although the timing of segmentation varies widely, and double-
segment periodicity appears to have evolved at least twice. Finally,
we describe how the repeated evolution of a simultaneous
(Drosophila-like) mode of segmentation within holometabolan
insects can be explained by heterochronic shifts in timing factor
expression plus extensive pre-patterning of the pair-rule genes.

KEY WORDS: Arthropods, Segmentation, Patterning, Pair-rule
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Introduction
Arthropods are an ecdysozoan phylum defined by their segmented
bodies and jointed limbs. True arthropods (euarthropods) comprise
three living clades: Chelicerata (spiders, scorpions and mites),
Myriapoda (centipedes and millipedes), and Pancrustacea
(crustaceans and insects). The closest relatives of arthropods are
onychophorans (velvet worms) and tardigrades (water bears); together
these phyla form the segmented superphylum Panarthropoda
(Fig. 1A).
The great diversity of arthropod species is testament to the

evolutionary potential of a segmented body plan: a modular
organisation of fundamentally similar units arrayed serially along
the anteroposterior (AP) axis (Hannibal and Patel, 2013). Arthropod
segments, and their associated appendages, have diversified
remarkably through adaptation to specific functions, such as
feeding, locomotion or reproduction. In addition, segment number
can vary enormously, from fewer than 20 in insects and
malacostracan crustaceans, to over 100 in certain centipedes and
millipedes, resulting in a wide spectrum of organismal forms
(Brusca et al., 2016). With over a million named species, arthropods
have colonised and exploited almost every environment on Earth,
thanks in no small part to the evolution of segmentation.

Our understanding of how segments are patterned in arthropod
embryos has traditionally been heavily influenced by study of the
fruit fly Drosophila melanogaster. Over the past two decades,
research into sequentially segmenting species has complemented
the well-establishedDrosophilamodel, resulting in the discovery of
an arthropod ‘segmentation clock’, and an outline of conserved and
divergent aspects of arthropod segment patterning networks. In the
light of these findings, recent studies have re-examined
segmentation in Drosophila, uncovering new subtleties and
interpreting their evolutionary significance.

In the sections that follow, we provide a general overview of
arthropod segmentation and review our current understanding of
three key issues: (1) the nature of the arthropod segmentation clock;
(2) how the ‘pair-rule’ genes pattern segments; and (3) the evolution
of Drosophila-style simultaneous segmentation from a sequentially
segmenting ancestral state. We also reflect on the origins of
arthropod segmentation (Box 1) and the control of segment number
(Box 2). As we have chosen to focus on the time window when
segments are actively being patterned, we do not discuss earlier AP
patterning processes, such as axis specification, or later ones, such
as segment morphogenesis.

Overview of arthropod segmentation
Segments and parasegments
In arthropods, morphological segmentation is built upon a more
fundamental developmental unit, the ‘parasegment’ (Martinez-
Arias and Lawrence, 1985). Parasegment boundaries are established
during embryogenesis by ‘segment-polarity’ genes, such as
engrailed and wingless, which are expressed in a series of
persistent stripes along the AP axis. Interestingly, parasegments
are offset slightly from morphological segments: parasegment
boundaries fall at the anterior edge of each engrailed domain and
line up with the middle of each appendage, whereas segment
boundaries fall at the posterior edge of each engrailed domain and
lie in between the appendages (Fig. 1B). Analogous to vertebrate
‘resegmentation’ (each vertebra being formed from portions of two
different somite pairs), this developmental phase shift makes sense
if the role of the parasegments is chiefly to organise the nervous
system and associated appendicular structures, whereas the role of
morphological segmentation is to protect these centres and form
exoskeletal articulations between them (Deutsch, 2004).

Each segment-polarity gene is expressed at a particular position
within a segmental unit, and the overall arrangement is remarkably
conserved across Panarthropoda (Damen, 2002; Janssen and Budd,
2013). A central goal of segmentation research is to understand how
upstream regulatory processes establish this important pattern
within the embryo.

Sequential segmentation and the segment addition zone
Most arthropods pattern their segments sequentially, from head to
tail, coupling the segmentation process to progressive axial
extension (Sander, 1976). They usually specify some number of
anterior segments in the blastoderm, but the majority of the
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segments emerge rhythmically from a posterior ‘segment addition
zone’ (SAZ) after the blastoderm-to-germband transition. The SAZ
retracts posteriorly as new segments are added to the trunk,
generally shrinking in size, until the embryo reaches full germband
extension (Fig. 1C).
‘SAZ’ is now preferred over the traditional term ‘growth zone’,

because it makes no assumption of localised and continuous cell
proliferation in the posterior of the embryo (Janssen et al., 2010).
The material for new segments is generally provided by a
combination of cell division and convergent extension, but – as in
vertebrates – the relative contributions of these cell behaviours to
axial elongation vary widely across species (Auman et al., 2017;
Benton, 2018; Benton et al., 2016; Mito et al., 2011; Nakamoto
et al., 2015; Steventon et al., 2016). Accordingly, although cell
division may in some species be coordinated with segment addition,
segment patterning processes do not appear to be mechanistically
dependent on the cell cycle (Cepeda et al., 2017), aside from in
special cases such as malacostracan crustaceans. This group exhibits
a highly derived mode of segmentation in which patterning occurs
through regimented asymmetrical divisions of rows of posterior
cells (Scholtz, 1992).
Although the shape, size and proportions of the SAZ vary

considerably across species, certain features are conserved.
Segment-polarity stripes emerge at the anterior of the SAZ, and

Wnt is expressed at its posterior (Williams and Nagy, 2017).
Between these limits, we define the ‘anterior SAZ’ as the portion of
the SAZ that contains segments in the process of being patterned,
and the ‘posterior SAZ’ as the portion that contains cells not yet
assigned to any particular prospective segment. These functionally
defined regions correlate with the differential expression of key
developmental transcription factors; for example, Caudal (the
arthropod homologue of the vertebrate Cdx proteins) appears to
be specifically associated with the posterior SAZ (Auman et al.,
2017; Clark and Peel, 2018).

Importantly, SAZ identity is transient and dynamic for any given
cell. With the generation of each new segment, newly patterned
tissue ‘leaves’ the anterior SAZ, which is simultaneously
‘replenished’ by cells from the posterior SAZ. (Whether cells
flow anteriorly out of the SAZ or the SAZ retracts posteriorly along
the embryo depends on one’s choice of reference frame.) Thus, a
cell that starts out within the posterior SAZ, expressing one set of
genes, will at some point end upwithin the anterior SAZ, expressing
a different set of genes, and finally within the segmented germband,
expressing yet another (Fig. 1C). This provides a mechanistic
explanation for the tight coupling between axial elongation and
the segmentation process, because the changing expression
levels of SAZ-associated factors such as Caudal are likely to
trigger coordinated expression changes in segment patterning
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Fig. 1. Overview of arthropod segmentation. (A) Phylogenetic tree of notable arthropod model species (based on Misof et al., 2014; Schwentner et al., 2017).
Red text indicates species known to use pair-rule patterning; the status of Oncopeltus is currently unclear. Branch lengths not to scale. (B) Diagram showing the
relationship between parasegments and segments. Pink represents engrailed expression. A, anterior; P, posterior. (C) Schematic time series of an arthropod
embryo undergoing sequential segmentation. engrailed stripes (pink) emerge sequentially from a retracting segment addition zone (SAZ, blue) as the germband
extends posteriorly. Green dots mark the progress of a specific individual cell that starts in the posterior SAZ (dark blue), transiently forms part of the anterior SAZ
(light blue), and ends up in the segmented germband.
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genes as the SAZ retracts (Clark and Peel, 2018; El-Sherif
et al., 2014).

Segment patterning by a clock-and-wavefront mechanism
Arthropod segmentation is frequently compared to vertebrate
somitogenesis (reviewed by Hubaud and Pourquié, 2014; Oates
et al., 2012). Although segments and somites are not homologous
morphological structures, it is now becoming clear that both
arthropods and vertebrates have converged on a ‘clock-and-
wavefront’ strategy (Cooke and Zeeman, 1976) to pattern their AP
axis. Temporal periodicity is generated by an oscillator (the ‘clock’),
and progressively translated into spatial periodicity by a second
signal (the ‘wavefront’), which travels along an axis and freezes
(or reads out) the phase of the clock.
In vertebrates, the clock consists of cycles of gene expression in

the presomitic mesoderm (PSM), whereas in arthropods it consists
of cycles of gene expression in the posterior ectoderm. In both the
vertebrate anterior PSM and the arthropod anterior SAZ, the
oscillations are slowed by the retraction of posterior signals
associated with axial extension, converting them into a series of
stripes. These stripes then pattern other genes, which determine the
AP polarity of somites (in vertebrates) or segments (in arthropods).
Curiously, the periodicity of the segmentation clock is not fixed

across arthropods. Most groups pattern a single new segment for
each cycle of the clock (as do vertebrates), but some species pattern
two segments in each cycle, meaning that their clocks have a
double-segment (or ‘pair-rule’) periodicity (Chipman et al., 2004;
Sarrazin et al., 2012).

Other modes of segmentation
The sequential mode of segmentation is widespread and almost
certainly ancestral within arthropods. However, across species the
timing of segmentation can vary dramatically relative to other
developmental events.
For example, arthropod embryos differ widely in the number of

segments they pattern at the blastoderm stage, versus afterwards
during germband extension. In insects, this variation is roughly
correlated with a spectrum of ‘germ types’ defined in the pre-
molecular era (Davis and Patel, 2002; Krause, 1939), but for
simplicity and generality, we have chosen to eschew such
terminology in this Review. Instead, we will refer to sequential
segmentation (usually occurring in a germband, under the control of
a segmentation clock) versus simultaneous segmentation (usually
occurring in a blastoderm, downstream of non-periodic spatial
cues). The mechanisms underlying simultaneous segmentation are
discussed in more detail below.
Outside of the insects, many arthropod groups undergo post-

embryonic segmentation, i.e. delay the development of a portion of
the AP axis until after hatching. In crustaceans with naupliar larvae,
for example, only the head segments are patterned in the embryo,
and trunk segments develop sequentially from a SAZ-like region
after the larva has begun feeding (Anderson, 1973). Other, less
extreme, examples are found within myriapods: these pattern the
head and the first trunk segments in the embryo, but may add one or
more trunk segments after each moult (Blower, 1985).
Our focus here is on the segmentation of the trunk (i.e. the axial

patterning of the gnathal, thoracic and abdominal segments), but
note that there are other parts of the arthropod body that are
segmented by different mechanisms, such as the anterior head
(Posnien et al., 2010) or the jointed appendages (Angelini and
Kaufman, 2005a). Within the trunk itself, the mechanisms we
describe specifically control ectodermal segmentation; mesodermal

segmentation occurs later, apparently directed by inductive signals
from the segmented ectoderm (Azpiazu et al., 1996; Green and
Akam, 2013; Hannibal et al., 2012). Finally, there is evidence that
dorsal segmentation in millipedes is decoupled from ventral
segmentation, which later leads to segment fusions (Janssen,
2011; Janssen et al., 2004).

Segment patterning genes
Most of the arthropod segmentation genes we know about were
originally identified from a genetic screen in Drosophila (Nüsslein-
Volhard and Wieschaus, 1980). Drosophila represents an extreme
example of simultaneous segmentation, patterning all but its most
terminal segments in the blastoderm. It has taught us a lot about how
segmentation genes regulate one another’s expression (Akam,
1987; Nasiadka et al., 2002), but studies in other arthropods were
(and are) necessary to reveal how these networks relate to more
ancestral modes of segmentation (Peel et al., 2005).

InDrosophila, as in other arthropods, the segment-polarity genes
are patterned by the pair-rule genes, which code for various
transcription factors. In Drosophila, the pair-rule genes are
expressed in stripes in the blastoderm, but in sequentially
segmenting species they are also expressed in the SAZ (Patel
et al., 1994). In general, the pair-rule genes that turn on earliest in
Drosophila (‘primary’ pair-rule genes) are expressed in the
posterior SAZ in sequentially segmenting species, and may

Box 1. The evolutionary origins of arthropod
segmentation
The major segmented phyla – arthropods, annelids and chordates – are
evolutionarily distant and separated by many unsegmented groups.
Although losses of segmentation are possible in evolution (e.g. from
spoon worms and peanut worms within annelids), we are sceptical about
the existence of a segmented urbilaterian ancestor that could have given
rise to all three phyla (Couso, 2009). Instead, segmentation appears to
have evolved repeatedly during animal evolution, involving various
developmental mechanisms (Graham et al., 2014).
Someof the developmental commonalities between different segmented

phyla may reflect bilaterian homologies that predate segmentation itself,
such as elongation of the body from a posterior zone (Jacobs et al., 2005;
Martin and Kimelman, 2009). Other similarities may reflect the convergent
adoption of generic patterning strategies, such as molecular oscillators
(Richmond and Oates, 2012). Finally, certain similarities may reflect the
parallel redeployment of ancient molecular mechanisms (Chipman, 2010),
and therefore require both homology and convergence to fully explain. For
example, segment boundary formation in some, but not all, annelids shows
striking similarities to parasegment boundary formation in arthropods (Dray
et al., 2010; Prud’homme et al., 2003; Seaver et al., 2001; Seaver and
Kaneshige, 2006). Probably, this boundary specification mechanism
evolved before trunk segmentation, possibly in the context of patterning
the head and anterior nervous system (Vellutini and Hejnol, 2016).
The evolutionary success of segmented phyla emphasises the

adaptive value of diversified metameric structures, but it does not
explain why segmentation evolved in the first place. One long-standing
hypothesis stresses the advantages of a segmented body for generating
coordinated waves of muscular activity to drive locomotion (Clark, 1964).
Given that most of the earliest arising segmented lineages have many
similar segments, this seems a likely explanation for the initial origins of
serial repetition along the body axis, which was likely the forerunner for
metameric segmentation. Under this scenario, repetition would be
expected first in the nervous system and body wall musculature.
Interestingly, onychophorans have distinct mesodermal somites, and
show clear parasegmental boundaries in the limbs and nervous system
(Eriksson et al., 2009), but show no obvious segmentation of the body
wall ectoderm.
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oscillate, whereas those that turn on later (‘secondary’ pair-rule
genes) are expressed in the anterior SAZ. The periodicity of pair-
rule gene expression can be segmental or double-segmental
depending on the species (in Drosophila it is double-segmental,
hence the term ‘pair-rule’), but the genes are always referred to as
the ‘pair-rule genes’ regardless. There has been some confusion
over the years as to which Drosophila pair-rule genes should be
classed as primary and which as secondary or even tertiary.
However, the most recent analysis (Schroeder et al., 2011), which
classifies only paired ( prd) and sloppy paired (slp) as secondary,
and all of hairy, even skipped (eve), runt, odd skipped (odd) and
fushi tarazu ( ftz) as primary, meshes well with the comparative
evidence.
In Drosophila, the primary pair-rule genes are patterned by the

‘gap’ genes, which code for another set of transcription factors. In
Drosophila, these genes are expressed in broad, partially
overlapping domains along the length of the blastoderm, but in
sequentially segmenting species some portion of this pattern is
generated over time, in the SAZ (Box 2). Gap genes in sequentially
segmenting species do not seem to be important for directing pair-
rule gene expression. They do, however, appear to play a relatively
conserved role in patterning the Hox genes, which regulate segment
identity (Hughes and Kaufman, 2002a; Marques-Souza et al., 2008;
Martin et al., 2016).

Nature of the arthropod segmentation clock
Oscillating gene expression in the SAZ
Some segmentation genes exhibit extremely variable expression
patterns in the posterior SAZs of fixed embryos, suggesting that
they continually turn on and off over time. In the beetle Tribolium,
split-embryo experiments have confirmed that this variability
results from a temporally dynamic ‘segmentation clock’ within
individuals rather than spatially variable expression between
individuals (Sarrazin et al., 2012). Expression dynamicity has also
been demonstrated in Tribolium by comparing the average patterns
of finely staged cohorts of embryos, by visualising discrepancies
between the transcript and protein domains of a given gene, and by
gaining an understanding of cell dynamics within the SAZ via live
imaging (Benton, 2018; El-Sherif et al., 2012; Sarrazin et al., 2012).
In other species, gene expression dynamics within the SAZ have
rarely been studied in detail. However, convincing ‘pseudo time-
series’ assembled from carefully staged Strigamia (centipede) and
Parasteatoda (spider) embryos imply that oscillatory dynamics are
widespread (Brena and Akam, 2013; Schönauer et al., 2016).
Candidate gene approaches in species including Tribolium,

Strigamia, the millipede Glomeris, and a second spider,
Cupiennius, indicate that oscillating SAZ genes include the
primary pair-rule genes hairy, eve, runt and odd (Choe et al.,
2006; Damen et al., 2005; Green and Akam, 2013; Janssen et al.,
2011). [The segmentation role of ftz is less widely conserved (Pick,
2016).] In addition, Notch signalling components appear to oscillate
in many clades (see below), as do prd and hedgehog in spiders
(Davis et al., 2005; Schoppmeier and Damen, 2005a; Schwager,
2008). However, as there has not yet been an exhaustive screen for
cyclic expression, we do not know how many other genes may have
been missed.
Measurements from Tribolium (El-Sherif et al., 2012; Nakamoto

et al., 2015; Sarrazin et al., 2012) and Strigamia (Brena and Akam,
2012) suggest an oscillation period in these species of ∼3 h at
18-20°C (or equivalently ∼6 h at 13°C or ∼1.5 h at 30°C, as
segmentation speed scales with developmental rate). Adjusted for
temperature, these numbers are comparable to the fastest

segmenting vertebrates, such as zebrafish or snakes (Gomez et al.,
2008). Interestingly, the rate of segment addition is not constant
throughout development (Brena and Akam, 2013; Nakamoto et al.,
2015). This implies that there is stage-specific variation in the
oscillation period, the axial elongation rate, and/or the dynamics of
tissue maturation in the SAZ (Schröter et al., 2012; Soroldoni et al.,
2014).

At present, the mechanistic basis for the oscillations is not well
understood. Nonetheless, it is useful to think about contributing
regulatory processes using a three-tier framework (Oates et al.,
2012): (1) gene expression dynamics within cells; (2) signalling
interactions between cells; and (3) the changing regulatory context
along the SAZ.

Gene expression dynamics within cells
In vertebrates such as zebrafish, (auto)repressive interactions between
Her/Hes transcription factors (homologues of theDrosophila pair-rule
gene hairy) are thought to form the core of the segmentation clock,
driving oscillations by time-delayed negative feedback (Lewis, 2003;
Schröter et al., 2012). Analogously, it is possible that the arthropod
segmentation clock is driven by an intracellular negative-feedback
loop formed by some or all of the oscillating pair-rule genes.

Themain evidence for this is that knocking down primary pair-rule
genes can block segmentation and truncate the body axis, as has been
found in Tribolium (Choe et al., 2006), the silkmoth Bombyx (Nakao,
2015), a second beetle speciesDermestes (Xiang et al., 2017) and the
hemipteran bug Oncopeltus (Auman and Chipman, 2018; Liu and
Kaufman, 2005). It can also cause the expression of other primary
pair-rule genes to become aperiodic (Choe et al., 2006; Nakao,
2015), suggesting that at least some of the oscillations are mutually
interdependent. This observation distinguishes these knockdowns
from those of downstream patterning genes, which may also yield
asegmental phenotypes but do not perturb expression dynamics in
the SAZ (Choe and Brown, 2007; Farzana and Brown, 2008).

The topology for a pair-rule gene segmentation clock is not clear.
An early RNA interference (RNAi) study in Tribolium found that
eve, runt or odd knockdown resulted in truncation, whereas hairy
knockdown resulted only in head defects (Choe et al., 2006). This
led to the hypothesis that eve, runt and odd are linked into a three-
gene ring circuit, and that even though hairy oscillates in the SAZ, it
is not required for segmentation. Specifically, it was proposed that
Eve activates runt, Runt activates odd, and Odd in turn represses
eve, returning the sequence to the beginning (Fig. 2A). However,
more recent evidence has raised issues with this proposal.

First, whether hairy is involved in the Tribolium segmentation
clock or not remains unclear. A later study found that hairy
knockdown resulted in a pair-rule phenotype for gnathal and
thoracic segments (Aranda et al., 2008), and the iBeetle screen
(Dönitz et al., 2015) additionally recovered posterior truncations.
hairy also has a paralogue, deadpan, expressed with similar
dynamics in the SAZ (Aranda et al., 2008), and so its role might be
masked by functional redundancy. Finally, hairy knockdown was
recently found to produce truncations in Dermestes (Xiang et al.,
2017), and hairy is also known to regulate segment patterning in the
cockroach Periplaneta (Pueyo et al., 2008), the parasitic wasp
Nasonia (Rosenberg et al., 2014), and of course Drosophila,
indicating that a role in segmentation is widely conserved.

Second, whether eve and odd are part of the primary oscillator is
also not certain. eve expression may be necessary for establishing
and/or maintaining the SAZ (Cruz et al., 2010; Liu and Kaufman,
2005; Mito et al., 2007; Xiang et al., 2017), and therefore its severe
truncation phenotype may be independent of its potential role in the
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segmentation clock. odd, on the other hand, has been found to cause
pair-rule and/or segment polarity defects rather than truncations in
Dermestes (Xiang et al., 2017) and Oncopeltus (Auman and
Chipman, 2018; Reding et al., 2019), although the interpretation of
these phenotypes is complicated by the existence of odd paralogues,
such as sob. Notably, neither eve nor odd shows dynamic expression
in the posterior SAZ of Oncopeltus (Auman and Chipman, 2018;
Liu and Kaufman, 2005), indicating that periodicity is likely to be
generated by other genes in this species.

Finally, the specific regulatory interactions proposed for the
circuit seem unlikely. In holometabolous insects (and also
Strigamia), eve, runt and odd are expressed sequentially within
each pattern repeat (Choe et al., 2006; Clark, 2017; Green andAkam,
2013; Nakao, 2015; Rosenberg et al., 2014). In both Tribolium and
Bombyx, Eve is necessary for runt expression, and Runt is necessary
for odd expression (Choe et al., 2006; Nakao, 2015). However, it is
probably not the case that Eve directly activates runt and Runt
directly activates odd, as was proposed for Tribolium. Instead,
genetic evidence from Bombyx and Drosophila (and wild-type
expression dynamics from Tribolium) suggest something closer to a
‘repressilator’ scenario (Elowitz and Leibler, 2000), where each gene
in the sequence represses the one before it (Fig. 2A).

In summary, although it is likely that cross-regulation plays a
considerable role in shaping dynamic pair-rule gene expression, it is
not yet clear whether the oscillating genes are linked into a single
circuit, whether this circuit is sufficient to generate oscillations, what
the topology of this circuit is likely to be, nor indeed the extent to
which it may have diverged in different lineages (Krol et al., 2011).

Signalling interactions between cells
Regardless of whether the pair-rule gene network is capable of
producing intracellular oscillations autonomously, the segmentation
clock must also involve intercellular communication to keep
oscillations synchronised across the SAZ. Notch signalling,
known to synchronise oscillations during vertebrate somitogenesis
(Liao and Oates, 2017), is the key candidate for this role. Indeed,
Notch signalling components appear to oscillate along with the pair-
rule genes in chelicerates (Schoppmeier and Damen, 2005b;
Stollewerk et al., 2003), myriapods (Chipman and Akam, 2008;
Kadner and Stollewerk, 2004), crustaceans (Eriksson et al., 2013),
and some insects (Pueyo et al., 2008), suggesting that arthropod
segmentation involved Notch ancestrally.

Experiments in Cupiennius, Periplaneta, and the branchiopod
crustacean Daphnia have found that segment boundaries and the
expression of segmentation genes become disorganised when Notch
signalling is perturbed (Eriksson et al., 2013; Pueyo et al., 2008;
Schoppmeier and Damen, 2005b; Stollewerk et al., 2003).
Inhibiting Notch signalling also blocks segmentation (but not
axial elongation) in anostracan crustaceans (Williams et al., 2012).
These findings indicate that Notch may play an explicit role in
generating and/or coordinating pair-rule gene oscillations, perhaps
via regulation of hairy (Fig. 2B).

However, the pleiotropy of the Notch pathway means that
characterising this potential segmentation function may be difficult.
During development, Notch signalling also regulates cell
proliferation (Go et al., 1998), SAZ establishment (Chesebro
et al., 2013; Oda et al., 2007; Schönauer et al., 2016), and fertility
(Xu and Gridley, 2012). Accordingly, strong Notch perturbations in
sequentially segmenting arthropods often result in uninterpretable
axial truncations, or simply a failure to lay many eggs (Kux et al.,
2013; Mito et al., 2011; Stahi and Chipman, 2016).
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(right). In Tribolium, the relative expression patterns of Eve protein, runt
transcript and odd transcript resemble the predicted expression of model
2, rather than model 1 (see supporting information from Choe et al., 2006).
Expression predictions assume Boolean regulatory logic and equal time
delays for protein synthesis and protein decay (Clark, 2017). (B) Notch
signalling might indirectly synchronise intracellular oscillations of eve, runt
and odd across cells, by acting through hairy. This figure shows a
hypothetical regulatory network, which synthesises genetic interactions
documented from various different arthropod species (Clark, 2017;
Eriksson et al., 2013; Nakao, 2015; Pueyo et al., 2008; Stollewerk et al.,
2003). The left half of the network (‘oscillator 1’) would synchronise
oscillations of hairy across neighbouring cells, by coupling hairy
expression to Notch signalling (1). The oscillations of hairy would also
influence the phase of the genetic ring oscillator that forms the right hand
of the network (‘oscillator 2’), by repressing some of its component genes
(2). Cross-regulation between these components (3) would coordinate
their individual expression patterns, enabling fine-scale regulation of
downstream genes. (C) Genes such as Wnt, caudal, Dichaete and opa
have distinct expression patterns within the SAZ, which correlate with
different phases of segment patterning. A, anterior; P, posterior. (Based
on Tribolium data from Clark and Peel, 2018.) Note: Wnt and opa have
segment-polarity patterns in the segmented germband. caudal and/or
Dichaete stripes (not shown) are seen in the anterior SAZ of some
species, indicating that the clock feeds back on their expression (Chipman
et al., 2004; Clark and Peel, 2018).
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Surprisingly, in the insects Gryllus, Oncopeltus and Tribolium,
the Notch ligand Delta is not expressed in the posterior SAZ
(Aranda et al., 2008; Auman et al., 2017; Kainz et al., 2011). Either
Notch signalling acts through a different ligand in these species, or it
does not directly regulate the clock. Delta also does not appear to
play a segmentation role in the honeybee Apis (a simultaneously
segmenting species), even though it is expressed in stripes at an
appropriate time (Wilson et al., 2010).
If a role for Notch signalling in sequential segmentation has

indeed been lost in some insect lineages, it is not clear what
mechanism(s) might synchronise cells instead. One possibility is the
Toll genes, which are thought to influence intercellular affinity and
are expressed dynamically in the SAZ across arthropods (Benton
et al., 2016; Paré et al., 2014). However, they seem only to affect
morphogenetic processes downstream of segment establishment,
rather than segment patterning. Another possibility that has been
raised is intercellular communication via Tenascin major (Ten-m)
(Hunding and Baumgartner, 2017), a transmembrane protein that
was erroneously identified as aDrosophila pair-rule factor owing to
an opa mutation present on the balancer chromosome of its stock
(Zheng et al., 2011). However, mutation/knockdown of Ten-m does
not affect segmentation in either Drosophila or Tribolium (Choe
et al., 2006; Zheng et al., 2011), and Ten-m is expressed periodically
only after segment-polarity stripes have formed (Baumgartner et al.,
1994; Jin et al., 2019).

The changing regulatory context along the SAZ
The segmentation clock oscillates in the posterior SAZ and its phase
is read out in the anterior SAZ. Therefore, the ‘wavefront’ can be
loosely identified with the boundary between these regions, which
retracts posteriorly across the embryo over time. The posterior SAZ
and the anterior SAZ are apparently defined by the differential
expression of specific regulatory factors (‘timing factors’ in our
terminology), which are expressed dynamically over the course of
axial elongation, determining where and when segment patterning
takes place (Clark and Peel, 2018). Understanding the mechanistic
basis for the wavefront therefore entails characterising (1) the
identities of these factors, (2) how they regulate segmentation gene
expression, and (3) how they themselves are regulated in the
embryo.
Many genes are specifically expressed in subregions of the SAZ

(Oberhofer et al., 2014). However, most studies to date have focused
onWnt and caudal, supplemented recently byDichaete/Sox21b and
odd-paired (opa)/zic. The expression patterns of these genes are
relatively consistent across species (Fig. 2C). Wnt is expressed in a
small zone around the proctodaeum (Janssen et al., 2010). (We note
that this population of cells appears to be distinct from the SAZ
proper, and may not contribute to segmental tissue.) In Tribolium,
two of its receptors are expressed ubiquitously in the embryo, and
one is expressed in the anterior SAZ and in segmental stripes
(Beermann et al., 2011). caudal is expressed in the posterior SAZ
(Copf et al., 2004; Schulz et al., 1998), and Dichaete is expressed in
a similar zone to caudal, but does not overlap with posterior Wnt
(Clark and Peel, 2018; Janssen et al., 2018; Paese et al., 2018). In
contrast, opa is expressed in the anterior SAZ, i.e. anterior to or
slightly overlapping caudal and Dichaete, and also in segmental
stripes (Clark and Peel, 2018; Green and Akam, 2013; Janssen et al.,
2011). Across arthropods, Wnt, caudal and Dichaete are required to
establish and maintain the SAZ (Angelini and Kaufman, 2005b;
Bolognesi et al., 2008; Chesebro et al., 2013; Copf et al., 2004;
McGregor et al., 2008; Miyawaki et al., 2004; Nakao, 2018; Paese
et al., 2018; Schönauer et al., 2016; Shinmyo et al., 2005). In

Tribolium, opa is required for segmentation, following earlier roles in
blastoderm formation and head specification (Clark and Peel, 2018).

Caudal and Dichaete are strong candidates for activating the
segmentation clock, as their expression domains roughly correlate
with the extent of its oscillations, and they positively regulate pair-
rule gene expression in Drosophila. Caudal has also been shown to
be necessary for eve and runt expression in Parasteatoda
(Schönauer et al., 2016). Opa, on the other hand, may be
important for reading out the phase of the clock, as it activates
segment polarity genes and regulates late pair-rule gene expression
in Drosophila (Clark and Akam, 2016). Given that all three are
transcription factors, they might regulate segmentation by activating
or repressing specific genes, modulating the regulatory effects of
other transcription factors, or switching expression control between
different enhancers. However, the severity of their knockdown
phenotypes in sequentially segmenting species means that
uncovering the details may require precisely targeted functional
perturbations, and probably transgenic reporters.

In sequentially segmenting species, the relative expression patterns
of different timing factors remain consistent across development,
suggesting that they regulate each other’s expression. Wnt is thought
to act as a posterior organiser (Chesebro et al., 2013; Oberhofer et al.,
2014), and we have hypothesised that regulatory interactions between
caudal, Dichaete and opa drive their sequential expression over time
(Clark and Peel, 2018). In addition, caudal has been found to be
activated by Wnt in diverse arthropods (Beermann et al., 2011;
Chesebro et al., 2013; McGregor et al., 2008; Miyawaki et al., 2004),
whereas Opa, as a Zic factor, might physically bind the Wnt effector
TCF and modulate its effects on downstream genes (Murgan et al.,
2015; Pourebrahim et al., 2011). Therefore, although details are
currently sketchy, it seems probable that the timing factors are
integrated into a regulatory network that ensures the maintenance of
the SAZ over time, and also governs its gradual posterior retraction.
Given the numerous parallels between posterior development in
arthropods and posterior development in other bilaterian phyla, a
similar network might have ancestrally coordinated cell
differentiation during axial extension, and only later been exploited
to regulate segmentation.

In the basic clock-and-wavefront model, the clock stops abruptly
when it is hit by the wavefront. However, in both arthropod
segmentation and vertebrate somitogenesis, segmentation clock
oscillations may resolve into narrowing travelling waves before they
stabilise, indicating that the clock winds down relatively gradually.
The way in which the oscillation period varies along the SAZ is
described phenomenologically by a ‘frequency profile’ (Morelli
et al., 2009), and this can vary over developmental time, as well as
between species. Although the shape of the frequency profile is not
predicted to affect segmentation rate or segment size, models
suggest that a graded profile might make patterning more robust
(El-Sherif et al., 2014; Vroomans et al., 2018).

Wnt signalling perturbations distort the size and proportions of the
SAZ (as judged by the expression of caudal), and cause equivalent
distortions to the frequency profile (as judged by the expression of
eve) (El-Sherif et al., 2014). This indicates thatWnt signalling affects
the dynamics of the segmentation clock, and that its effects might be
mediated by SAZ timing factors. However, the mechanism for
modulating the oscillation period is not clear. One hypothesis
proposes that the clock is quantitatively regulated by a morphogen
gradient of Caudal (El-Sherif et al., 2014; Zhu et al., 2017), but the
effects of specific timing factors are yet to be disentangled and
assessed. Currently, it is unknown whether the period of the clock is
indeed explicitly determined by the concentrations of particular
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timing factors (i.e. given control of these levels one could produce
sustained oscillations of arbitrary period), or whether the slowing of
the segmentation clock is an inherently transient phenomenon (Verd
et al., 2014) inseparable from its temporal transition from an
oscillating to a non-oscillating state.

Segment patterning by the pair-rule network
Reading out the pattern
In the anterior SAZ, each segmentation clock cycle resolves into an
anterior-to-posterior array of partially overlapping stripes of pair-rule
gene expression. Because the pair-rule genes are expressed in a strict
sequence across a clock repeat (e.g. first eve, then runt, then odd),
they convey unambiguous phase information to the cells they are
expressed in, which provides significant patterning benefits over a
single-gene oscillator (Fig. 3A). The internal organisation of a
parasegment consists of at least three distinct segment-polarity states
(Jaynes and Fujioka, 2004; Meinhardt, 1982). Therefore, each pair-

rule gene expression repeat must specify at least three output domains
in species with single-segment periodicity, and at least six output
domains in species with double-segment periodicity (Fig. 3B).

In Drosophila, the relative expression patterns of pair-rule genes
and segment-polarity genes have been characterised in a variety of
genetic backgrounds, allowing us to infer the regulatory interactions
involved in specifying and resolving the segment pattern (reviewed
by Clark and Akam, 2016; Jaynes and Fujioka, 2004). Equivalent
data is generally lacking from other arthropod species. However, so
far as we can tell from what does exist (mainly single or double
stains in wild-type embryos) the overall process appears to be fairly
conserved, at least in its broad outline (Auman and Chipman, 2018;
Damen et al., 2005; Green and Akam, 2013; Xiang et al., 2017).

First, the primary pair-rule genes pattern the secondary pair-rule
genes. Across arthropods, prd and slp are expressed in a conserved,
partially overlapping arrangement, which aligns with prospective
parasegment boundaries (Choe and Brown, 2007; Green and Akam,
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a three-gene oscillator. With a single-gene oscillator, different cell fates are determined by different expression levels of the oscillator. The output is sensitive to
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gene expression comprises a positional code, which specifies narrow stripes of segment-polarity gene expression. The regulatory logic (top) and resulting
expression pattern (bottom) of Drosophila engrailed (en) is shown as an example. Note that the input pattern has double-segment periodicity, and
odd-numbered and even-numbered en stripes are regulated differently. (Based on Jaynes and Fujioka, 2004.)
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2013). In both Drosophila and other arthropods, prd turns on earlier
than slp, at a time when upstream pair-rule gene expression is still
dynamic. In Drosophila, both genes are patterned by Eve, and we
have proposed that the dynamic nature of the Eve stripes (see below)
helps differentially position the two domains (Clark, 2017) (Fig. 3C).
Next, the segment-polarity genes are activated. Each segment-

polarity gene is activated or repressed by particular pair-rule factors,
which combinatorially define where it is expressed within the
pattern repeat (Bouchard et al., 2000; Choe and Brown, 2009;
DiNardo and O’Farrell, 1987). In species with double-segment
periodicity, odd-numbered and even-numbered segment-polarity
stripes may be driven by different regulatory logic (Fig. 3D).
At the same time, some of the pair-rule genes also start being

expressed in segment-polarity patterns. In pair-rule species, this
involves the splitting of existing stripes or the intercalation of new
ones. The new patterns are explained by a new network of regulatory
interactions between the pair-rule genes (Clark and Akam, 2016). In
contrast to the earlier network, which drives dynamic expression,
this later one behaves like a multistable switch, ‘locking in’ specific
segment-polarity fates (Clark, 2017). Interestingly, different
primary pair-rule genes undergo frequency doubling in each of
Drosophila, Bombyx, Tribolium and Nasonia (Choe et al., 2006;
Clark and Akam, 2016; Nakao, 2015; Rosenberg et al., 2014),
contrasting with the conserved expression of the segment-polarity
and secondary pair-rule genes.
The resulting segmental patterns go on to regulate morphological

segmentation. Note that the pair-rule genes are therefore pleiotropic:
they are involved in generating the segment pattern, but some
additionally play roles in maintaining segment polarity, and they also
regulate the development of other structures, such as the nervous
system. In some cases, these functions have become distributed
between multiple paralogues, e.g. prd/gooseberry/gooseberry-neuro
in Drosophila (He and Noll, 2013), or the three copies of eve in
Strigamia (Green and Akam, 2013). Across species, there can be
considerable variation in both the number of paralogues present in the
genome and the degree of subfunctionalisation between them,
complicating the interpretation of genetic perturbations.

The evolution of pair-rule patterning
In several insect species, and also the centipede Strigamia
(Chipman et al., 2004), segmentation gene expression undergoes
a striking transition from double-segment periodicity to single-
segment periodicity as the segment pattern is resolved. However,
there is no indication of an initial double-segment periodicity during
sequential segmentation in the spiders Cupiennius (Davis et al.,
2005; Schoppmeier and Damen, 2005a) and Parasteatoda
(Schwager, 2008), the millipede Glomeris (Janssen et al., 2011),
or the crustacean Daphnia (Eriksson et al., 2013) (Fig. 1A). This
suggests that the ancestral arthropod segmentation clock had a
single-segment periodicity, and that pair-rule patterning in insects
and centipedes originated independently.
Beyond this, it is not clear exactly when or how many times pair-

rule patterning evolved in either of the centipede or insect lineages.
eve is expressed segmentally rather than in pair-rule stripes in a
different centipede species, Lithobius (Hughes and Kaufman,
2002b), which could indicate that pair-rule patterning evolved
relatively recently within the centipede clade, possibly correlating
with the origin of longer-bodied forms. However, the dynamics of
the Lithobius segmentation clock will need be investigated to rule
out a transient or cryptic double-segment periodicity.
In insects, most of the available data come from holometabolan or

orthopteran species, as well as the cockroach Periplaneta and

the hemipteran bug Oncopeltus (Fig. 1A). Holometabolans (Binner
and Sander, 1997; Nakao, 2010; Patel et al., 1994; Rosenberg et al.,
2014) and orthopterans (Davis et al., 2001; Mito et al., 2007) both
show obvious transitions from double-segment to single-segment
periodicity, but the mapping between the pair-rule pattern and the
segmental pattern is different in the two groups, suggesting that their
respective pair-rule mechanisms might have evolved independently.
Consistent with this possibility, gene expression in Periplaneta
(more closely related to orthopterans than to holometabolans)
appears to be single-segmental (Pueyo et al., 2008), although, as
with Lithobius, the dynamics of its segmentation clock have not
been explicitly investigated. Finally, Oncopeltus is a rather strange
case: based on the expression and function of eve, it appears to lack
pair-rule patterning, but pair-rule expression and/or function of
certain other genes hints at an underlying double-segment
periodicity (Auman and Chipman, 2018; Benton et al., 2016;
Erezyilmaz et al., 2009; Liu and Kaufman, 2005; Reding et al.,
2019).

Thus, although the evidence from some of these species is
ambiguous, the current picture suggests that pair-rule patterning
may have evolved within crown-group insects, possibly multiple
times. This is puzzling, because the specialised and relatively
invariant body plan of insects presents a morphological constraint
that is hard to reconcile with a saltational doubling of segmentation
rate. [Instead, it is much easier to imagine pair-rule patterning
evolving in remipedes, which are thought to be the sister group of
hexapods (Schwentner et al., 2017), and have homonomous,
centipede-like bodies.] How was the evolution of double-segment
periodicity coordinated with compensatory changes to Hox
dynamics and the duration of axial extension, in order to keep
segment number (Box 2) and segment identity constant? Given that
Strigamia seems to switch to a single-segment periodicity when
adding its most posterior segments (Brena and Akam, 2013), and
that pair-rule patterns are seen during the anterior patterning of
otherwise segmental species (Dearden et al., 2002; Janssen et al.,
2012), one possibility is that pair-rule patterning was introduced
gradually along the AP axis, allowing other developmental
parameters the chance to adapt.

As pair-rule patterning requires half the number of clock cycles to
generate a given number of segment-polarity stripes, its evolution
may have been driven by selection for faster development (in
holometabolans) or a longer body (in centipedes). However, it is
currently not obvious how the ancestral segment-patterning
mechanism was modified to become pair-rule. Segmental
frequency could have been doubled by changing the ‘readout’ of
a conserved clock, i.e. by evolving new enhancers to drive
additional segment-polarity stripes in between the originals, or
altering the control logic of existing enhancers to drive a pair of
stripes instead of just one. Alternatively, the clock itself could
have been modified, e.g. by recruiting new genes into the original
cyclic repeat and thereby expanding its patterning potential. To
reconstruct the specific regulatory changes that occurred, it will be
informative to find out how the gene expression and enhancer
logic of pair-rule species compares with their closest segmental
relatives.

The evolution of simultaneous segmentation
Reconciling sequential and simultaneous segmentation
A segmentation clock is one strategy for generating periodicity, but
another is simply to regulate each stripe individually, exploiting
whatever positional information is locally available (François et al.,
2007; Salazar-Ciudad et al., 2001; Vroomans et al., 2016). This
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latter method is used in the Drosophila blastoderm, where over 20
‘stripe-specific elements’ (SSEs) regulate the expression of the five
primary pair-rule genes (Schroeder et al., 2011). These elements
receive spatial information from gap factors, and each drives
expression at a different AP position (or pair of positions) along
the blastoderm, contributing just one or two stripes to a gene’s
overall 7-stripe pattern. Sepsid flies (which diverged from
drosophilids about 100 million years ago) are also known to use
this kind of element (Hare et al., 2008), and it is likely that
similarly ad hoc regulatory mechanisms are used wherever
periodicity emerges simultaneously, e.g. in the blastoderms of
Nasonia (Rosenberg et al., 2014) and Oncopeltus (Stahi and
Chipman, 2016), or in the chelicerate prosoma (Pechmann et al.,
2011; Schwager et al., 2009). Although less ‘elegant’ than using
temporal oscillations, this explicitly spatial mode of segmentation
can, in principle, occur much faster, because a number of different
pattern repeats can be initialised at once.
Simultaneous segmentation, typified by Drosophila, is

traditionally thought of as mechanistically distinct from sequential
segmentation, typified by, for example, Tribolium or Gryllus. The
textbook model of the hierarchical ‘subdivision’ of a syncytial
blastoderm by morphogen gradients seems a world away from
waves of gene expression within a cellularised, elongating
germband. However, the Drosophila blastoderm is now known to
be more dynamic than was previously imagined, and the basic
structure of its segment patterning network seems remarkably
similar to that of other arthropods (Fig. 4A).

As the Drosophila blastoderm stage is so short, the effects of
dynamic gene expression are subtle, and for years were overlooked.
However, quantitative expression atlases suggest that expression
domains in the posterior half of the blastoderm travel anteriorly
across cells over time (Jaeger et al., 2004; Keränen et al., 2006;
Surkova et al., 2008), and this has recently been demonstrated
through live imaging (El-Sherif and Levine, 2016; Lim et al., 2018).
The shifts reflect sequential patterns of transcriptional states within
cells, and trace back to asymmetric repressive interactions in the gap
gene network (Jaeger, 2011; Verd et al., 2018) (Fig. 4Bi) – perhaps
similar to those driving their temporal expression in the SAZs of
sequentially segmenting species.

In theDrosophila blastoderm, the expression dynamics of the gap
genes are directly transferred to pair-rule genes via their SSEs
(Fig. 4Bii). In addition, the pair-rule genes cross-regulate each other
through ‘zebra elements’: enhancers that drive expression in all of
the trunk stripes simultaneously (Schroeder et al., 2011). (Some
primary pair-rule genes, and both secondary pair-rule genes,
possess zebra elements.) These regulatory interactions are also
dynamic, and they combine with the stripe shifts driven by the gap
genes to generate a staggered sequence of pair-rule gene expression
within each double-segment repeat (Clark, 2017) (Fig. 4Biii). This
spatiotemporal sequence is the same as that driven by the
segmentation clock in sequentially segmenting species such as
Tribolium and Strigamia (Choe et al., 2006; Green and Akam,
2013), suggesting that zebra enhancers and ‘clock’ enhancers may
be homologous.

Once primary pair-rule gene expression is properly phased within
each double-segment repeat, Drosophila segment patterning
proceeds just as it would in the anterior SAZ of a sequentially
segmenting species, beginning with the activation of prd and slp,
and moving on to segment-polarity gene expression and stripe
doubling. This conserved process of pattern resolution is apparently
regulated by a conserved sequence of timing factor expression:
posterior SAZ factors Caudal and Dichaete are expressed
throughout the trunk during the early, dynamic stages of pair-rule
gene expression inDrosophila, and are replaced by the anterior SAZ
factor Opa as the segment-polarity pattern is being resolved (Clark
and Peel, 2018).

The Drosophila blastoderm therefore seems effectively
equivalent to a SAZ, except that rather than maturing gradually
from anterior to posterior, it does so all at once (Fig. 4C).We suspect
that much of the ancestral segmentation machinery remains intact.
However, as spatial information is no longer conveyed by the
delayed maturation of posterior tissue, gap genes and SSEs preload
it into the system instead (Fig. 4A). Importantly, although genetic
perturbations tend to result in different phenotypes in the two modes
of segmentation (e.g. primary pair-rule genes cause pair-rule
phenotypes in Drosophila rather than truncations), this might
often be explained by the divergent deployment of the genes in the
embryo, rather than divergent function.

The evolution of stripe-specific elements
Simultaneous segmentation differs from sequential segmentation in
two key respects: its temporal regulation (determined by the
expression profiles of the timing factors), and the spatial pre-
patterning of the pair-rule genes by gap genes (Fig. 4C).
Simultaneous segmentation is also associated with an anterior
shift of the blastoderm fate map and an increase in the number of
segments patterned prior to gastrulation. [Note, however, that
although segment patterning in the blastoderm is often simultaneous
and regulated by gap genes, this need not be the case: Tribolium

Box 2. Regulation of segment number
In arthropods, segment number is determined by the total number of pair-
rule stripes (and the periodicity with which they regulate segment-polarity
genes). In simultaneously segmenting insects, such as Drosophila,
individual pair-rule stripes are positioned by gap factors at specific
locations along the AP axis, hardcoding segment number. In
sequentially segmenting species, segment number instead depends
on the temporal duration of segmentation, divided by the period of the
segmentation clock.

Gap genes appear to play some role in controlling the duration of
segment addition (Cerny et al., 2005; Nakao, 2016). Over time, gap
genes are expressed sequentially within the SAZ, their turnover driven
by cross-regulatory interactions (Boos et al., 2018; Verd et al., 2018).
This process, effectively a developmental ‘timer’, shows intriguing
similarities to the ‘neuroblast clock’ (Isshiki et al., 2001; Peel et al.,
2005). It evidently exerts some control over the body plan, as perturbing
hunchback expression can both decrease (Liu and Kaufman, 2004;
Marques-Souza et al., 2008; Mito et al., 2005) and increase (Boos et al.,
2018; Nakao, 2016) segment number in sequentially segmenting
insects. These phenotypes are not well understood, but might result
from gap genes directly or indirectly regulating cell behaviour within the
SAZ. Such effects are unlikely to be mediated via the Hox genes,
because significant perturbations of Hox gene expression in insects and
crustaceans have not been found to affect segment number (Angelini
et al., 2005; Martin et al., 2016; Stuart et al., 1991).

Despite varying widely among arthropods, segment number is usually
fixed within a species. However, there are certain groups, such as
geophilomorph centipedes, in which naturally occurring variation might
provide clues as to how this number evolves (Kettle and Arthur, 2000;
Vedel et al., 2008, 2010). Another interesting question is how species
that undergo post-embryonic segmentation coordinate segment
patterning with the moult cycle. Ecdysone-related genes play
segmentation roles in some embryos (Erezyilmaz et al., 2009; Heffer
et al., 2013), suggesting that these two processes might be deeply
related.
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Fig. 4. Reconciling sequential and
simultaneous segmentation.
(A) Structural overview of arthropod
segmentation gene networks. The core
of the system (yellow box) is relatively
conserved across species. In sequential
segmentation, spatial information is
provided by the timing factor network,
which generates a wavefront. Gap genes
do not play a major role in segment
patterning, although late gap gene
expression may be important for
terminating segmentation, by repressing
timing factors that maintain the SAZ
(dashed blue line). In simultaneous
segmentation, timing factors only provide
temporal information. Spatial information
is usually provided by a novel anterior
patterning centre (i.e. a morphogen
gradient such as Bicoid; Liu et al., 2018;
McGregor, 2005), which regulates gap
gene expression. Gap genes pass this
information to the primary pair-rule
genes, through newly evolved regulatory
elements (SSEs). (B) Spatial patterning
in Drosophila is inherently dynamic. (i)
Regulatory interactions between gap
genes cause gap domains to shift
anteriorly across the blastoderm over
time. (ii) Stripes of pair-rule gene
expression regulated by gap inputs also
shift anteriorly. (iii) Regulatory
interactions between the pair-rule genes
convert these shifts into a staggered
pattern of expression overlaps across the
pair-rule repeat. Note that each panel
zooms in on a smaller region of the AP
axis. (C) Schematic kymographs (i.e.
plots of how gene expression along the
AP axis changes over time) comparing
the key spatiotemporal features of
sequential and simultaneous
segmentation. In sequential
segmentation, timing factor expression
(blue) matures from anterior to posterior
across the tissue, producing a wavefront
(diagonal line). Periodicity is generated
by sustained oscillations (note how even
skipped turns on and off over time within
the blue zone). The wavefront converts
the oscillations into a stable segment-
polarity pattern (engrailed expression). In
simultaneous segmentation, there is little
spatial regulation of timing factor
expression across the tissue, and pair-
rule stripes are present from the start.
Embryo diagrams depict the specific time
points they line up with on the
kymographs (eve expression is not
shown). Patterning has double-segment
periodicity. Note that the two time axes
have different scales.

10

REVIEW Development (2019) 146, dev170480. doi:10.1242/dev.170480

D
E
V
E
LO

P
M

E
N
T
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Fig. 5. The evolution of simultaneous segmentation involves a gradual replacement of the segmentation clock by SSEs. (A) Clock enhancers
(potentially homologous to zebra elements) and SSEs both drive stripes that shift anteriorly over time. SSEs can therefore gradually assume regulatory
control over particular clock-driven stripes (i-iv), without disrupting downstream patterning. (B) Simultaneous patterning is likely to evolve stepwise along the
AP axis, via the acquisition over evolutionary time of new SSEs that control expression in increasingly posterior stripes. Embryo diagrams assume a
segmentation clock with double-segment periodicity. In addition, simultaneous patterning is likely to evolve stepwise within each pair-rule gene expression
repeat, as more of the primary pair-rule genes evolve their own SSEs. Additional SSEs reduce the time required to organise pair-rule gene expression
across the repeat. As a consequence, the magnitude of the stripe shifts can decrease. (C) Changes in gap gene expression can be sufficient to generate
additional SSE-driven stripes, without accompanying changes in cis-regulatory logic. InDrosophila (right), SSEs such as eve 3+7 and eve 4+6 each drive a pair of
stripes. The current situation likely evolved from a simpler scenario (left), in which the same enhancers drive expression in only one stripe each. Gt, Giant; Hb,
Hunchback; Kni, Knirps; Kr, Krüppel. Note that eve 3+7 and eve 4+6 are both repressed by Kni and Hb, but with different relative strengths, represented by
different arrow thicknesses (Samee et al., 2017). Diagrams are colour-coded such that transcription factor names (top) have the same colour as their
corresponding expression domain(s) (below).
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patterns its blastoderm segments sequentially, using retracting
timing factors and a clock (El-Sherif et al., 2014, 2012)].
The evolution of simultaneous segmentation appears to be

constrained by early embryogenesis (French, 1988). Some insects,
such as orthopterans, have ‘panoistic’ ovaries, in which all germline
cells become oocytes, and the eggs contain little but yolk (Büning,
1994). These species pattern their segments sequentially. Other
insects, such as hemipterans and holometabolans, have ‘meroistic’
ovaries, in which germline-derived ‘nurse’ cells load oocytes with
maternal mRNA. These species frequently have a biphasic mode of
segmentation, in which anterior segments are patterned
simultaneously. Meroistic ovaries (which facilitate pre-patterning
of the egg), may therefore be a pre-adaptation for simultaneous
segmentation.
Extreme examples of simultaneous segmentation (e.g.

Drosophila) have evolved independently within each of the major
holometabolan orders (Davis and Patel, 2002). [Intriguingly, there
has also been at least one reversion to sequential segmentation,
within braconid wasps (Sucena et al., 2014)]. A Drosophila-like
mode of segmentation likely requires far-reaching changes to early
embryogenesis, such as a novel anterior patterning centre to help
spatially pattern gap genes along the entire AP axis of the egg
(Lynch et al., 2006) (Fig. 4A). Here, we focus on understanding how
SSEs and gap genes are together able to take over stripe patterning
from the clock. It seems likely that this transition to intricate spatial
regulation involves a series of selectively favourable regulatory
changes, which incrementally increase the speed or robustness of
segmentation, while strictly preserving its output (Fig. 5).
First, new SSEs seem to be easy to evolve, because they tend to be

short, with simple regulatory logic and high sequence turnover
between closely related species (Hare et al., 2008; Ludwig et al.,
1998). Some of them may have been selected simply to increase the
robustness of segmentation clock expression; this might have
occurred in either a blastoderm or a SAZ context. [There is one
report from Tribolium suggesting the existence of SSEs that
drive expression in the germband (Eckert et al., 2004)]. Importantly,
because gap gene expression is inherently dynamic (whether in the
blastoderm or the SAZ), SSE-regulated stripes are predicted to
‘shadow’ stripes driven by the clock, allowing them to take over
downstream functions gradually (Verd et al., 2018) (Fig. 5A).
Second, only a single new SSE need evolve at one time.

Simultaneous patterning seems likely to have evolved progressively,
from anterior to posterior, with each new SSE-driven stripe reducing
the number of cycles needed from the clock (Peel and Akam, 2003)
(Fig. 5Bi). Furthermore, cross-regulation between the pair-rule genes
means that an SSE for one gene could in principle go on to organise a
whole pattern repeat, with the remaining genes evolving their own
SSEs afterwards, to make patterning faster or more robust (Clark,
2017) (Fig. 5Bii). This process might be highly contingent: in
Drosophila, eve and runt have full sets of SSEs and odd is patterned
largely through cross-regulation (Schroeder et al., 2011), but RNAi
evidence fromBombyx suggests precisely the opposite (Nakao, 2015).
Finally, SSEs can be reused. InDrosophila there are several SSEs

that drive a pair of stripes, typically arranged symmetrically around
a particular gap domain (Schroeder et al., 2011). This suggests that
posterior gap gene expression evolved to duplicate the regulatory
environments of anterior stripes, thereby initialising additional pair-
rule gene stripes without the need to evolve additional SSEs
(Fig. 5C).
Interestingly, Drosophila eve stripes 3 and 7, which are co-driven

by a single SSE, are regulated by the same gap genes as are eve
stripes 3 and 6 in Anopheles (Goltsev et al., 2004), which has led to a

proposal that certain stripes have been lost or gained from these
lineages over time (Rothschild et al., 2016). This hypothesis is hard
to reconcile with the gradualist scenariowe favour, as the transitional
states would have severely compromised fitness. We think it more
likely that the posterior gap gene domains were recruited in a
different order in the Drosophila and Anopheles lineages, resulting
in a homologous ‘stripe 3’ element additionally driving non-
homologous posterior stripes. In support of this alternative, a midge
species more closely related to Drosophila than to Anopheles
patterns only five eve stripes before gastrulation (Rohr et al., 1999),
indicating that Anopheles and Drosophila probably evolved fully
simultaneous segmentation independently (Jaeger, 2011).

Conclusions
Our current understanding is that arthropod segment patterning is an
inherently dynamic and a significantly conserved process, ancestrally
taking the form of a clock-and-wavefront system. Note, however, that
many of the conclusions in this Review extrapolate from fragmentary
data gathered from a small number of model species, with functional
data available from an even smaller number. This is certainly not the
last word on arthropod segmentation, but we hope to have provided a
coherent framework for further thought and experiment.

We anticipate that future investigation will centre on two
contrasting but inter-related tasks. First, better resolving the nature
of the ancestral arthropod clock-and-wavefront system: the topology
of the gene regulatory networks comprising the clock, the production
of timing factor wavefronts by a retracting SAZ, and the mechanistic
basis for the interactions between them. Second, reconstructing how
arthropod segmentation networks have diversified over time, giving
rise to such remarkable novelties as simultaneous patterning and
double-segment periodicity. In addition, we believe that sequentially
segmenting arthropod models are well placed to complement and
inform the study of vertebrate axial patterning, especially given their
benefits of cost-efficiency, short generation times, experimental
tractability, and relatively simple genomes.

The most pressing next step is to collect good-quality multiplexed
expression data from a variety of arthropod species (Choi et al., 2018,
2016) and cross-reference this with information about tissue dynamics
(Wolff et al., 2018), to better characterise how segmentation gene
expression changes over space and time. Building on a solid
descriptive foundation, there are numerous exciting directions to
pursue: genome editing to generatemutants,misexpression constructs,
and live reporters (Gilles et al., 2015; Lai et al., 2018); construction
and analysis of data-informed dynamical models (Sharpe, 2017);
single-cell sequencing of segmenting tissues (Griffiths et al., 2018); ex
vivo culturing of SAZ cells (Lauschke et al., 2013). Over the past four
decades, arthropod segmentation has contributed enormously to our
understanding of developmental gene networks and their evolution.
As we enter a new ‘golden age’ of developmental biology, we see
great promise for this legacy to continue.
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