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Abstract: The study proposes the application of state variable and cyclic-averaging modelling techniques for analysis of
bidirectional, dual active bridge, CLLC resonant converters. The techniques are applied for converters operating under single
phase-shift modulation in forward and reverse modes and the equation description is obtained for both models. The design of
the converter is presented and the simulation results obtained are compared to a Spice-based simulation to verify the accuracy
of the proposed models. Results show the models are suitable to represent the behaviour of CLLC converters under single
phase-shift modulation. In addition, when using the cyclic-averaging technique integration is not required to solve the model,
which results in a considerably rapid analysis when compared to the execution times of state variable and Spice-based models.

1Introduction
The interest in electric vehicles (EVs) has been increasing
especially due to their reduced CO2 emission levels, government
incentives and increased affordability. Most battery chargers for
EVs are unidirectional, allowing power flow only from the grid to
the vehicle; however, vehicle-to-grid (V2G) technology requires
bidirectional power flow between grid and battery. Consequently,
the battery may be available for grid support and to maintain
stability at peak times. Typical bidirectional chargers for V2G
consist of an AC–DC converter for power factor control and a DC–
DC converter for output voltage and current regulation [1].

The dual active bridge (DAB) is a widely used topology of
bidirectional DC–DC converter for V2G applications [2–4]. Due to
the DAB limitations such as large reactive current, limited
operating range and reduced efficiency, resonant variants were
proposed to increase efficiency and improve operation for wide
input/output voltage ranges [5].

Among various resonant topologies based on the DAB
converter, the CLLC converter is a fourth-order resonant topology
that provides reduced switching losses, high efficiency and
operation under wide voltage range. A considerable advantage of
this configuration is the easily achieved soft switching operation
for forward and reverse modes when using frequency modulation
[6].

To date, most literature focuses on frequency modulated CLLC
converters [1, 6, 7]. However, for applications requiring fixed-
frequency operation the frequency modulated control strategy
cannot be applied. As an alternative, phase shift modulation can be
implemented [8, 9], in this case the phase shift between the bridges
or between each leg of the bridges is used to control power flow
and direction.

This paper investigates a CLLC bidirectional converter
operating under single phase-shift (SPS) modulation, Fig. 1, when
only the phase shift between the output voltages of the two active
bridges is used to control the output power. 

Modelling techniques are employed for converters analysis to
facilitate the design process and predict performance. A linear
state-variable model using dq transformation for CLLC converters
is proposed in [9].

This study proposes two modelling techniques for time-domain
analysis of the converter: state variable and cyclic averaging. Here,
a simpler non-linear state-variable model is proposed and will
serve as base for the implementation of the cyclic-averaging
method.

The cyclic-averaging technique was proposed in [10] as an
accurate method of time-domain analysis for periodically switched
systems. The steady-state values of the state variables are obtained
from analytical equations instead of integration. Therefore, steady-
state prediction is obtained rapidly when compared with
integration-based methods. Previously, cyclic averaging has been
used to analyse LLC [11] and inductor-capacitor-capacitor (LCC)
converter [12], here then, this is extended to apply cyclic averaging
analysis to fourth-order CLLC converters, specifically regarding
phase-shift modulated variants.

The paper is structured as follows. In Section 2, the state-
variable model is presented. The cyclic-averaging model is
described in Section 3. Section 4 contains the converter design and
analysis of results.

2State-variable analysis
Since the converter analysed in this paper is bidirectional, two
modes of operation will be studied. In forward mode, the power
flows from the DC link, represented in Fig. 1 as the voltage source,
Vdc, to the battery, represented by the source Vbattery. In reverse
mode, the battery serves as a supply to the grid and the power
flows from the battery to the DC bus.

2.1 State-variable analysis for forward operation

For the state-variable analysis, the converter from Fig. 1 is divided
into two sub-systems [12]. The resonant network is considered the
fast sub-system and the output filter constitutes the slow sub-
system, with these two sets of state-variable equations being
connected by a coupling equation that represents the non-linear
behaviour of the output bridge.

The equivalent circuit for state-variable analysis in forward
mode is presented in Fig. 2. 

The fast sub-system is referred to the primary while the slow is
referred to the secondary. The square voltages generated by the two
full bridges are represented as va and nvb, where n is theFig. 1 CLLC bidirectional resonant converter topology
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transformer's turns ratio. The resistances of switches and voltage
sources are considered to have negligible effect on the voltage
generation at the output of each bridge, therefore:

va = ± Vdc (1)

nvb = ± nVbat (2)

Using basic circuit analysis, the state-variable description can be
obtained.

The fast sub-system can be described by the following state
equations:

diLs1

dt
=

va − (r1 + r2′)iLs1 − vCs1 + r2′iLm − vcs2 − nvb

Ls1
(3)

dvCs1

dt
=

iLs1

Cs1
(4)

diLm

dt
=

r2′iLs1 − (rLm + r2′)iLm + vCs2′ + nvb

Lm
(5)

dvCs2′

dt
=

iLs1 − iLm

Cs2′
(6)

The slow sub-system is described as

dvCf

dt
=

Vbat + rbibridge − vCf

C f (rb + rCf)
(7)

The coupling equation is obtained considering the operation of the
active bridge on the output side:

ibridge =
n(iLs1 − iLm) when vb > 0

−n(iLs1 − iLm) when vb < 0
(8)

2.2 State-variable analysis for reverse operation

Now considering the opposite power flow direction, the equivalent
circuit for reverse mode analysis is shown in Fig. 3 and since the
output is now on the primary side both fast and slow sub-systems
are referred to the primary. 

The fast sub-system can be described by the following
equations:

diLs1

dt
=

nvb − (r1 + r2′)iLs1 − vCs1 + r2′iLm − vcs2 − va

Ls1
(9)

dvCs1

dt
=

iLs1

Cs1
(10)

diLm

dt
=

nvb − r2′iLs1 − (rLm + r2′)iLm − vCs2′

Lm
(11)

dvCs2′

dt
=

iLs1 + iLm

Cs2′
(12)

The slow sub-system is described as

dvCi

dt
=

Vdc + rdcibridge − vCi

Ci(rdc + rCi)
(13)

The coupling equation is given by

ibridge =
iLs1 when va > 0

−iLs1 when va < 0
(14)

3Cyclic-averaging analysis
Cyclic averaging is a technique used to model periodically
switching systems. Due to the switching characteristic of these
systems, the state vector does not converge to a fixed value in
steady state. Therefore, the steady-state behaviour is obtained by
analysing a cycle, and averaging the values of the state variables
using the proposed method [10].

The CLLC system presented in this paper is considered cyclic
because the state vector at the beginning and at the end of the
switching period is equal, therefore:

x(t) = x(t + nT) (15)

where T is the period of the input voltage and n is the number of
cycles.

Based on the state of the input voltages va and nvb, each cycle
can be divided into operating modes and a state-variable
description is obtained for each mode resulting in a set of
piecewise linear equations. Each i mode has the following state-
variable representation:

ẋ(t) = Aix(t) + Bi (16)

where ẋ(t) is the state vector, Ai is the dynamic matrix and Bi is the
excitation term.

Here, the circuit operates in each mode for a fixed period. The
time interval for each mode is given by a duty cycle di. If T is the
period of a cycle, the circuit operates in mode i, during di T
seconds. For each operation mode, the state vector  ẋ(ti) may be
calculated analytically using the following equation:

ẋ(t) = eAi(t − ti − 1)
x(ti − 1) + ∫

ti − 1

t

eAi(t − τ)
Bidτ

ẋ(ti) = eAidiTx(ti − 1) + ∫
ti − 1

ti

eAi(ti − τ)
Bidτ

x(ti) = ϕix(ti − 1) + Γi

(17)

where:
ϕi = ϕ(ti, ti − 1) = eAidiT, Γi = ∫ti − 1

ti eAi(ti − τ)
Bidτ = (eAidiT − I)Ai

−1
Bi if Ai

is invertible.
The calculation of these terms is possible but complex,

especially the integral term for cases where Ai is singular. The
augment state vector is used to obtain a simplified and rapid
solution without the integration. Therefore, the dynamic and input
matrices are combined resulting in the following:

d
dt

x(t)
1

=
Ai Bi

0 0
x(t)
1 (18)

or

d
dt

x^(t) = A
^

ix
^(t) (19)

The solution for the ith mode is given by

Fig. 2 Equivalent circuit for forward mode
 

Fig. 3 Equivalent circuit for reverse mode
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x^(ti) = eA
^

idiTx^(ti − 1) = ϕ
^

ix
^(ti − 1) (20)

Considering a system with m modes, the state vector for mode m,
after the whole period is given by

x^(tm) = ϕ
^

mϕ
^

m − 1⋯ϕ
^

1x
^(t0) = ϕ

^

totx
^(t0) (21)

where x^(t0) is the initial condition.
The matrix ϕ

^

i can also be obtained from the combination of
matrices ϕi and Γi.

ϕ
^

i =
ϕi Γi

0 1
(22)

The periodic solution can be found assuming that after a whole
cycle the state vector is equal to the initial state, as in (23)

x^per(t0 + T) = ϕ
^

totx
^
per(t0) = x^per(t0) (23)

where

x^per(t0) =
xper(t0)

1
(24)

Solving (23) gives

xper(t0) = (In − ϕtot)
−1Γtot (25)

where
ϕtot = ϕmϕm − 1⋯ϕ1 and Γtot = (ϕmϕm − 1⋯ϕ2)Γ1 + (ϕmϕm − 1⋯ϕ3)Γ2

+ ⋯ + ϕmΓm − 1 + Γm

Therefore, using (17), (20) and (25) the steady-state value for
all state variables can be calculated for any t.

From the cyclic description obtained the average steady-state
values of the state variables for a whole cycle can also be
calculated. The average value definition is given by

xavg =
1
T ∫

t0

t0 + T

xper(t)dt (26)

Considering the system

ẋ(t) = Aix(t) + Bi

ẏ(t) = ẋavg =
1
T

x(t)
(27)

The augmented state vector method is used again to obtain a
simplified solution without integration resulting in

d
dt

x(t)

1

xavg(t)
=

Ai Bi 0

0 0 0

I /T 0 0

x(t)

1

xavg(t)
(28)

or

ż(t) = A
~

iz(t) (29)

The averaged state vector can then be obtained calculating z(t0ௗ+ௗT)
based on the initial state z(t0). Given the initial state

z(t0) =

xper(t0)

1

0

(30)

The averaged state vector is then calculated

z(t0 + T) = ϕ
~

mϕ
~

m − 1⋯ϕ
~

1z(t0) =

xper(t0)

1

xav

(31)

where ϕ
~

i = eA
~

idiT

3.1 Cyclic-averaging analysis for forward operation

Here the cyclic analysis will be shown for forward operation, the
same methodology is also applied to the reverse operation.

The state-space description for forward mode previously
obtained from (3) to (7) is used as a base for application of the
cyclic method. The set of equations can be represented in the
matrix form as

d
dt

iLs1

vCs1

iLm

vCs2′

vCf

= A

iLs1

vCs1

iLm

vCs2′

vCf

+ B (32)

where (see (33)) , and

B =

(va − nvb)
Ls1

0

nvb

Lm

0

Vbat + rbibridge

C f (rb + rCf

(34)

The state-variable system depends on the state of voltages va and
vb. For a converter operating under SPS modulation there are two
possible states for each voltage, leading to four operating modes.
The periodic behaviour of the bridge voltages va and vb for forward
operation is shown in Fig. 4 and the four modes can be identified
for a cycle. When operating in forward mode the right bridge (vb)
leads and the power flows from the DC bus to the battery. 

At the beginning of the cycle, when the right-bridge voltage vb
becomes positive, the four modes are:

A =

−
(r1 + r2′)

Ls1
−

1
Ls1

rC2′
Ls1

−
1

Ls1
0

1
Cs1

0 0 0 0

rC2′
Lm

0 −
(rLm + rC2′ )

Lm

1
Lm

0

1
Cs2′

0 −
1

Cs2′
0 0

0 0 0 0 −
1

C f (rb + rCf)

(33)
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Mode 1: vaௗ=ௗ−Vdc, vbௗ=ௗVbat and ibridgeௗ=ௗn(iLs1ௗ−ௗiLm);
Mode 2: vaௗ=ௗVdc, vbௗ=ௗVbat and ibridgeௗ=ௗn(iLs1ௗ−ௗiLm);
Mode 3: vaௗ=ௗVdc, vbௗ=ௗ−Vbat and ibridgeௗ=ௗ−n(iLs1ௗ−ௗiLm);
Mode 4: vaௗ=ௗ−Vdc, vbௗ=ௗ−Vbat and ibridgeௗ=ௗ−n(iLs1ௗ−ௗiLm);

Based on each mode description, the substitution of the values on
(32) will determine the dynamic matrices Ai and input matrices Bi,
where iௗ=ௗ1, 2, 3, 4.

In SPS modulation, the frequency is fixed and the phase shift
between the output voltage of the two bridges is a known angle
between 0° and 90°. Therefore, the duration of each mode is fixed
and can be calculated based on the period value and phase-shift
angle. The duty cycle for the first mode is then determined as
follows:

d1 =
PS

360 (35)

The remaining duty cycles are calculated based on the waveforms
symmetry: d2ௗ=ௗ0.5ௗ−ௗd1, d3ௗ=ௗd1 and d4ௗ=ௗd2.

Once the state-space description and mode durations are
obtained, the cyclic technique is used to model the converter.

From (25), (30) and (31), the steady-state average values of the
state variables are calculated and to verify the model over a cycle

(20) and (25) are used to calculate the values of the state variables
at the beginning of each mode (at times x0, x1, x2, and x3 in Fig. 4).

4Results
To verify the models proposed, a converter was designed based on
a methodology proposed in [13]. The state variable and cyclic
models described in Sections 2 and 3 were simulated in Simulink
and MATLAB, validation of the results being done against a
component-based Spice simulation.

4.1 Converter design

A 110W, 48–12V, CLLC converter is designed to operate at 100
kHz. Considering the DC voltage conversion ratio definition from
(36), a conversion ratio close to 1 results in higher efficiency and
smaller bridge currents [13]. Therefore, the chosen turns ratio is 4

DCratio = n
Vsec

Vpri
= n

Vbat

Vdc
(36)

where n is the transformer turns ratio.
The resonant network is tuned to the switching frequency as in

(37) [13]

ωr
2 =

1
(Ls1 + Lm)Cs1

=
n

2

LmCs2
= 2π f s

2 (37)

As a result, a base reactance value Xn can be defined

Xn = XCs1 − XLs1 = XLm = n
2
XCs2 (38)

The output power can be calculated based on the modulation angle
as shown in (39), considering the most significant part of the power
is transferred at fundamental frequency.

Pout =
8nVdcVbat

n
2
Xn

sin(ϕ) (39)

where  is the modulation angle and maxௗ=ௗ90° for SPS
modulation.

The parameters obtained from this design procedure are listed
on Table 1. 

4.2 Simulation results and model validation

The converter was simulated based on the design developed in the
previous section considering forward and reverse operations for
three cases of phase-shift angle: 90°, 45° and 22.5°.

The resistance associated to the filter capacitor is neglected and
consequently the output voltage is given by the output filter
capacitor voltage, vCf for forward mode and vCi for reverse mode.
The average value of the output voltage was measured for both
models and compared to results from a LTspice simulation. Results
for forward operation are shown in Fig. 5 and reverse operation in
Fig. 6. 

From Figs. 5 and 6, it can be noticed that both state-variable
and cyclic-averaging models are accurate compared to Spice. For
some points the LTspice result is slightly different, mainly due to
the difference in precision used for the average voltage calculation
in MATLAB/Simulink simulations (four decimal places) and
LTspice simulations (three decimal places).

To verify the accuracy of the models during a whole cycle, the
state-variables values on steady state were checked at the
beginning of each mode, points x0, x1, x2, and x3 from Figs. 4 and
6. In Tables 2 and 3, the results obtained at point x0 are shown
considering forward and reverse operation. 

The results obtained for the two proposed models are similar to
the Spice results. Part of the error is a result of the difficulty to
measure the current and voltage values for the LTspice and state-
variable models at the exact point in time when Mode 1 starts.

Fig. 4 Voltages at the output of right (vb) and left bridge (va) for forward
operation

 
Table 1Parameter values for CLLC converter
Parameter Value
Vdc 48V
Vbat 12V
Cf/Ci 300ȝF
Ls1 54.04ȝH
Cs1 31.24nF
Lm 27.02ȝH
Cs2 1.5ȝF

 

Fig. 5 Average output voltage vs. phase-shift angle – forward mode
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In Table 4, the execution time for the three models is compared.
The results obtained by cyclic-averaging method are directly
steady state while state variable and Spice models need to be
simulated until steady state is reached, around 7ms for the state-
variable simulation and 4ms for Ltspice. Therefore, for
comparison both state variable and spice models have a simulation
time of 8ms with 10ns step size. The execution time when using
cyclic-averaging technique is reduced compared to state variable
and Spice models. 

5Conclusions

In this paper, state-variable and cyclic-averaging models were
proposed to describe the operation of a bidirectional resonant
CLLC converter. The models were developed and simulation
results were verified against a Spice simulation. It was shown that
both models can be used to accurately predict the behaviour of the
CLLC converter and voltage and current stresses on circuit
components under phase-shift modulation. Furthermore, it was
confirmed that the use of cyclic averaging techniques results in a
rapid analysis, with the lowest execution time between the models
tested.
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Fig. 6 Average output voltage vs. phase-shift angle – reverse mode
 

Table 2Variables at: X for 90° phase shift – forward mode
Cyclic averaging State variable LTspice

iLs1, A −3.094 −3.097 −3.136
vCs1, V −3.782 −3.967 −3.880
iLm, A −4.566 −4.567 −4.597
vCs2, V −15.543 −15.510 −15.536

 

Table 3Variables at: X for 90° phase shift – reverse mode
Cyclic averaging State variable LTspice

iLs1, A 0.490 0.506 0.490
vCs1, V −186.622 −186.500 −184.696
iLm, A −3.582 −3.573 −3.591
vCs2, V −0.935 −0.987 −0.916

 

Table 4Comparison of execution time of proposed models
Cyclic averaging State variable LTspice

execution time, s 0.005 44.79 25.79
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