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Fault Diagnosis for Electromechanical Drivetrains 

Using a Joint Distribution Optimal Deep Domain 

Adaptation Approach 
Zhao-Hua Liu, Member, IEEE, Bi-Liang Lu, Hua-Liang Wei, Xiao-Hua Li, and Lei Chen  

Abstract: Robust and reliable drivetrain is important for 
preventing electromechanical (e.g., wind turbine) 
downtime. In recent years, advanced machine learning 
(ML) techniques including deep learning have been 
introduced to improve fault diagnosis performance for 
electromechanical systems. However, electromechanical 
systems (e.g., wind turbine) operate in varying working 
conditions, meaning that the distribution of the test data 
(in the target domain) is different from the training data 
used for model training, and the diagnosis performance of 
an ML method may become downgraded for practical 
applications. This paper proposes a joint distribution 
optimal deep domain adaptation approach (called JDDA) 
based auto-encoder deep classifier for fault diagnosis of 
electromechanical drivetrains under the varying working 
conditions. First, the representative features are extracted 
by the deep auto-encoder. Then, the joint distribution 
adaptation is used to implement the domain adaptation, 
so the classifier trained with the source domain features 
can be used to classify the target domain data. Lastly, the 
classification performance of the proposed JDDA is tested 
using two test-rig datasets, compared with three 
traditional machine learning methods and two domain 
adaptation approaches. Experimental results show that 
the JDDA can achieve better performance compared with 
the reference machine learning, deep learning and 
domain adaptation approaches. 

Index Terms—fault diagnosis, electromechanical drivetrain, 

deep neural network, deep learning, domain adaptation (DA), 

joint distribution optimal, auto-encoder(AE), machine 

learning, artificial intelligence, bearing, gearboxes, wind 

turbine, varying working conditions. 

I. INTRODUCTION
1
 

Electromechanical systems (e.g., wind turbine) play an 

important role in industrial systems [1], [2]. However, 

electromechanical drivetrains are typically exposed to 

invariable and harsh environments, and usually suffer from 

high failure rate. It is prone to failure due to the some severe 

operating environment and the wide range of load 
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fluctuations. Drivetrain failures can cause serious damage to 

the whole equipment, so it is necessary to discover potential 

faults in drivetrain system as early as possible. Usually, the 

failures of bearing, gearboxes, and other drivetrain 

components can usually result in long downtime, thus can 

cause considerable drivetrain maintenance costs [3]. 

Therefore, fault diagnosis for bearing and gearboxes 

components in drivetrain is one of the most important parts in 

the condition monitoring systems. In fact, in order to monitor 

the bearing and gearboxes conditions, many useful fault 

diagnosis methods were proposed, such as wavelet transforms 

[4], time-frequency manifold [5], and Morphological 

Hilbert-Huang (MH) technique [6]. The implementation of 

the fault diagnosis process using these methods usually need 

expert manual intervention. However, methods with expert 

manual intervention usually cannot provide easily-understood 

diagnosis results, therefore, a more convenient algorithm is 

necessary to solve fault diagnosis problems.  

In recent years, machine learning and deep learning 

technologies have attracted the attention of many researchers 

to deal with the fault classification problems [7]. Commonly 

used machine learning (ML) methods include logistic 

regression (LR) [8], Naive Bayes classifier [9], SVM [10] and 

neural networks [11]. Although these ML methods can work 

well for most fault diagnosis problems without expert manual 

intervention as required by traditional approaches, they need 

sufficient prior knowledge and large labeled training samples. 

However, it is difficult to collect sufficient labeled data and 

then train a reliable diagnosis model in most engineering 

scenarios. 

There is a similar situation in the deep learning networks 

(DLN) [12], such as recurrent neural networks (RNN) [13], 

convolutional neural network (CNN) [14] and deep brief 

networks (DBN) [15]. More specifically, Sun et al. [16] 

proposed an intelligent bearing fault diagnosis method, 

combining compressed data acquisition and deep learning, 

and including a sparse auto-encoder (SAE) as the DLN 

infrastructure. Of course, due to the structural advantages of 

DLN, these methods not only automatically extract the 

features, but also the extracted features can represent the 

original data well. So the classifier trained with those features 

would normally have an outstanding performance. However, 

the good performance of DLN is based on a hypothetical 

condition – the training data and test data have the same 

distribution. 

Inevitably, electromechanical systems usually work in 

varying conditions due to the changeable working conditions, 

environmental noise and product quality etc., so data sets 

from a same process may have different distributions in 

practical application. Moreover, the lack of labeled training 
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data makes it necessary to use historical labeled data (source 

domain) to achieve correct label prediction of new data 

(target domain), and such knowledge transfer can cause a 

distribution discrepancy between training data (source 

domain) and testing samples (target domain), which leads to 

significant diagnosis performance deterioration. In short, it is 

a challenging task for existing ML and DLN based fault 

diagnosis methods: How to overcome the data disparity issue 

(e.g. between training and test data) to achieve good 

performance for fault diagnosis? In other words, how to 

achieve a good diagnosis model with insufficient labeled 

training data for engineering problems?  

Recently, a useful method based on domain adaptation 

(DA) [17] has been introduced into the ML and DLN. DA 

strategies can be roughly summarized into two categories: 

instance reweighting and feature extraction [18], [19]—the 

former re-adjusts the training set on the basis of the common 

knowledge contained in the test set, and then further analyzes 

the reweighted training set, while the latter aims to detects a 

shared subspace and draws the distance between training data 

(source domain) and testing samples (target domain). The DA 

approach considered in this study belongs to the latter one. In 

fact the training data space and their distribution used for 

building the fault diagnosis model is defined as the source 

domain, the test data space and their distribution for model 

application is defined as the target domain, and the problem 

that we are eager to solve is the cross-domain learning 

problem[17]-[19]. 

Due to the existence of cross-domain learning problem, the 

performance of the ML and DLN based classifiers may not be 

satisfactory, meaning that the classifier trained with the 

source domain may not work well for classification in the 

target domain. In many real applications, it is very expensive 

or difficult, if not possible; to collect test data that has the 

same distribution as the training set. To overcome such an 

issue, Lu et al. [20] proposed a novel deep model in which 

the DLN was combined with domain adaptation. Wen et al. 

[21] proposed a new deep transfer learning approach based on 

Sparse Auto-Encoder (SAE) in which the DLN utilizes the 

maximum mean discrepancy (MMD) measure [22] to 

minimize the distance between two distributions, so the 

classification of the target domain can make use of the 

common knowledge in the source domain. However, these 

two methods just optimize the difference of the marginal 

distribution, in other words, they only use a part of 

distribution information based on the original data. 

In this paper, we put forward a different model from 

previous studies in which the advantage of DLN can be 

further exploited, and the DA [23] technique can be used to 

reveal and take advantage of data distribution information. 

Combining the DA strategies and the DLN, a novel approach 

using joint distribution adaptation for a deep learning model 

(JDDA), in which representative features of source domain 

and target domain are extracted by the DLN, and then, by 

making use DA, the distance between the two domains is 

narrowed, so the model trained in the source domain can be 

directly applied to the classification of the target domain 

through the classification hyper-plane. As far as we know, 

this is a novel work in the literature on such a method based 

on DA to solve fault diagnosis problems with large 

complicated fault data. The main contributions of the paper 

are summarized as follows: 

1) A novel deep domain adaptation learning architecture 

based on DA techniques is proposed for fault diagnosis under 

variable working conditions. The proposed JDDA integrates 

deep learning, DA and machine learning in one model, where 

representative features can be easily extracted by the DLN. 

Afterwards, the representative features distance of source 

domain and target domain is decreased through the DA 

algorithm. Therefore, a classifier trained with the 

representative features of source domain can be used for fault 

prediction of the target domain. 

2) A domain-adaptation fault diagnosis algorithm for 

electromechanical systems (wind turbine) based on joint 

distribution optimization is proposed and its performance is 

tested on actual device data. Besides, the joint distribution 

adaptation algorithm has been improved in the terms of 

labeled samples acquisition. 

3) Empirical analysis is performed on the hyper-parameters 

of the domain-adaptation algorithm, aiming to facilitate the 

determination of important parameters of DA.  

II. RELATED WORK 

This section describes the related work on fault diagnosis of 

electromechanical drivetrains and DA.  

A. Fault Diagnosis of electromechanical drivetrains 

The failures of bearing, gearboxes, and other drivetrain 

components can usually result in long downtime, thus can 

cause considerable drivetrain maintenance costs. Similar 

approaches have been reported in the literature, for example, 

Zheng et al. [24] proposed a fault diagnosis method based on 

support vector machine for a rolling element bearing system 

fault detection; Li et al. [25] proposed a fault diagnosis 

method for motor rolling bearing using a neural network 

classifier. However, these methods need to manually 

determine a representative feature of the original data, but it 

often is very difficult or impossible to properly define the 

most representative feature when data is big. LeCun, Bengio 

and Hinton [12] proposed the concept of DLN, introducing 

the pre-training skill and minimizing the network’s 
reconstruction error, so it can get a good representation of the 

original data automatically. Recently, some fault diagnosis 

methods [26] established on deep learning technology has 

been proposed. Comparing with traditional machine learning 

methods, the classification accuracy of these deep learning 

approaches has been significantly improved. 

B. Domain Adaptation 

Domain adaptation (DA), as a transfer learning method, 

utilizes a different but related source domain to solve the 

problem of the target domain. It is inspired by the idea that 

people can apply past experiences to new things. In the early 

stages, most of the domain adaptation strategies are coupled 

with machine learning [27]-[30]. But gradually DA has been 

integrated with deep learning in many applications, and an 

excellent achievement has been achieved in the field of 

computer vision [31], [32].  

Broadly speaking, there are two types of feature extraction 

methods with DA: transfer subspace learning [33]-[35] and 



transfer classifier induction [36]-[38], the DA is the part of 

the former one, and the DA has several ways to get it. 

1) Marginal distribution adaptation, which aims to make 

the distance between the source domain and the target domain 

as close as possible, and a way to get closer is to minimize 

the predefined distance, e.g., maximum mean discrepancy 

(MMD), Kullback–Leibler divergence or Bregman 

divergence. 

2) Conditional distribution adaptation, which estimates the 

effect of DA by shortening the distance between conditional 

distributions, and the detailed information can be found in 

[19]. 

3) Joint distribution adaptation (JDA), which combines the 

two methods mentioned above [39], [40]. Normally, the 

smaller the distance between two domains, the more robust of 

the JDA embedded models. More information about JDA is 

given in Section III-2. 

Deep learning with DA opens a new door for the problem 

of electromechanical device fault diagnosis. The deep 

learning method usually needs enough training data, so it 

would be challenging and difficult for fault diagnosis using 

machine learning methods if there is only a small data set. 

But now the issue can be alleviated by means of DA. The DA 

can use similar but not identical source domain to solve 

classification problems in target domain. Pan et al. [28] 

proposed a Transfer Component Analysis (TCA) technique to 

map features (data) in two domains (source and target 

domains) to a Reproducing Kernel Hilbert Space (RKHS) 

using Maximum Mean Discrepancy (MMD). Long et al. [27] 

devised a transfer learning framework, called Adaptation 

Regularization Based Transfer Learning Framework (ARTL), 

by incorporating MMD into the machine learning. The major 

difference between our proposed model and these methods 

discussed above is that a deep learning scheme (i.e. deep 

learning network) is introduced in our model and used to 

extract features automatically, the transfer learning scheme 

(i.e. joint distribution adaptation) is embedded in the DLN, 

and in this way a robust and high-performance model can be 

acquired. 

III. THE PROPOSED JDDA FOR FAULT DIAGNOSIS 

OF ELECTROMECHANICAL DRIVETRAINS 

This section introduces a joint distribution optimal deep 

domain adaptation approach (JDDA), and the JDDA 

framework is showed in Fig.1. 

1. Problem Definition 

Definition 1 (Domain). Given a sample set X and the 

feature space  , where X =  1 2 3, , ,......,
n

x x x x    , let P(X) 

be a marginal probability distribution.  A domain, 

designated by , is a set that consists of the feature space 
and a marginal probability distribution P(X). Note that two 

domains 
S

and 
T

are said to be different if their feature 

space  or the marginal distribution P(X) are different, or 

simply, S T
  or ( ) ( )

S T
P X P X . In this paper, the source 

domain is defined as the training data space and their 

distribution which used for building the fault diagnosis model. 

Correspondingly, the target domain is composed of the test 

data space and the associated distribution, where the 

diagnosis model is applied to.   

Definition 2 (Task). A task  is made up of the label 

spaces Y and the conditional probability distribution ( )P Y X . 

Consider two different tasks 
S

 and 
T

, which possess 

different characteristics in two different domains 
S

and
T

. 

Two tasks 
S

 and 
T

 are said to be different, if the 

associated label spaces Y or the conditional distributions

( )P Y X are different.  

  In this paper, to bridge the gap between the source domain 

and the target domain, it is assumed that the label spaces are 

the same, but the conditional distributions ( )P Y X are different. 

In other words, the types of failures between the source 

domain and the target domain are overlapping, but the 

probability of failure occurrence is different in the changeable 

engineering environments. In short, it is assumed that
S T

,

( ) ( )P Y X P Y Xs s t t . 

Definition 3 (Motivation). Given the source domain 

containing n samples, that is,

1 1 2 2{( , ),( , ),......,( , )}
S n n

x y x y x y (n is large enough), and a 

target domain containing m samples, that is,

1 1 2 2 3{( , ),( , ), ......, }
T n n n n n n m

x y x y x x      (m is much 

smaller than n, i.e., m<<n) . The objective is to find a 

conversion function F , such that the labeled data of two 

domains have the following property: ( ( )) ( ( ))
S T

P F X P F X ,

( ( )) ( ( ))
S S T T

P Y F X P Y F X . In this paper, the former 

corresponds to the maximum mean discrepancy, while the 

latter uses the conditional distribution adaptation to match the 

difference. Therefore, a classification hyper-plane co-trained 

by the source domain 
S

and the smaller labeled data set of 

the target domain
T

 can be used to predict the unlabeled 

samples in 
T

. 

2. Deep Learning Network  

In this paper, taking into account the good feature 

extraction performance of auto-encoder (AE), it is introduced 

for feature extraction, and it is the basis of the proposed 

JDDA. The key idea of AE is that the reconstruction of the 

original data in one layer [21], to achieve such a goal, AE is 

designed to consist of two parts: coding part and decoding 

part. On the one hand, the function of the coding part is to 

extract feature of the original data, and the procedure that 

extracts feature of the original data X can be defined as

C( )h f Z ,
C

Z  . On the other hand, the decoding part is to 

restore the extracted features back to a set of data that 

possesses the same latitude with the original data, the process 

of decoding part can be defined as 
^

( )dX f Z , '( )
d

Z h ,and

(.) 1/1 exp(.)f   , which are parameterized respectively as 

follows: C C
X b   , '

d d
h b   , where  ,  

C C
b   and 

 ' ,  
d d

b   are the weight and bias matrixes of the encoder 



and decoder, respectively, so the basic structural loss function 

is defined as: 

2
^

,
1

^

1
min ( )

2

. .   Z ,  ( ),  Z ', ( ).

m

i i
b

i F

C C d d

X X
m

s t h f Z X f Z



 





   



 

(1) 

 
Fig. 1. The proposed fault diagnosis framework based on joint distribution 

adaptation. 

The symbol
F

represents a symbolic notation of the 

Frobenius norm, ˆ
i

X and
i

X individually represent the single 

sample from the feature of decoding part and the sample set 

X. 

3. Joint Distribution Optimal Deep Domain Adaptation 

Architecture for Fault Diagnosis 

The JDA is designed to find the best path to minimize the 

distance between two domains, integrating marginal 

distribution and conditional distribution is performed through 

the JDA term function in which the distance between the 

marginal distributions and the distance between the 

conditional distributions could be shorten in , and this can 

be formulated as follows:                                                                                           (2) 

+                                               

where   represents mathematical expectation. 

JDA utilizes the convenience of the Maximum Mean 

Discrepancy (MMD), the discrepancy of two distributions is 

aligned by the MMD term in which the sample mean from the 

two domains is subtracted in the reproducing kernel Hilbert 

space (RKHS), and the calculation form can be written as: 

1 1 1

11 11 1

1 1
MMD( , ) ( ) ( )

n n m

S T i j

i j n

X X x x
n m

 


  

  
            

(3) 

where 1n is the number of samples in the source domain and

1m is the number of samples in the target domain. 

: X   is the mapping function of the original feature 

space mapped to RKHS. In this study we fine-tune the MMD 

form to be: 

1 1 1

1

1 1 1 1 1 1

2

2

1 11 1

2 2
1 1 1 1 1 11 1 1 1

1 1
( , ) MMD ( , )= ( ) ( )

1 1 2
( , ) ( , ) ( , )

n n m

M S T S T i j

i j n

n n m m n m
s s t t s t

i j i j i j

i j i j i j

J X X X X x x
n m

k x x k x x k x x
n m n m

 


  

     

 

  

 

    

(4) 

where subscript M indicates that this objective function to be 

optimized is the marginal distribution, and 
2 2( , ) exp( / 2 )k x y x y   . By minimizing (4), the marginal 

distributions between domains are drawn close， and this 

only takes advantage of the differences in the marginal 

distributions. In order to get a high classification accuracy 

model, the discrepancy between the conditional distributions 

Fig. 2. The fault diagnosis algorithm for electromechanical drivetrain based on the JDDA. 



( ) ( )P Y X P Y Xs s t t of the two domains
S

and 
T

 is 

another optimization objective. Long et al. [19] proposed the 

transfer feature learning with joint distribution adaptation 

(JDA) in which the representation feature is designed to 

optimize this discrepancy by using pseudo target labels, and 

the pseudo target labels are predicted by the supervised 

classification hyper-plane (SVM) trained on the source 

domain labeled data. So the difference between the two 

distributions of features in
S

and
T

can be reduced as much 

as possible under knowing the pseudo target labels

( ( )) ( ( ))P Y F X P Y F Xs s t t . In particular, we can calculate 

the distance of the average for normal type of samples by 

applying the real label directly by assuming that

( ( )) ( ( ))
S S

P Y F X P Y F Xt t= , so that a high classification 

accuracy model can be achieved. The specific details are 

computed as follows: 

2 2

2 2 2 2 2 2

2

1 12 2

1 1 1 1 1 12 2 2 2

1 1
( , ) ( ) ( )

1 1 2
= ( , ) ( , ) ( , )

k k

k k k k k k

n m

C S T i jk k
i j

n n m m n m
s s t t s t

i j i j i jk k k k
i j i j i j

J X X x x
n m

k x x k x x k x x
n m n m

 
 

     

 

 

 

    

(5) 

where : X  is the mapping function of the original 

feature space mapped to RKHS; and 
2 2( , ) exp( / 2 )k x y x y   .  2

= ( )
k

i in x y x ks   is 

the set of samples belonging to class k in the target domain 

that fall into the common subset, and

 2
= ( )

k

j t j
m x y x k    is the set of samples belonging 

to class k in the target domain that fall into the common 

subset. 

  By minimizing (5), the conditional distributions between 

domains are drawn close. In fact, combining (4) and (5), it 

leads to the following JDA optimization problem as follows: 

1

0

       =

K

JDA M C

k

K

C

k

J J J

J

 







  

（ ）

              (6) 

Note that the MMD can be viewed as a special case of 

JDA with 0k  , we can simultaneously adapt both the 

marginal distributions and conditional distributions between 

domains. 

4. The Proposed JDDA for Drivetrain Fault Diagnosis 

This section proposes a fault diagnosis framework, which 

is shown in Fig.2. Taking into account the existing computing 

power, the JDDA is designed to include only one hidden 

layer in this study, and the main data processing is as below. 

Data from the source and target domains go through the AE 

network to get associate features, so all data is pulled into a 

same feature space (RKHS), then, the key step of the 

JDDA—JDA term is used as a tool to narrow the features 

distance of both domains in the RKHS, the SVM 

classification hyper-plane trained by labeled data of the 

source domain can be applied to the classification of the 

unlabeled data of the target domain. According to the 

structure of the JDDA, the cost function of the JDDA can be 

expressed as in equation (7). 

2
^

,
1 0

^

1
min  ( )

2

. .   Z ,  ( ),  Z ', ( )

m K

i i C
b

i kF

C C d d

X X J
m

s t h f Z X f Z




 

 

 

   

 （ ）
     (7) 

where  is the trade-off parameter of the JDA term, the 

MMD can be viewed as a special case of JDA with 

0k  .There are a total of K samples in the common subset 

that belongs to both of the two domains. 

This cost function contains the two parts mentioned in III-2, 

namely, deep learning network and joint distribution based 

deep domain adaptation architecture. The former comes from 

the direct loss of reconstruction error, and another is used to 

reduce the distance between two different domains in the 

same feature space. Another implementation aspect of the 

JDDA is the learning algorithm. The decoding layer is not 

shown in Fig. 2, because we use the features in the previous 

layer directly as the input to the next layer. In fact, the 

decoding layer still exists. The process of the learning 

algorithm is summarized below.  

Learning Algorithm: A Joint Distribution Optimal Deep 

Domain Adaptation Method for Fault Diagnosis 

Begin: 

Step 1: Randomly initialize the parameter of AE network 

Building a basic AE network structure, and the corresponding 

parameters C
 , d

 , C
b , d

b  needs to initialize by following 

the structural loss function in (1) with the labeled data. 

Step 2: Pre-train the AE network 

The raw data is made up of the unlabeled data from 
S

and

T
, and it will be used to pre-train the JDDA, the iteration 

process of solving the parameters can be written as: 

cos
1

t
C C

C

J  



 


 

(8)

                  
cos

2
t

d d

d

J  



 


 

(9)

                   
cos

3
t

C C

C

J
b b

b
 

 


 

(10)

                   
cos

4
t

d d

d

J
b b

b
 

 


 

(11) 

where ( 1,2,3,4)
i

i  is the learning rate. 

Step 3: Establishing the JDDA network 

Those parameters
C

 ,
d

 ,
C

b ,
d

b are used to build the JDDA 

based on the AE structure. Meanwhile, 
M C

J J  has been 

inserted into the loss of AE, and the final loss function (6) is 

optimized by retraining the labeled data from the two domain. 

Step 4: Training joint distribution adaptation classifier 

At this step, the classification hyper-plane of SVM is only 

determined by features ( )
S

x from 
S

. Due to the role of JDA 

term, the 
T

 features ( )
T

x can be directly separated by 

trained classifier. 

Step 5: Output classification results 



The classification results of the 
T

 features ( )
S

x are 

generated from the SVM. 

End 

Ⅳ. EXPERIMENT TEST 

We consider two test-rig systems, which are shown in Fig. 3. 

Two simulation datasets were used to test the performance of 

the proposed method. The two experiment datasets were 

acquired in two places: ball bearing test data from Case 

Western Reserve University Bearing Data Center (CWRU) 

[41], and a gearbox fault data from the prognostics and health 

management society (PHM Society) [42]. 

 

 
(a) Bearing test rig [41]               (b) Gearbox test rig [42] 

Fig.3. Experiment setup for drivetrain fault diagnosis 

 

A. Data Description 

1) Ball Bearing Test Data: experiments data was from the 

single-point drive end of the bearing in which the 

accelerometer was used to get the normal and fault data, 

and the fault data contain defects in the inner race (IN), the 

outer race (OU) and the ball (BA). Of course, the 

mentioned three kinds of fault data have four fault 

diameters (0.007, 0.014, 0.021, and 0.028), respectively. In 

addition, the motor load was set in four stages (0, 1, 2 and 

3hp), and the sampling frequency was 12 kHz. In this part, 

we used data selected from the four to create six DA 

condition (0-1hp, 0-2hp, 0-3hp, 1-2hp, 1-3hp, 2-3hp) to 

verify the performance of the model.  Taking 0-3hp as an 

example, the form of the problem definition in  section 

III-1 can be specifically designed as: 

a) Source Domain: The source domain contains 

normal and defect data from a 0hp motor load, in this 

paper, the fault diameters are selected as 0.007 and 

0.014.So

 0 0 0 0

0.007,0.014 0.007,0.014 0.007,0.014, , ,
S

normal IN OU BA  . 

b) Target Domain: Similar to the source domain, the 

target domain contains a lot of normal and defect data 

from 3hp motor loads, but a different place is that there 

is only the normal data for labeled samples, so the 

available target domain  3

T
normal  . 

c) Task: The task is categorizing the unlabeled data 

in the target domain into 

 3 3 3 3

0.007,0.014 0.007,0.014 0.007,0.014, , , .normal IN OU BA  

2) Gearbox fault dataset: This is a compound fault data. In 

order to maximize the use of this data, the tachometer 

information of helical is chosen with the accelerometers 

mounted on both the input and output shaft retaining plates, 

three kinds of data– normal gear, chipped gear (CG) and 

broken gear (BG) are included in tachometer information, 

and this fault data is collected under both high and low 

load conditions, in addition, five different (30Hz, 35Hz, 

40Hz, 45Hz, 50Hz) shaft speed have also been set. To the 

convenience of experimental data recording, several 

abbreviations are used to represent specific data, for 

example, 45L, meaning that the load condition for this data 

is low, and its shaft speed is 45Hz.For the sake of creating 

a TL situation, the problem definition in the part III-1 can 

be specifically designed as: 

a) Source Domain: In gearbox fault dataset, the 

source domain is composed of the three kinds of data of 

45L and the normal data of the target area.

 , ,
S

normal CG BG  . 

b) Target Domain: As same as source domain, the 

source domain contains five different shaft speed data 

with high load condition (30H, 35H, 40H, 45H, 50H), 

but the only data that can be labeled is normal data. 

 T
normal  . 

c) Task: The task of this part is deal with the 

unlabeled data in the target domain, this unlabeled data 

which can be classified into , ,normal CG BG . 

3) Data preprocessing: the Ball Bearing Test Data needs to 

be pre-processed. Firstly, a total of 1200 data points 

(samples) were chosen from the two domains, with 80% 

overlap. Then, due to the presence of noise, Fast Fourier 

Transform (FFT) is used to reduce effect of noise on model 

training. Next, the value of the data after FFT is magnified 

10 times, because it becomes too small. For Gearbox Fault 

Dataset, in order to remove noise interference, we assign a 

value of 0 to the value less than zero in the original data. 

B.  Experimental Results 

1) Methods Used 

For comparison purpose, the JDDA, along with several 

state-of-the-art machine learning and TL methods, are used: 

including SVM [10], [43] Logistic Regression (LR) [8], 

Back-propagation neural network (BP) [11], Transfer 

Component Analysis (TCA) [28], deep model based domain 

adaptation for fault diagnosis (DAFD) [20], and without the 

JDA term of the JDDA that we proposed (JDDA-R). The first 

3 approaches are traditional machine learning methods, the 

fourth and fifth approaches are DA methods which have been 

successively applied to fault diagnosis. The last one is a 

comparison method of JDDA and it is also a deep learning 

method (AE). 

2) Experimental Details  

For the first three methods, the source domain data is used 

to train the associated machine learning models. After the 

training is completed, unlabeled data from the target domain 

is used to test the classification accuracy of the model, but the 

training data includes not only label data from the source area 

but also normal label data from the target domain. Data 

normalization is performed for the fourth method. 



TABLE Ⅰ 

CLASSIFICATION ACCURACY FOR THE DRIVETRAIN BEARING DATA  

Without distribution adaptation technology 

Trial number 1 2 3 4 5 6 

Methods 0-1HP 0-2HP 0-3HP  1-2HP 1-3HP 2-3HP  avg. 

LR 88.8% 74.9% 79.4% 75.0% 72.5% 77.8% 78.1% 

svm 93.9% 87.7% 83.1% 74.7% 77.9% 97.8% 85.9% 

BP  74.8% 72.1% 73.7% 65.7% 89.2% 84.6% 76.7% 

JDDA-R  78.6% 74.1% 80.1% 74.9% 80.2% 75.6% 77.3% 

With distribution adaptation technology 

TCA    97.8% 75.0% 86.9% 80.1% 99.7% 80.4% 86.7% 

DAFD   96.7% 92.3% 93.6% 86.4% 93.2% 92.5% 92.5% 

JDDA 99.6% 98.6% 99.6% 97.4% 97.8% 100.0% 98.8% 

 

In terms of parameter adjustment, an empirical search 

approach is used to find the optimal parameters for the six 

comparative methods. For SVM, the LIBSVM package is 

used for classification [43], the kernel function is set to 

Gaussian kernel, and the value of the trade-off parameter is 

set to 1.5. For LR, the trade-off parameter is selected from

 0.002,0.02,0.2,2,20 . For BP, the number of hidden layer is 

set to 2, the number of hidden neurons of each layer is 1000, 

and the learning rate is set to 0.1. For JDDA-R, it means that 

the parameter   is set to 0, so only auto-encoder is used for 

feature extraction without domain adaptation term. For TCA, 

the kernel type is selected as Radical Basis Function (RBF), 

and the optimized subspaces for the processed features can 

choose from 8,16,32,64,128 .For DAFD, as it uses of a back 

propagation algorithm, the reconstruction error is gradually 

reduced, and three main adjustable parameters are:

1, 1000, 0.001and     , more details can be found in 

[20]. 

For all the DA methods considered in this study, the 

method designed for the SVM method can be used to find the 

associated optimal model parameters. For JDDA, the number 

of hidden layer is set to one and the numbers of hidden units 

are set to 1000. For the convenience of the experiments, the 

value of the model's regularization parameter is set to two. 

At last, the classification accuracy of each method is 

defined as: 

( ) ( )
( %)

n

label x k predict x k
accuracy C

x

  


    

(12) 

where
n

x  is the total number of test samples, and k  is the 

true label value that a classifier correctly identified. 

 

 

 
Fig.4. Fault diagnosis accuracy of each method on drivetrain bearing data. 

3) Results of Bearing Case Study 

As shown in TABLE Ⅰ and Fig. 4, for the methods 

without distribution adaptation, it is generally lower than the 

method that with distribution adaptation. In the trial number 3, 

the classification accuracy of JDDA-R is 16.5% lower than 

the novel JDDA. For the methods with distribution adaptation, 

the classification accuracy is also lower than that of JDDA, 

for example, the accuracy of DAFD is 6% lower than that of 

JDDA. It is worth mentioning that the classification accuracy 

of BP is the lowest among all methods. This may be 

explained from two aspects. First, we can only empirically 

find the best hidden layer and learning rate for BP, it uses a 

semi-supervised approach, and the experiment data contains 

part of the data from the target area, which affects the 

classification accuracy of the BP network.  



TABLE Ⅱ 

CLASSIFICATION ACCURACY FOR THE GEARBOX DATASET  

Without distribution adaptation technology 

Methods 45L-30H 45L-35H 45L-40H 45L-45H 45L-50H avg. 

LR 50.0% 48.5% 49.8% 52.3% 51.6% 50.4% 

svm 50.0% 50.0% 49.5% 50.4% 50.4% 50.1% 

BP  46.9% 33.9% 38.1% 28.9% 34.0% 36.4% 

JDDA-R  48.5% 46.0% 48.2% 62.3% 53.6% 51.7% 

With distribution adaptation technology 

TCA    50.8% 52.5% 60.3% 60.8% 60.1% 56.9% 

DAFD   53.8% 54.6% 57.4% 72.5% 65.1% 60.7% 

JDDA 57.9% 61.6% 69.5% 80.3% 70.4% 67.9% 

4) Results of Gearbox Case Study 

The results of the five different TL circumstances are listed in 

Table Ⅲ, where 45L-30H means that the 
S

is the data 

from 45L, and the 
T

is the data from 30H. Although the 

average accuracy of the model in all methods is high, the 

accuracy of the model is even lower than the supervised 

learning algorithm in some papers. The main reasons are as 

follows, unlike this supervised learning algorithm, the 

experimental data of the JDDA is performed under the 

condition that the train data and the test data are subject to 

different distributions.  

5) Results Summary  

As we expect, the excellent results of novel model has 

achieved when it is used to deal with the classification 

problem in the test of two actual data, the proposed method 

can indeed improve the classification accuracy of TL 

situation. 

C  Results Analysis 

In order to further explore why the performance of JDDA is 

good, the t-distributed stochastic neighbor embedding 

(t-SNE), as a dimension reduction visualization method, is 

used to reduce the dimension of features involved in both 

JDDA-R and JDDA. The reason for choosing t-SNE is that 

high dimensional data can be well visualized at 

low-dimensional space, as shown in Fig. 5(a)–(d), where the 

normal features of the two models are clearly observed and 

each fault feature is rendered in a two-dimensional map after 

dimensionality reduction. More details about the t-SNE 

application can be found in [44].  

The visualization of the JDDA features is used for reference 

purpose. For example, in Fig. 5(a), the distance between two 

domains features of the JDDA(green and blue cross marker) 

is smaller than the distance between 
S

and 
T

 features of 

the JDDA-R  (green and blue point marker). This 

characteristic proves that our model can make the distance 

between 
S

and 
T

closer in the Reproducing Kernel 

Hilbert Space (RKHS), so a high-performance SVM classifier 

is available by training with the labeled features of the JDDA. 

 

 
Fig.5. The features of JDDA and JDDA-R are displayed by t-sne in a 
reduced-dimensional dimension. The bracketed symbol S represents the 
source domain Ds and symbol T represents the target domain DT, in particular, 
the number Ⅰ represents the fault diameter value is 0.007, the number Ⅱ 
means the fault diameter value is 0.014. 

 

D  Empirical Analysis of Parameters 

In this section, the effect of the trade-off parameters of the 

JDA term on the accuracy of model classification for the 

CWRU Bearing Data is analyzed. As the mentioned above, 

the classification accuracy is a standard measure to evaluate a 

classifier’s performance. Let  be a trade-off parameter, we 

use 
10log   as the abscissa to show the effect of the change 

of   on the classification accuracy. As shown in Fig.6, in 

phase 1, 10log [ 2,0.4] . With the increasing of  , the 

performance of the JDDA becomes better and better. In phase 

2, 10log [0.4,3.5] . The JDDA maintains a good 

performance for the test data, which means that the JDDA has 

a robust classification effect. In phase 3, 10log [3.5,4] . 

The classification accuracy of JDDA drops rapidly. 



 

Fig. 6. The trade-off parameter ( ) influence for the JDDA. 

Ⅴ. CONCLUSION 

A novel deep domain adaptation learning architecture, 

combined with deep learning model and joint distribution 

adaptation (JDA), is proposed for fault diagnosis of 

electromechanical drivetrains system. The performance of the 

proposed JDDA method is tested using simulation datasets 

for bearing and gearbox, and compared with other five 

state-of-the-art methods. The main contribution of this paper 

is that a novel method of domain adaptation has been 

explored in which the distance of the representative features 

of the source domain and target domain is reduced through 

the RKHS, and the JDDA can not only be applied to fault 

diagnosis of variable working conditions, but also to other 

fields. An explanation of the better performance of JDDA is 

presented using the t-SNE. The analysis of the impact of the 

trade-off parameter on the classification accuracy of the 

JDDA provides some useful information for further 

development and improvement of the JDDA. 

In future work, we would consider the following two topics. 

Firstly, we would apply the method to more real scenario 

datasets to further test its performance, and then applied to 

real electromechanical drivetrains problem solution. So, it can 

reduce the downtime of electromechanical drivetrains (wind 

turbines, high-speed railway, etc.), save maintenance costs, 

increase power generation rate and economic benefits. 

Secondly, the distributed parallelism approach will be further 

explored and enhanced to improve the real-time performance. 

We will carry out the proposed method to the reality wind 

farm in our future work. 
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