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Dual-mode Model Predictive Control of an

Omnidirectional Wheeled Inverted Pendulum
Matthew T. Watson1, Daniel T. Gladwin2, Tony J. Prescott3, and Sebastian O. Conran4

Abstract—This article describes the position and heading
control of a novel form of omnidirectional wheeled inverted
pendulum platform known as a Collinear Mecanum Drive. This
concept uses four collinear Mecanum wheels to balance in a
similar manner to a typical two-wheeled inverted pendulum,
whilst also being able to simultaneously translate directly along
its balance axis. Control is performed using a constrained
time-optimal infinite horizon model predictive controller, with
feasibility maintained across the full reference input set. Explored
in this article is the derivation of the system dynamics model
and controller, a systematic approach to selection of controller
parameters and analysis of their effect on control performance
and complexity, and an evaluation of the controller’s efficacy in
both simulation and on a real-world experimental prototype for
simple and complex trajectories.

Index Terms—Dynamics, Underactuated Robots, Wheeled
Robots.

I. INTRODUCTION

THE Collinear Mecanum Drive (CMD) extends the mo-

bility of a two-wheeled inverted pendulum (TWIP) to

allow for omnidirectional movement, whilst simultaneously

dynamically balancing in a single axis about the upright

unstable equilibrium. This allows for the direct navigation of

gaps smaller than the platform’s width, where a TWIP would

have to perform a multi-point parallel parking manoeuvre due

to the nonholonomic constraints imposed by its wheels. This

is achieved using four individually actuated and suspended

collinear Mecanum wheels, arranged in pairs with opposite

handedness. Motion orthogonal to the balance axis is achieved

by rotating all four wheels together as in a TWIP, whilst

motion along the balance axis is generated by rotating wheels

of opposite handedness against one another. This opposition of

wheel rotation means that twice the total torque is required to

achieve the same acceleration as a TWIP. Torque requirements

are increased further when performing compound manoeuvres

in both directions with a varying heading, meaning larger

tractive forces between the wheels and ground are required

than in a similar TWIP. This necessitates the constraining of
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wheel torques in order to avoid wheel slip and loss of control.

Furthermore, given a set of acceleration commands in these

three dimensions that result in the motor torques reaching

their constraints, a decision must be made as to how best

to divide the available constrained wheel torque between the

three competing manoeuvres, whilst still maintaining balance.

Body velocity constraints must also be observed in order

to ensure the generation of safe trajectories between distant

references.

A prior work detailed the derivation of the kinematics and

dynamics models for this wheel configuration [1]. Only this

and a single other existing work explore the control of the

CMD, in which the author implements cascaded manually

tuned PID controllers [2].

The two-wheeled inverted pendulum, however, is well

studied, and possesses similar dynamics to this platform.

A number of review articles compare performance between

different classical control techniques applied to the TWIP such

as PID, LQR, and pole placement techniques. These typi-

cally find minimal performance difference between approaches

given comparable parameter tuning, and consistently poor

performance in the presence of constraints [3], [4]. Feedback

linearisation can be used to negate some of the nonlinear-

ities present in the system, achieved by a suitable change

of variables and control input, transforming the nonlinear

model into an equivalent linear one suitable for control by

classical techniques. These methods have been applied to the

TWIP for varying degrees of linearisation and control up to

providing global position control for point to point manoeuvres

[5]. Nonlinear optimal control has been implemented on a

TWIP [6], using a nonlinear method similar to LQR to

achieve full position control. However, none of these methods

provide a systematic way of ensuring constraint satisfaction,

and therefore must be provided with a suitable externally

generated reference trajectory that results in the closed loop

system observing the desired constraints. It must therefore be

accepted that constraints may be violated during disturbance

unless a suitable updated recovery trajectory can be provided

sufficiently quickly as to prevent violation.

Model predictive control (MPC) uses a model of the plant

to predict the response of the system to a number of successive

control moves, which can be optimally chosen to reduce a cost

function that defines the controller’s desired performance over

a receding or infinite prediction horizon. This online optimisa-

tion allows for the systematic handling of constraints, making

this type of controller well suited to this application. However,

these approaches are much more computationally demanding

due to their need to solve a numerical optimisation for every
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Fig. 1: Collinear Mecanum Drive prototype upon which

modelling and experiments are based

control iteration, making their real-time implementation on

systems with fast dynamics challenging. MPCs with linear

prediction models and constraints have been well studied in

the context of cart and pole inverted pendulum, but their appli-

cation to TWIPs has been limited. Dini [7] implements a finite

horizon MPC, but only for the control of the yaw and pitch

states. Hirose [8] and Yue [9] also control the system’s forward

velocity, incorporating both pitch and velocity constraints.

Both still rely on an externally generated velocity trajectory

in order avoid infeasibility when performing point-to-point

manoeuvres. Ohhira [10] comes close to implementing a full

MPC position controller, in which a stabilising inner LQR is

used to provide a closed loop system that is then augmented by

an outer optimal predictive controller, in a similar manner to

dual-mode MPC. However, the inner loop is calculated with a

0.01 s sample time, whilst the outer optimiser is computed with

a 0.08 s sample time, meaning that constraint satisfaction can

only be guaranteed when the inner and outer loop sampling

instants coincide. This intermittent enforcement of the hard

input constraints could allow a large disturbance with an

aggressive controller to demand a sufficiently large wheel

torque as to induce wheel slip and loss of control.

This paper briefly recaps the derivation of the kinemat-

ics and dynamics model of the CMD, and then details the

derivation, simulation, and implementation of a constrained

dual-mode MPC on an experimental CMD prototype. This

controller topology was chosen for its systematic design

approach, its numerical simplicity in comparison to nonlinear

MPC approaches, its a priori stability guarantee, and its

improved numerical conditioning in the prediction of open

loop unstable plants [11]. Additionally, recent approaches to

ensuring feasibility for the full set of unconstrained reference

inputs are incorporated whilst maintaining optimality [12],

[13]. The effect of controller parameters on the feasible state

set is analysed, and a systematic design approach is described

for the selection of control horizon nc and quadratic cost

weighting matrices Q and R. Finally, both simulated and

experimental results demonstrate the suitability and efficacy

of this controller for the control of a CMD, performed using
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Fig. 2: Collinear Mecanum Drive coordinates and parameters

the prototype in Fig. 1.

II. MODEL DERIVATION

Consider the CMD depicted in Fig. 2 on a flat plane,

where {E, ex, ey, ez} denotes the fixed reference frame, and

{B, bx, by, bz} the body attached frame obtained by rotating

E about ez by φ, with the origin of B located on the wheel

rotation axis in the center of the platform, represented by the

rotation matrix Reb. {P, px, py, pz} represents the pendulum

attached frame obtained by rotating B about bx by θp, with

rotation matrix Rbp. The origin of P is located at the pendulum

center of mass, a translation of hpp̂z from B, with mass

mp and symmetric inertia tensor Ip = diag(Ipx, Ipy, Ipz).
The wheel attached frames Wi for wheels i = [1 . . 4]
are obtained by a translation of lib̂x from B, and a rotation

about bx by θi, or by the rotation matrix Rbwi
. All wheels

have identical masses mw and symmetric inertia tensors

Iw = diag(Iwx, Iwyz, Iwyz). Each wheel is of radius rw, and

has affixed about its circumference a ring of unactuated rollers,

with their rotation axes offset from that of the parent wheel by

a rotation of αi about an axis orthogonal to the parent wheel

rotation axis and passing through the center of the roller. The

contact point between the wheel and roller is assumed to be

fixed directly under the center of the wheel. For this platform

standard Mecanum wheels are used, so αi = ±π/4 ∀ i.
From [1] the nonholonomic no-slip constraint imposed by

a Mecanum wheel can be defined in E as

cos(α+ φ)

sin(α)
ẋ+

sin(α+ φ)

sin(α)
ẏ + φ̇li + rwθ̇i = 0 (1)

This can be applied to wheels 1 through 4 and written in matrix

form to define the platform’s inverse kinematic mapping







θ̇1
θ̇2
θ̇3
θ̇4






= −

1

rw










cos(α1+φ)
sin(α1)

sin(α1+φ)
sin(α1)

l1 0
cos(α2+φ)
sin(α2)

sin(α2+φ)
sin(α2)

l2 0
cos(α3+φ)
sin(α3)

sin(α3+φ)
sin(α3)

l3 0
cos(α4+φ)
sin(α4)

sin(α4+φ)
sin(α4)

l4 0
















ẋ
ẏ

φ̇

θ̇p







(2)
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The system’s dynamics equations are derived by use of

the Euler-Lagrange equation in terms of the Lagrangian L,

a column vector of generalised coordinates q and forces

Q, a column vector of r Lagrange multipliers, and Pfaffian

constraint matrix M(q), defined as

d

dt

(
∂L

∂q̇

)

−
∂L

∂q
= Q+MT (q)λ (3)

where M(q) satisfies M(q)q̇ = 0.

The generalised coordinates are selected as q = [x, y, φ, θp,
θ1, θ2, θ3, θ4]

T , and M(q) is derived from (2) as

M(q) =










cos(α1+φ)
sin(α1)

sin(α1+φ)
sin(α1)

l1 0
cos(α2+φ)
sin(α2)

sin(α2+φ)
sin(α2)

l2 0
cos(α3+φ)
sin(α3)

sin(α3+φ)
sin(α3)

l3 0
cos(α4+φ)
sin(α4)

sin(α4+φ)
sin(α4)

l4 0

[rwI4×4]










(4)

The Lagrangian L is found as the difference of system

kinetic and potential energy as L = K − U , where K rep-

resents the sum of translational and rotational kinetic energy,

and U the total potential energy. The rotational kinetic energy

of the system is defined as the sum of rotational energy of the

pendulum mass and four wheel masses as

Kr =
1

2
~ωT
p Ip~ωp +

1

2

4∑

i=1

~ωT
wi
Iw~ωwi

(5)

where

~ωb = φ̇b̂z

~ωp = RT
bp~ωb + θ̇pp̂x

~ωw,i = RT
bwi

~ωb + θ̇iŵx

(6)

Similarly, translational kinetic energy is defined as the sum

of that of the pendulum and four wheel masses as

Kt =
1

2
~vTp mp~vp +

1

2

4∑

i=1

~vTwi
mw~vwi

(7)

where

~vp = RT
bpR

T
eb

[
ẋ ẏ 0

]T
+ ~ωp × hp̂z

~vwi
= RT

bwi
RT

eb

[
ẋ ẏ 0

]T
+ ~ωwi

× liŵx

(8)

Potential energy is purely that due to gravity as

U = mpghp cos(θp) (9)

and assuming no friction Q can be defined as

Q =

[

01×3

(

−
4∑

i=1

τi

)

τ1 τ2 τ3 τ4

]T

(10)

where τ is a column vector in which τi represents a motor

drive torque on wheel i. Note as the wheel actuators are

mounted to the pendulum body a counter-torque is also applied

to the pendulum.

Introducing Lagrange multipliers λ ∈ R
4 allows the eval-

uation of (3), giving a system of eight ODEs. Defining Λ
as a basis for the null space of M such that Λ annihilates

M as MΛ = 0, a pre-multiplication of (3) by ΛT allows

the elimination of the Lagrange multipliers, reducing (3) to

Parameter Value Parameter Value

α1, α4 −π/4 rad Iwx 5.51×10−5 kgm2

α2, α3
π/4 rad Iwyz 5×10−5 kgm2

mp 2.47 kg l1,−l4 0.105m

mw 0.145 kg l2,−l3 0.063m

Ipx 0.0173 kgm2 rw 0.03m

Ipy , Ipz 0.025 kgm2 hp 0.055m

TABLE I: Model parameters derived from a CAD model of

the prototype in Fig. 1.

a system of four ODEs representing the dynamics of the

system in terms of the reduced generalised coordinate vector

ζ =
[
x y φ θp

]T
. These can be arranged into the standard

passive Lagrangian form

M(ζ)ζ̈ + C(ζ, ζ̇)ζ̇ +G(ζ) = H(ζ)τ (11)

with symmetric positive definite inertia matrix M(ζ), cen-

tripetal and Coriolis matrix C(ζ, ζ̇), chosen using the Christof-

fel symbols of M(ζ) so that Ṁ − 2C is skew symmetric,

gravity matrix G(ζ), and nonlinear input map H(ζ). Model

parameters for the prototype shown in Fig. 1 are given in Table

I.

III. CONTROL

Linearising (11) about the stationary upright position with

φ = 0 yields a prediction model suitable for development of

a linear model predictive controller in the form

xk+1 = Axk +Buk yk = Cxk (12)

with state vector x =
[

x y φ θp vx vy φ̇ θ̇p
]
, in

which vx and vy represent body frame velocities with time

integrals x and y. This linearisation negates the nonlinearity

in the integration of body accelerations to global positions with

a varying φ; correction of this error is assumed to be provided

in the external generation of reference trajectories.

A dual-mode controller is chosen for its a priori stability

guarantee and improved numerical conditioning in the predic-

tion of open loop unstable plants [11]. This controller uses the

control law

uk = −Kxk + ck k ≤ nc

uk = −Kxk k > nc

(13)

where K represents an unconstrained optimal feedback, and

ck represents the first element of an optimised sequence of nc

future perturbations from the unconstrained optimal, denoted

c
→k

, where the notation c
→k

represents the column vector

formed by stacking future values of cj for j = [k . . k+nc−1],

i.e. c
→k

=
[
ck ck+1 . . . ck+nc−1

]T
.

A. Reference Tracking

In order to track a varying reference rk the performance

index applied at yk = rk must propose no change to the

input. To achieve this the model must be redefined in terms

of deviations x̂k and ûk from the desired steady states xss|k
and uss|k at step k as xk = x̂k + xss|k and uk = ûk + uss|k.
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The steady state values are calculated by the simultaneous

equations yss|k = Cxss|k, xss|k = Axss|k +Buss|k, arranged

to solve for xss|k, uss|k in matrix form with yss|k = rk as

[
C 0

A− I B

]+ [
r
0

]

=

[
xss|k
uss|k

]

=

[
Mx

Mu

] [
r
0

]

(14)

allowing xss|k, uss|k to be defined as

xss|k = Mxrk uss|k = Murk (15)

Substituting (13) into (12) and applying the above change

of variables gives

xk+1 − xss|k+1 = Φ(xk − xss|k) +Bck

uk − uss|k = −K(xk − xss|k) + ck
(16)

where Φ = A−BK, which can then be substituted with (15)

to give

xk+1 = Φxk + (I − Φ)Mxrk+1 +Bck

uk = −Kxk + (KMx +Mu)rk+1 + ck
(17)

B. Autonomous Model Formulation & Reference Previewing

Instead of continuing with two separate modes as in

(13), analysis can be simplified by the formation of an

all-encompassing autonomous prediction model of the form

Zk+1 = ΨZk. This also allows constraints of the form Gx ≤ f
to be applied to predicted step Zk+n as GΨnZk ≤ f .

Additionally, advanced knowledge of nr future reference

inputs can be incorporated by the inclusion of r
→k+1

=
[
rk+1 rk+2 . . . rk+nr+1

]T
in the autonomous model

state. Typically nr ≤ nc, as designing a controller to optimise

its trajectory against a longer reference previewing horizon

than its control horizon introduces a transient tracking error

and yields undesirable performance [11]. In this article it is

assumed that nr = nc. The change in advanced knowledge

available to the controller over k can be defined as









rk+2

rk+3

...

rk+nr+1

rk+nr+1










︸ ︷︷ ︸
r
→k+2

=










0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 0 I
0 0 0 0 I










︸ ︷︷ ︸

Dr








rk+1

rk+2

...

rk+nr+1








︸ ︷︷ ︸
r
→k+1

(18)

in which at k > nr the controller’s final steady state reference

is assumed to be equal to rk+nr+1

Similarly, the matrix Dc captures the change in the future

perturbation vector c
→k

over one prediction step








ck+1

...

ck+nc

0








︸ ︷︷ ︸
c
→k+1

=










0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 0 I
0 0 0 0 0










︸ ︷︷ ︸

Dc








ck
ck+1

...

ck+nc








︸ ︷︷ ︸
c
→k

(19)

This allows the definition of the autonomous prediction

model Ψ as




xk+1

c
→k+1

r
→k+2





︸ ︷︷ ︸

Zk+1

=





Φ BDck (Φ− I)MxDrk+1

0 Dc 0
0 0 Dr





︸ ︷︷ ︸

Ψ





xk
c
→k

r
→k+1





︸ ︷︷ ︸

Zk

(20)

where Dck and Drk+1
select the first elements of c

→k
and r

→k+1
respectively.

C. Cost Function Derivation

A standard quadratic cost function that drives the state and

input towards their desired steady state values can be defined

as

J =

∞∑

i=1

(xk+i − xss|k+i)
TQ(xk+i − xss|k+i)

+ (uk+i−1 − uss|k+i−1)
TR(uk+i−1 − uss|k+i−1) (21)

where Q and R are diagonal matrices scaling the quadratic

cost of each state and input error.

xk+i − xss|k+i and uk+i−1 −uss|k+i−1 can be redefined in

terms of the autonomous model state Zk as

xk+i − xss|k+i =
[
I 0 −MxDrk+1

]

︸ ︷︷ ︸

Kxss

Zk+i−1 (22)

uk+i−1 − uss|k+i−1 =





−K
Dck

−MuDrk+1





T

︸ ︷︷ ︸

Kuss

Zk+i−1 (23)

allowing (21) to be rewritten in terms of Kxss, Kuss, and Zk

as

J =

∞∑

i=1

(KxssZk+i)
TQ(KxssZk+i)

+ (KussZk+i−1)
TR(KussZk+i−1) (24)

which can be rewritten as

J =

∞∑

i=0

(KxssZk+i+1)
TQ(KxssZk+i+1)

+ (KussZk+i)
TR(KussZk+i) (25)

It is then possible to substitute for Zk+i+1 using Zk+i+1 =
ΨZk+i

J =
∞∑

i=0

ZT
k+i

[
(KxssΨ)TQ(KxssΨ)

+(Kuss)
TR(Kuss)

]
Zk+i (26)

From the autonomous model it is then seen that Zk+i = ΨiZk,

allowing substitution of Zk+i and factorisation of the now

constant Zk term

J = ZT
k

{
∞∑

i=0

(Ψi)T
(

KT
xssΨ

TQKxssΨ

+KT
ussRKuss

)

Ψi

}

Zk (27)
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The discrete Lyapunov equation can then be used to convert

this convergent infinite series into the form

J = ZT
k SZk =





xk
c
→k

r
→k+1





T 



Sx Sxc Sxr

ST
xc Sc Scr

ST
xr ST

cr Sr









xk
c
→k

r
→k+1



 (28)

This can be minimised by the solution of

dJ

d c
→k

= 0 (29)

to give the unconstrained optimal perturbation required to

incorporate advanced reference knowledge

c
→k

= −S−1
c

(

Sxcxk + Scr r→k+1

)

(30)

As expected, it is found that c
→k

=
[
0 0 . . . 0

]
for

r
→k+1

=
[
rk+1 rk+1 . . . rk+1

]T
, and Sxc ≡ 0 and can

therefore be omitted [11].

It is therefore clear that c
→k

6= 0 if any advanced reference

knowledge is included, even for the unconstrained case. This

goes against the dual-mode paradigm, in that for the uncon-

strained case the optimal trajectory should be fully captured

by the underlying control law, meaning that in the absence of

constraints we should have c
→k

=
[
0 0 . . . 0

]T
∀ r

→k+1
.

To reinstate this intrinsic unconstrained optimality, the pertur-

bation term can be redefined as c
→k

= ĉ
→k

+ −S−1
c Scr r→k+1

,

now instead optimising for ĉ
→k

. The elements not dependant

on the DoF ĉ
→k

can then be removed, allowing the redefinition

of the QP and control law (17) as

min
ĉ
→k

J =
[

ĉ
→k

− S−1
c Scr r→k+1

]T

Sc

[

ĉ
→k

− S−1
c Scr r→k+1

]

+ 2
[

ĉ
→k

− S−1
c Scr r→k+1

]T

Scr r→k+1
(31)

uk = −Kxk +
[
(KMx +Mu)Drk+1

−DckS
−1
c Scr

]
r
→k+1

+ ĉk (32)

This new control law is presented as a control block diagram

in Fig. 3. All blocks execute at the same discrete interval.

Since the unconstrained optimal perturbation is known to be

ĉ
→k

= 0, the performance index must be purely quadratic [14],

allowing (31) to be simplified to

min
ĉ
→k

J = ĉ
→

T

k
Sc ĉ→k

(33)

The autonomous model (20) can be redefined to incorporate

this reference previewing feedforward as





xk+1

c
→k+1

r
→k+2





︸ ︷︷ ︸

Zk+1

=





Φ BDck Γ
0 Dc 0
0 0 Dr





︸ ︷︷ ︸

Ψ





xk
c
→k

r
→k+1





︸ ︷︷ ︸

Zk

(34)

where Γ = −BDckS
−1
c Scr + (I − Φ)MxDrk+1

.

QP

P

−K

CMD
uk

r
→k+1

ck xk

Fig. 3: Control block diagram, with feedforward matrix P =
(KMx +Mu)Drk+1

−DckS
−1
c Scr.

D. Infeasible Reference Tracking

For this controller to be practically useful it must be able

to drive the platform to any reference position and heading.

However, the nature of the dual mode controller means that

there must exist a feasible control trajectory c
→k

that takes

the platform into the set of states from which the closed loop

system at k > nc will not violate any constraints over the

infinite horizon, referred to as the maximal admissible set

(MAS, SMAS) [11]. This lies within a superset of states from

which there exists a sequence of feasible control moves c
→k

that drive the initial state into the MAS, referred to as the

maximal controlled admissible set (MCAS, SMCAS). For any

initial state outside SMCAS there does not exist a sequence of

control moves that can move the state into SMAS within k ≤ nc

without violating constraints, rendering the QP infeasible. For

this application this limits step translations to approximately

0.1m for nc = 10, dependant on initial state and choice

of quadratic cost function matrices Q and R, rendering the

controller impractical for real-world implementation.

Multiple approaches exist to addressing this problem. Simon

[15] replaces r with a pseudo-reference r̃ as an additional

degree of freedom, penalising deviation of this from the

true reference. Dughman [13] introduces an extra perturba-

tion term c∞ to the end of the control sequence c
→k

that

acts as a constant perturbation to the input for k > nc.

This constant perturbation has the same effect as a pseudo-

reference, with the equivalent pseudo-reference calculable as

r̃ = C(I − Φ)−1Bc∞ + r.

Here the latter approach is taken, introducing a c∞ term for

k > nc. The opportunity is also taken to introduce a vector

of slack variables s
→k

that will be later used to soften the

controller’s output constraints, giving an updated autonomous

model Ψ and state Z








xk+1

c
→k+1

c∞
r
→k+2

s
→k+1









︸ ︷︷ ︸

Zk+1

=









Φ BDck 0 Γ 0
0 Dc Ec 0 0
0 0 I 0 0
0 0 0 Dr 0
0 0 0 0 Ds









︸ ︷︷ ︸

Ψ









xk
c
→k

c∞
r
→k+1

s
→k









︸ ︷︷ ︸

Zk

(35)

where Ec is used to replace the last value of c
→k+1

with c∞

as Ec =
[
0 0 . . . 0 I

]T
, and where Ds represents a

shift matrix with a similar structure as Dc. s
→k

is chosen to

be much larger than required for the derivation of constraints,

with unused slack variables later removed by the trimming of

empty columns from Fs and their associated element in Ss.
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The QP (33) can now be redefined to additionally optimise

for c∞ and s
→k

as

min
{

ĉ
→k

,c∞, s
→k

}

J =





ĉ
→k

c∞
s
→k





T 



Sc 0 0
0 WSc∞ 0
0 0 Ss









ĉ
→k

c∞
s
→k



 (36)

Sc∞ is scaled by a very small factor W so that choice of

c∞ has a minimal effect on c
→k

, whilst ensuring c∞ → 0 as

k → ∞ and feasibility ∀ r
→k+1

. Ss is a diagonal matrix of large

slack weights used to heavily penalise deviation of s
→k

from

0, so that its elements are only optimised to be substantially

larger than zero if feasibility of the QP would be otherwise

lost.

E. Selection of Q, R, Ts

The discretisation period Ts must be chosen to trade off dis-

turbance rejection and tracking performance against robustness

to solver delay and computational simplicity, and is chosen

through trial and error as Ts = 35ms.
For this application the controller is desired to track ref-

erence body positions and heading, so Q is initially set to

Q = diag
([
1 1 1 01×5

])
. R must be chosen as a

trade-off between control performance and both robustness

to estimation error and prediction uncertainty, so a value of

R = 0.1I4×4 is chosen.

F. Constraint Derivation

Hard input constraints on the wheel torques |τ | ≤ τ are

required in order to avoid wheel slip. Output constraints are

required on the θp state in order to prevent the controller from

attempting to translate using an unrealistic lean angle, as well

as to keep the system near the model operating point. The vx
vy and φ̇ states must be constrained in order to maintain a

safe margin from the edge of SMCAS for the controller to be

able to handle disturbances, as well as to ensure the controller

generates safe and sensible velocity profiles.

Hard constraints on the input |uk| ≤ u and softened output

constraints |xk| ≤ x at time k are represented in the form







−K Dck 0 P 0
K −Dck 0 −P 0
C 0 0 0 −Dsk

−C 0 0 0 −Dsk







︸ ︷︷ ︸

G









xk
c
→k

c∞
r
→k+1

s
→k









︸ ︷︷ ︸

Zk

≤







u
u
x
x







︸︷︷︸

f

(37)

where P = −DckS
−1
c Scr + (KMx +Mu)Drk .

These constraints can be projected over an ncon constraint

horizon by use of the autonomous model as









G
GΨ
GΨ2

...

GΨncon










︸ ︷︷ ︸

F

Zk ≤








f
f
...

f








︸︷︷︸
t

(38)
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−1
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v
y
(m

s−
1
)

Fig. 4: Comparison of controller response in the regulation

case to an initial constraint violation of vy = 2vy for ni =
[1, 2, 3]

where ncon > nc, and ncon is sufficiently large as to fully define

SMAS, as from Section III-D membership of SMAS at k = nc+1
is sufficient to guarantee constraint satisfaction over the infinite

horizon. However, this approach to defining SMAS can result

in redundant constraints, and provides no systematic method

for selection of ncon.

Fortunately, algorithms for deriving the minimal set of

constraints required to capture SMAS are well studied in the

literature [16] [17], so these existing methods are utilised to

derive F and are therefore not discussed any further1.

G. Slack Variable Distribution

For the prototype described in this paper with nc = 10, SMAS

can be defined using approximately 90 output constraints.

Softening each of these constraints individually requires an

equal number of slack variables, increasing the QP DoF from

52 to 142, a large increase in complexity. To lessen this, the

number of slack variables can be reduced by sharing slack

variables across multiple timesteps through redefinition of Fs

and removal of entries from Ss. For this controller individual

slack variables are used for the first ni timesteps, with ni = 1
for the vx and φ̇ states and ni = 3 for the θp and vy states, with

a single slack variable per state shared for the rest of the infi-

nite horizon. This reduces ns from ns ≈ 90 to ns = 12. While

this method with ni = 1 for all states is sufficient to maintain

feasibility during disturbance, the controller has insufficient

degrees of freedom to quickly address constraint violations.

A comparison of controller response for ni = [1, 2, 3] in the

regulation case to an initial disturbance of vy = 2vy is shown

in Fig. 4, in which a large variation in the time taken to re-

establish constraint satisfaction is apparent between different

values of ni.

Slack weights in (36) for non-shared slack variables are

set to near zero to allow the controller to worsen constraint

violation over a short horizon to improve the rate of con-

vergence to SO over the infinite horizon. For example, for

a system with vy = 2vy the desirable response is for the

1Elements of F and Ψ that multiply onto s
→k

must be temporarily removed

whilst deriving the MAS.
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Fig. 5: Cross section of SMCAS across θp and vy , taken

through the origin (solid, front) and through θ̇p = 4 rad s−1

(hatched, back), with varying control horizon nc and Q =
diag (11×3, 01×5).

controller to briefly increase vy in order to drive θp negative

to start decelerating. A large slack weight for the slacks at

k ≤ 3 penalises this type of quick correction, preventing

the system from correcting the violation as aggressively as is

desired, resulting in a longer duration of constraint violation.

The infinite horizon slack weights are set to the region of 105

to ensure that all resulting trajectories bring the state towards

SO as quickly as possible, regardless of reference. The cost

of s∞ must also be much greater than that due to tracking

error, otherwise a distant reference trajectory will cause the

controller to purposefully generate a constraint violation.

H. Constraint Feasibility

While the output constraints applied to vx vy φ̇ and θp
are softened to maintain feasibility during disturbance, the

hard input constraints applied to u
→k

in combination with the

terminal constraint set effectively apply their own constraints

to vx vy and θp, albeit with a larger constrained range. This

is due to the requirement for the controller to direct the

state into SMAS at k = nc + 1. For example, for a system

with a large vy and θp of the same sign, a large control

horizon is required in order to give the controller enough

time to manipulate the plant into SMAS using its constrained

input. This can lead to parts of the output constraint set SO

being infeasible. Care must therefore be taken to ensure nc

and u are sufficiently large when specifying SO in order to

ensure SO ⊆ SMCAS. Additionally, a large margin must be

allowed due to use of softened output constraints, otherwise

an acceptable constraint violation could result in infeasibility.

For this application the maximum possible vy and θp values for

which the controller must remain feasible are expected to be

±3m s−1 and ±0.4 rad respectively, with minimal disturbance

expected in the open-loop stable vx and φ̇ states.

The implied constraint for each element of x can be found

by fixing all other elements of x and solving a linear program

to find the maximum constrained value of the remaining

element of x. For example, the maximum static lean angle

can be found by

max
︸︷︷︸

{θp, c→k
,c∞}

[1 0 . . . 0]





θp
c
→k

c∞



 s.t. F





θp
c
→k

c∞



 ≤ t (39)

−4 −2 0 2 4

−1

0

1

vy(ms−1)

θ
p
(r
a
d
)

nc = 16

nc = 8

nc = 4

nc = 2

nc = 1

Fig. 6: Cross section of SMCAS across θp and vy for varying

control horizon nc and Q = diag (11×3, 01×4, 0.01).

where F and t are redefined to include the now fixed elements

of x.

Analysing a 2D cross-section of SMCAS at the origin across

the vy and θp states shows the relationship between feasibility

and these two states, shown in Fig. 5. Interestingly, for the

QP to remain feasible for the desired output constraint set

and anticipated magnitude of constraint violation a control

horizon of nc ≥ 8 is required, placing a lower limit on

nc for this set of controller parameters. This analysis also

ignores the effect of the other remaining states on feasibility,

with the hatched areas in Fig. 5 showing a cross section of

SMCAS through θ̇p = 4 rad s−1, a more realistic representation

of a large external impulse disturbance along the by axis.

This emphasises the importance of a large control horizon

and therefore large MCAS if a combination of equally signed

disturbances in the vy , θp, and θ̇p states are to not result in

infeasibility. The relationship between choice of nc and u
also extends to the x and φ subsystems, but neither require

a long control horizon in order for the MCAS to encompass

the desired output constraints and their anticipated violations.

These figures demonstrates one of the main disadvantages

of the dual-mode approach to predictive control, in that for

a given cost function a long control horizon can be required

in order to ensure a sufficiently large MCAS relative to the

soft output constraint set. For the same cost function and

constraints this can only be addressed by increasing nc at a

cost of execution time, or by increasing Ts at a cost of control

performance and model accuracy.

Alternatively, a modification to the cost function can be

used to manipulate the unconstrained feedback K such that

a larger MCAS can be obtained for the same nc and Ts. Q
is therefore modified to Q = diag (11×3, 01×4, 0.01), with a

cross-section of the new MCAS shown in Fig. 6. This shows

that a small control horizon is now able to fully access the

anticipated constraint violation set, at a cost of less aggressive

control of the y state. A similar effect could be achieved

through control move blocking [18], however, this method

does not allow the embedding of the reference previewing

feedforward term into the unconstrained control law as in (32).

IV. SIMULATION RESULTS

The quadratic program is solved using qpOASES [19],

an online active set solver, implemented on an Intel i7-
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Fig. 7: Simulated controller response to a step reference of

y = [0, 1]m. Trajectories are solid lines, references are dashed,

constraints are dot-dash.

4720HQ processor for simulated results and an Intel i7-8650U

for experimental results. Simulation is performed using the

continuous time nonlinear plant model.

A. Step Reference Tracking

Fig. 7 shows the simulated response of the controller to a

step reference input of ry = [0, 1]. This shows a response with

minimal overshoot and sensible preemption of the reference

change. c∞ correctly increases at the moment of the reference

step to maintain feasibility, tending to zero as the system

approaches the reference. The controller shows satisfaction of

all constraints, saturating the input for a number of samples

and producing near minimum-time v̇y and θp trajectories.

Execution time peaks at the instant of the reference step to

3ms, an acceptable control delay, quickly droping below 1ms
for the remainder of the trajectory, and computing nearly

instantly once x ∈ SMAS.

Fig. 8 shows the system’s response to an rx = [0, 1]
step reference input. This demonstrates close to bang-bang

control without any constraint violation, again demonstrating

the ability of the optimal control approach to produce close

to minimum time trajectories in the presence of constraints. A

step reference applied to rφ generates very similar trajectories

and is therefore omitted.
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−0.1

0

0.1

u (Nm)

0 2 4 6
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Fig. 8: Simulated controller response to a step reference of

rx = [0, 1]m
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Fig. 9: Simulated controller response in regulation scenario

to an initial disturbance of vy = 2ms−1 = 2vy

B. Constraint-Violating Disturbance Handling

Fig. 9 aims to demonstrate the controller’s handling of large

constraint-violating disturbances. For this figure the reference

is kept at the origin and the system is given an initial forward

velocity vy = 2ms−1, whilst maintaining all other initial

states the origin. The controller is seen to briefly worsen

constraint violation by increasing vy to lean the platform

towards the origin, maintaining θp = θp to decelerate as

quickly as constraints allow, before maintaining vy = −vy
until x = 0 with no overshoot.

C. Figure-of-8 Trajectory Tracking

In Fig. 10 a figure-of-8 trajectory of 10 s duration is used to

demonstrate the response of the controller to a more complex

trajectory for nc = 10, in which a small phase lag is evident in

the y state. This highlights a drawback of the dual-mode MPC

approach; the use of a closed loop prediction model means that

when given a previewed section of a continuously changing

reference the controller is optimising its future trajectory to

come to rest at rk+nc+1, meaning it must plan for its state at

k = nc + 1 to lie within SMAS. In practise this means that the

system can only increase vy to a value from which it can enter

SMAS in nc timesteps, which for the value of nc used here is

insufficient to correctly track the given velocity profile. This
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Fig. 10: Simulated state trajectories with nc = 10 (blue)

and nc = 28 (red) for a figure-of-8 reference with constant φ
(yellow, dashed), starting at the origin with an initial direction

of down and left.
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Fig. 11: State trajectories for Fig. 10 with nc = 10.

results in the system lagging behind the desired trajectory,

which in turn increases the effective stopping distance from

the target steady state that the controller is able to use to enter

SMAS at k = nc + 1 from a given velocity. This phase lag

increases until the system has accumulated sufficient distance

from rk+nc+1 to be able to safely reach the velocity required

to keep up with the moving reference.

This can be addressed by ensuring a reference previewing

period that is of sufficient length to fully capture the transition

of the system from any state within SO into SMAS without

constraint violation. This value of nc can be approximated by

examining the system response in the regulation case to an

initial forward velocity of vy = 1, which indicates a stopping

distance of 0.53m, taking 0.56 s for the system to enter SMAS.

Two approaches exist to ensure this; the reference previewing

period and therefore nc can be increased to match the stopping

time at nc = 28, at a cost of greater computational complexity,

or the underlying gain K can be increased and the output

constraint set enlarged in order to allow the system to reach

the required steady state in less time. However, increasing K
in turn decreases the size of SMCAS as discussed in Section
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Fig. 12: Experimental response to a step reference of ry =
[0, 1]m

III-H, as well as increasing sensitivity to parameter/model

uncertainty and noise. Enlarging the output constraint set is

also ineffective, as the same problem occurs, only at a larger

velocity. For demonstration nc and nr are therefore increased

to 28, with the response to the same figure-of-8 trajectory also

shown in Fig. 10. This also allows a reduction of R in contrast

to Section III-H, as this larger control horizon already enlarges

SMCAS to encompass SO with sufficient margin. However, this

increase in control horizon increases worst case execution time

to texec = 6.4ms, which in practise is too large for the real-

time control of this particular system. The control horizon

is therefore left unchanged, and a small amount of transient

tracking error at large velocities is accepted.

Also visible in Fig. 11 is a cross coupling between the vx
and φ states. This is due to the use of a linearised prediction

model, but is a minor error with a peak of 2×10−2 rad.

This, along with good constraint tracking of θp in Fig. 7 and

9 indicates that the linearised model is a suitably accurate

approximation of the real system for use as a prediction model

with this choice of SO.

V. EXPERIMENTAL RESULTS

The same step and figure-of-8 trajectory references from

Fig. 7-11 are now applied to the experimental prototype. The

controller output is updated as continuously as execution time

allows in order to improve disturbance rejection, with a typical

control update rate of 10ms.
Fig. 12 shows the prototype’s response to a step of ry =

[0, 1]m. The resulting trajectory has a good similarity to that
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Fig. 13: Experimental response in the regulation case to an

initial velocity disturbance of approximately 2m s−1
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Fig. 14: Experimental response to a step reference of rx =
[0, 1]m

in Fig. 7, showing acceptable satisfaction of input and output

constraints. Fig. 13 shows the prototype’s response to a large

constraint violating velocity disturbance of vy ≈ 2m s−1 =
2vy as in Fig. 9, again showing very similar performance to

that predicted by simulation.

Fig. 14 shows a step input in rx. This demonstrates the

benefit of using a constrained optimal controller to directly

control motor torques, in that the controller is able to optimally

saturate the input for a large number of timesteps with no

negative impact on controller stability. This figure also shows

minimal disturbance to the y state when performing lateral

movement, and shows exact constraint satisfaction. This re-

sponse does exhibit a small steady-state error, likely due to the

stable damped dynamics of this subsystem and static friction in

the Mecanum wheel roller bearings. This could be addressed

in future work by the incorporation of integral action into the

controller, likely through an output disturbance observer [11],

or by incorporation of friction into the prediction model.

Finally, Fig. 15 shows the prototype’s response to the same

figure-of-8 trajectory as in Fig. 11. This shows the same

expected phase lag in the y state as in simulation, along with

the same x error as in Fig. 14, now also presenting as small

degree of lag behind the desired trajectory.
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Fig. 15: Experimental trajectories for a figure-of-8 reference

of 10 s duration and constant φ.

VI. CONCLUSION

This article has demonstrated the first successful implemen-

tation of a real time constrained time-optimal infinite-horizon

MPC for position and heading control of a wheeled inverted

pendulum. This is demonstrated on a platform of the Collinear

Mecanum Drive configuration, though through a redefinition

of the nonholonomic constraints (1) and reduction of ζ this

method can be adapted to the more common two-wheeled

inverted pendulum.

Given the good experimental performance demonstrated by

this controller on this small and highly dynamic prototype,

future work would explore application of this controller to

a larger system with slower dynamics. This would allow

for longer optimisation execution times, allowing a larger

control horizon to be used to eliminate the small tracking

error present in Fig. 10 and 15. Future work will also explore

introducing move blocking as discussed in Section III-H to

allow for a larger nr and higher gain feedback for the same

number of decision variables, along with exploring the size

and distribution of these blocks.

The development of a high level controller capable of

generating sets of waypoints for this controller to follow would

enable the navigation of a known environment. This would

only require the selection of a small number of waypoints,

located at points where a change of direction is desired. In

contrast with polynomial-based trajectory generation methods
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[20] this removes the requirement for the outer controller

to specify a dynamically feasible and constraint satisfying

trajectory between waypoints, with the dynamically feasible

and time-optimal trajectory here instead derived iteratively by

the MPC. The MPC demonstrated here is better suited to this

task than existing MPC implementations, as by maintaining

feasibility across the full reference set waypoints can be placed

at arbitrarily sparse intervals, rather than needing to consider

the controller’s feasible reference set. The embedding of input

and output constraint satisfaction into the low level controller

also improves safety and robustness in the event of delay or

error in a higher level controller, with the system guaranteed

to safely come to rest at the end of the last specified reference.
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