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High-quality magnets such as yttrium iron garnet (YIG) are electrically insulating and very complex. By

implementing a quantum thermostat into atomistic spin dynamics we compute YIG’s key thermodynamic prop-

erties, viz. the magnon power spectrum and specific heat, for a large temperature range. The results differ

(sometimes spectacularly) from simple models and classical statistics, but agree with available experimental

data.

Introduction The spin dynamics of electrically insulating

magnets often has high quality because the dissipation chan-

nel by conduction electron scattering is absent. With few ex-

ceptions, they are complex ferrimagnets. Yttrium iron garnet

(YIG) with 80 atoms in the unit cell rules with a record low

Gilbert damping of long wavelength spin wave excitations or

magnons, even at room temperature [1, 2]. The implied ex-

ceptionally low disorder and weak coupling with phonons re-

mains a mystery, however. Recently, magnon heat and spin

transport were measured in YIG thin films in a non-local

spin injection and detection configuration with Pt contacts by

means of the spin Hall effect [3] and modelled by spin dif-

fusion [4]. Key parameters of this model are linked to the

thermodynamics of the magnetic order, such as the magnon

heat capacity, which is difficult to measure because it is or-

ders of magnitude smaller than the phonon heat capacity—at

10 K the magnon and phonon heat capacities are Cm ≈ 0.009
J kg−1 K−1 and Cp ≈ 0.270 J kg−1 K−1 [5]. They can be

separated by magnetic freeze-out of the magnon contribution

at temperatures up to a few Kelvin [5, 6]. The magnon heat

capacity at higher temperatures has been estimated by extrap-

olating models that agree with experimental low-temperature

results [4, 7]. YIG is often treated as a single-mode ferromag-

net with quadratic ω ∝ Dk2 (or isotropic cosine function)

dispersion, thereby ignoring higher frequency acoustic and

optical modes and temperature dependence of the exchange

stiffness D. Furthermore, magnon-magnon interactions are

also commonly neglected or treated in a mean field approx-

imation. Statistical approaches also have issues, such as the

use of classical (Johnson-Nyquist) thermal noise at low tem-

peratures [8].

In this Letter we introduce a numerical method that avoids

all of these shortcomings. It allows us to carry out material-

dependent thermodynamic calculations that are quantitatively

accurate with a small number of parameters that can be de-

termined independently. The crucial ingredient is a thermo-

stat for Planck quantum (rather than Rayleigh–Jeans classical)

statistics in an atomistic spin dynamics framework [9].

With the inclusion of quantum thermal statistics we find

quantitative agreement for YIG with available experiments at

low temperatures. The computed spin wave dispersion as a

function of temperature agree well with results from neutron

scattering. This low temperature quantitative benchmarking

imbues trust in the technique for calculating thermodynamic

functions and allows access to quantities such as the magnon

heat capacity at room temperature that turns out to be an order

of magnitude larger than previous estimates.

Method We address the thermodynamics by computing

the atomistic spin dynamics in the long (ergodic) time limit

to generate canonical ensembles of spins. The magnetic mo-

ments (‘spins’) in this model are treated as classical unit vec-

tors S, an excellent approximation for the half-filled 3d-shell

of the iron cations in YIG with S = 5/2 and magnetic mo-

ment µs = gµBS, where g ≈ 2 is the electron g-factor and

µB the Bohr magneton.

The Heisenberg Hamiltonian H = − 1

2

!

ij JijSi ·Sj con-

tains the (super)-exchange parameters Jij between spins on

sites i and j, which are determined by fits to inelastic neu-

tron scattering data [10]. Recently, the magnon dispersions

were measured again with higher resolution [11], allowing

an improved parameterization of the six nearest-neighbors ex-

change constants, which we adopt in the following. We add a

Zeeman term H = −
!

i µs,iHext · Si with Hext = Hz =
0.1 T, to fix the quantization axis. On each lattice site ‘i’
the spin dynamics obey the Landau-Lifshitz equation of mo-

tion [12]:

∂Si

∂t
= −|γ| (Si ×Hi + ηSi × (Si ×Hi)) , (1)

where γ = gµB/! is the gyromagnetic ratio and η is a damp-

ing constant. Each spin feels an effective magnetic field Hi =
ξi − (1/µs,i)∂H /∂Si, where ξi are stochastic processes

controlled by the thermostat at temperature T . 〈ξiα〉 = 0
and the correlation function in frequency space is governed

by the fluctuation-dissipation theorem (FDT) 〈ξiαξjβ〉ω =
2ηδijδαβϕ(ω, T )/µs,i, where the Kronecker δ′s reflect the as-

sumption that the fluctuations between lattice sites i, j and

Cartesian coordinates α,β are uncorrelated. ϕ(ω, T ) de-

scribes the temperature dependence of the noise power and is

chosen such that the steady-state distribution functions obey

equilibrium thermal statistics. By not approximating the spin

Hamiltonian by a truncated Holstein-Primakoff expansion,

our approach includes magnon-magnon interactions to all or-

ders [13].

Atomistic spin dynamics methods generally assume the

classical limit of the FDT with frequency independent (white)

noise ϕ(ω, T ) = kBT , i.e. all magnons are stimulated.
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The energy equipartition of the coupled system results in the

Rayleigh-Jeans magnon distribution. However, this is only

valid when the thermal energy is much larger than that of the

magnon mode k under consideration, i.e. when kBT ≫ !ωk,

while the energies of the YIG magnon spectrum–and that of

most room temperature magnets–extend up to !ωk/kB ≈
1000 K [1]. A classical thermostat therefore generates too

many high energy magnons, which, for example, overesti-

mates the broadening by magnon scattering and leads to other

predictions that can be very wrong.

According to the quantum FDT for magnons [14, 16]

ϕ(ω, T ) =
!ω

exp (!ω/kBT )− 1
, (2)

which means that equipartition is replaced by Planck statis-

tics of the magnons at temperature T . Quantum statistics

in classical spin systems can partially be mimicked through

a post-process rescaling of the temperature [15] or by using

temperature-dependent frequencies that rely on analytic ex-

pressions for the low temperature spectrum [16]. These ap-

proaches cannot be used to evaluate all thermodynamic prop-

erties and are not suitable to treat complex magnets such as

YIG. We therefore adopt here the ‘quantum thermostat’ in-

troduced earlier in molecular dynamics [17, 18], i.e., a corre-

lated noise source that obeys the quantum FDT. This is “col-

ored”noise, but very different from the one used to describe

classical memory effects in the heat bath [19, 20].

We implement the quantum statistics by generating corre-

lated fluctuating fields ξi (t) numerically in time that obey the

FDT in the frequency domain. Savin et al. [18] employ a set

of stochastic differential equations that produce the required

distribution function. We adjust this method to spin dynamics

problems, referring the reader to Ref. [18] and the supplemen-

tary information S1 for the technical details [21]. The solution

is a dimensionless stochastic process Φiα(t) with the spec-

trum of Eq. (2). The dimensionful noise in the spin dynamics

reads

ξiα(t) = kBT

"

2ηµs,i

γ!
Φiα(t). (3)

When we agitate the model of classical spins with these

stochastic fields, the excitations of the ground state (magnons)

obey quantum statistics, quite analogous to quantized phonons

in a classical ball-spring lattice. This approach may loosely be

called ‘semi-quantum’ and works very well for the large Fe3+

spin in YIG with S = 5/2 (µs = 5µB), but requires more

scrutiny for spin S = 1/2 (see Supplement S2 [21]).

We integrate equation (1) using the Heun method with time

step ∆t = 0.1 fs. The stochastic differential equations of

the thermostat are integrated using the fourth-order Runge-

Kutta method with the same time step. The exchange pa-

rameters from Ref. [11]—scaled by S2 for to unit spins—

read J1 = −42.5, J2 = −3.25, J3a = 0, J3b = −6.875,

J4 = 0.4375, J5 = −2.9375, J6 = 0.5625 meV for suc-

cessive nearest neighbours. For the magnon spectrum we

use η = 2 × 10−4 representing the low Gilbert damping of

YIG. For thermodynamic calculations we use over-damped

dynamics with η = 0.1 for faster convergence. Thermody-

namic quantities (energy, magnetization) were calculated for

5 ns, discarding the initial equilibration period (generally be-

low 0.1 ns). The remaining time series are used to calculate

the thermodynamic averages. 5 independent stochastic trajec-

tories were calculated and averaged for each data point. Er-

ror bars defined as three times the standard deviation for ther-

modynamic averages between these trajectories were mostly

smaller than the data points in the figures.

Magnon spectrum We compare now the magnon spec-

trum computed with the quantum thermostat with our previ-

ous work with classical statistics (and older exchange con-

stants from Ref. [1]) [9]. Results for low (5 K) and room

(300 K) temperature are shown in Fig. 1a. The classical

thermostat overestimates the number of high-energy magnons

and therefore the broadening of the optical modes at higher

temperatures. With quantum statistics, the high-energy opti-

cal modes are well resolved at room temperature and should

be observable by inelastic neutron scattering with large fre-

quency transfer. The agreement between the calculated and

measured [10] temperature dependence of the exchange gap

between optical and acoustic modes at the Γ point, shown

in Fig. 1 b, is improved, especially in the low temperature

regime.

Magnetization The magnetization at low temperatures

mz = 1− 1

S

!

kν〈nkν〉T , where 〈nkν〉T is the distribution of

magnons with wave vector k and band index ν in the first Bril-

louin zone, cannot be calculated correctly with classical statis-

tics [22] (at higher temperatures the expression does not hold

since magnon-magnon interactions are important). This is ob-

vious already for the single parabolic band, non-interacting

magnon gas model for which

1−mz(T ) = vws

1

S

Γ
#

3

2

$

ζ
#

3

2

$

2π2

%

kBT

D

&3/2

(4)

where ωk = Dk2, spin-wave stiffness D = 2SJa2, lattice

constant a, vws volume of the Wigner-Seitz cell, while Γ(x)
and ζ(x) are the gamma and Riemann zeta functions. The

T 3/2 dependence is known as Bloch’s law [23].

In the ferrimagnet YIG the total magnetization is made

up by two oppositely aligned sublattices with slightly dif-

ferent temperature dependent magnetizations. At low tem-

peratures they are rigidly locked to an antiparallel configu-

ration by the strong nearest neighbor exchange. At ener-

gies !ωk/kB ! 30 K YIG’s magnon dispersion is known

to be quadratic and its magnetization obeys Bloch’s T 3/2

law [24]. The expected deviations at higher temperatures

can be assessed by our method. We calculate the mag-

netization at temperature T as an average 〈· · · 〉T over the

spin configurations at many times over a 1 ns trajectory

m(T ) = 〈N−1
!N

i µs,iSi〉T /〈N
−1

!N
i µs,iSi〉T=0 , where

N = 655, 360 is the total number of spins in the simulation.

Fig. 2 exposes the obvious problem of classical statistics
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FIG. 1. a) YIG magnon spectrum at T = 5 K and T = 300 K

calculated using the quantum thermostat and the exchange parame-

ters of Ref. 11. The color intensity is adjusted on a log scale such

that all modes are visible (even for extremely low occupation) and is

different for both figures. The red/blue color shows the +/- polariza-

tion of the magnons. b) Magnon gap between optical and acoustic

modes at Γ. Experimental data are adopted from neutron scattering

experiments [10].

to compute magnetizations at low temperatures: The magne-

tization decreases much more rapidly with temperature than

Bloch’s law (and as observed in experiments). The results

with the quantum thermostat, on the other hand, adhere to

Bloch’s law for T < 30 K (see inset) but also agree well with

experiments that signal a breakdown of T 3/2 scaling, at least

until ∼ 300 K.

The Curie temperatures for the classical (TC = 420 K) and

quantum thermostated systems (TC = 680 K) are quite differ-

ent, while the observed TC = 550 K lies between the theoret-

ical values. In contrast to classical results that obey equipar-

tition, the Curie temperature of quantum approaches depend

on S and we find this also in our semi-quantum approach.

For a simple ferromagnetic BCC lattice our computed Curie

temperatures agree well with those obtained by semi-analytic

approaches [25] for a large range of S (see supplementary

Fig. S3). The overestimation of TC compared to the experi-

ment might be caused by exchange parameters that are slightly

too large since the neutron scattering data are fitted only up to

90 meV which does not cover the magnon modes with highest

energy. Also, the choice of S = 5/2 (µs = 5µB) in extracting

the exchange parameters does not fully agree with with mea-

sured values of µs,a = 4.11µB and µs,d = 5.37µB for the

octahedral and tetrahedral sites [26]. Hence, a more accurate

FIG. 2. Temperature dependent magnetization of YIG calculated

using classical and semi-quantum spin dynamics. The experimen-

tal points are from [27] and Bloch’s law from Eq. (4) with D =
85.2 × 10−41 Jm2 [11], which in YIG is temperature independent

until close to the Curie temperature. The inset is a close up of the

semi-quantum method (blue circles) in the low temperature regime

where Bloch’s law (dashed red line) is valid.

set of parameters, fitted to neutron scattering data for large en-

ergy transfers or calculated from first principles, should solve

this discrepancy.

Heat Capacity The magnon heat capacity per unit vol-

ume Cm = V −1(∂Um/∂T )V is the change in the inter-

nal magnetic energy Um with temperature at constant vol-

ume V . It can be calculated from the magnon spectrum

as Cm = V −1(∂/∂T )
!

kν !ωkν〈nkν〉, where 〈nkν〉 is the

Planck distribution. In the low temperature limit magnons oc-

cupy only states close to k = 0, where the magnon dispersion

of ferromagnets is parabolic. For a single parabolic magnon

band [13]

Cm(T ) =
1

V

5

8

Γ
#

5

2

$

ζ
#

5

2

$

π2
kB

%

kBT

D

&3/2

, (5)

where Γ(x) and ζ(x) are the Gamma and Riemann zeta func-

tions.

The proportionality Cm ∝ T 3/2 should hold for YIG up to

energies of !ωk/kB ! 30 K. Rezende and López Ortiz [7]

calculated the heat capacity for acoustic magnons with finite

band-width, but neglected optical magnons that contribute to

the heat capacity at elevated temperatures. They found that

Cm saturates at 150 K, i.e. when the magnon occupation

reaches the upper band edge.

Here we calculate the heat capacity including all

magnon modes and their interactions. We calculate Cm

from the energy fluctuations in the canonical ensemble

〈Um〉T = (1/Zm)
!

kν !ωkνexp(−!ωkν/kBT ), where

Zm =
!

kν exp(−!ωkν/kBT ) is the partition function. Then

Cm =
#

〈U2
m〉T − 〈Um〉2T

$

/(V kBT
2), where in a simulation

〈· · · 〉T is an average over a large time interval at a constant

temperature and V is the volume of the system.
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FIG. 3. Low-temperature magnon heat capacity of YIG calculated

with quantum statistics (red circles) compared to Bloch’s law (red

solid line). ∆Cm = Cm(H = 0T) − Cm(H = 7T) calculated

with quantum statistics (red open circles) is compared with experi-

mental data from Boona and Heremans Ref. 5 (orange open squares)

as well as a single magnon band model. [7] (blue dashed line). The

error bars on simulated data represent 3 standard deviations across 5

independent stochastic trajectories.

Figure 3 shows the low temperature region where the

magnon dispersion is, to a good approximation, parabolic

and Cm ∝ T 3/2. Calculations using quantum statistics

give an excellent agreement with Bloch’s law. The exper-

imental data in Figure 3 have been collected in the range

T = 2 − 9 K [5], high enough that dipolar field effects can

be disregarded. The measurements were made by freezing

the magnons in a 7 Tesla field. Even this large field how-

ever does not completely remove the magnon contribution to

the heat capacity, especially at the higher end of the temper-

ature range [7]. To make a proper comparison we repeat the

experimental procedure in our simulation by computing the

difference ∆Cm = Cm(H = 0T)− Cm(H = 7T). Our cal-

culations agree well with the observations as well as the single

magnon-band model.

Figure 4 illustrates a pronounced difference between the

classical and semi-quantum models: classical statistics over-

estimate the heat capacity by 5 orders of magnitude at low

temperatures, and do not depend on temperature in contrast

to the quantum statistical result which approaches zero like

T 3/2. In spite of this spectacular (and rather obvious) failure,

classical statistics have traditionally been used (and still are)

in both Monte-Carlo and atomistic spin dynamics.

At T > 30 K non-parabolicities begin and Cm ∝ T p with

power p > 3/2. At room temperatures Fig. 4 reveals dif-

ferences between the approaches of two orders of magnitude.

The finite-width magnon band model [7] (dashed line on fig-

ure 4) saturates prematurely with increasing T because op-

tical and higher acoustic modes become significantly occu-

pied when approaching room temperature [9]. The parabolic

band model without high-momentum cut-off (Bloch’s law)

also strongly underestimates Cm because YIG’s magnon den-

sity of states is strongly enhanced by the flat bands observed

FIG. 4. YIG magnon heat capacity calculated over a larger tem-

perature range with the semi-quantum model (red circles), classical

model (green squares), compared with Bloch’s law (solid red line)

and the single-band model [7] (dashed blue line).

in Fig. 1. The semi-quantum calculation is an order of

magnitude larger than both of these heavily approximated

approaches, benefiting from the complete description of the

magnon spectrum as well as magnon-magnon interactions,

while the classical statistics strongly overestimates the heat

capacity up to the Curie temperature. Since the magnon heat

capacity cannot be measured for T > 10 K this is the first

critical test of the theories.

Conclusions By enforcing Planck statistics for the

magnons in the complex ferrimagnet YIG, we obtain excel-

lent agreement with available inelastic neutron scattering and

magnon heat capacity experiments. Our results prove that fun-

damental thermodynamic equilibrium properties can be pre-

dicted with confidence when experimental data are not avail-

able, but only when quantum statistics and the full spin wave

spectrum are taken into account. The method is not limited to

YIG or ordered magnets, but can be directly applied to other

complex materials with local magnetic moments such as spin

glasses or paramagnets. Our results are a necessary first step

to compute non-equilibrium properties such as magnon con-

ductivities and spin Seebeck coefficients, which are essential

parameters for future applications of magnonic devices.
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S1 - QUANTUM THERMOSTAT

The quantum thermostat is difficult to implement in the time domain because the quantum

fluctuation dissipation theorem is formulated as a function of frequency. One solution to this is

to generate the stochastic noise making use of Fourier transforms [1]. A more memory-efficient

method is to approximate the spectrum using stochastic differential equations. This approach was

pioneered by Savin et al. for molecular dynamics [2]. The quantum fluctuation dissipation theorem

for semi-quantum magnons does not include the zero-point energy (Eqs. 17-19 in Ref. [3]), we

therefore omit these terms given from the expressions given by Ref. [2]. We reproduce the relevant

equations in this supplementary material for completeness.

The effective field on each spin is given by (see main text)

Hi(t) = ξi(t)−
1

µs,i

∂H

∂Si

(S1)

where ξi(t) is the stochastic field of the thermostat. We work with coloured noise, but this has no

memory of the spin dynamics, i.e. we disregard terms like Hi(t) = −η
! t

−∞
φ(t− t′)(∂Si/∂t

′)dt′.

The thermal noise on each lattice site, i, can then be written

ξαi(t) = kBT

"

2ηµs

γ!

#1/2

Φiα(t) (S2)

where α ∈ [x, y, z] is a Cartesian component, η is the coupling constant/damping parameter and

Φiα(t) is a stochastic processes obeying the quantum fluctuation-dissipation theorem. In this im-

plementation it is approximated by the sum of two ancillary stochastic processes

Φiα(τ) = c0ζ0αi(τ) + c1ζ1αi(τ) (S3)

where τ = tkBT/! is the reduced time, c0 = 1.8315, c1 = 0.3429. ζiαn(τ) is the solution of the

second-order stochastic differential equations

ζ ′′nαi(τ) = )nαi(τ)− Ω
2

nζnαi(τ)− Γnζ
′

nαi(τ) (S4)

where Ω0 = 2.7189, Ω1 = 1.2223, Γ0 = 5.0142, Γ1 = 3.2974, are constants to give a good

approximation to the required noise spectrum (see Savin et al. [2]) and )nαi(τ) are white noise

sources with the correlations:

〈)nαi(τ)〉 = 0; 〈)nαi(τ))kβj(τ
′)〉 = 2Γnδαβδnkδijδ(τ − τ ′). (S5)
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The stochastic process )nαi(τ) is generated using a pseudo random number generator with a

normal distribution with mean 0 and width (2Γn/∆τ)1/2. ζ ′′iαn(τ) is integrated with a fourth-order

Runge-Kutta method with ∆tζ = ∆tLLG = 0.1 fs. For the initial state we use ζnαi(0) = ζ ′nαi(0) =

0 and ‘warm-up’ the thermostat by integrating for 1 ns which colors the noise. After the warming

up we, we start recording the spin dynamics of all sites.

S2 - VALIDATION FOR A GENERIC BCC FERROMAGNET

We performed a series of tests to validate the correct working of the method and the imple-

mentation. Using a generic BCC ferromagnetic model we compute thermodynamic properties

and compare with available theoretical results. The nearest neighbour exchange energy is Jij =

3.5× 10−21 Joules, µs = 3µB unless stated otherwise, η = 0.1 and γ = 1.76× 10−11 rad·s−1
·T−1.

First, we compare simulated results with Bloch’s law for the non-interacting magnon gas, which

is valid at low temperatures (at which magnon-magnon interactions are negligibly weak). We test

both the temperature dependence and also the µs = gµBS dependence, which is absent in a fully

classical formalism.
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FIG. S1. Change in magnetization ∆mz(T ) = mz(0) − mz(T ) as a function of temperature. Points are

simulations and the lines are Bloch’s law with no fitted parameters.

A similar Bloch’s law analysis of the heat capacity, tests both temperature and S dependence. At

the lowest temperature, T = 1K we observe some deviation from the analytic behaviour because

at such small amplitudes the errors in the integration become of the same order as the fluctuations

(〈U2

m〉T − 〈Um〉
2

T ) of the internal energy.

With a quantum heat bath the Curie temperature TC depends on the size of the magnetic mo-

ments (Fig. S3). This is the case also in ‘fully quantum’ Heisenberg models, but not in ‘fully
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FIG. S2. Magnon heat capacity. Points are simulations and the lines are Bloch’s law with no fitted parame-

ters.

classical’ Heisenberg models. We find good agreement with results for the quantum Heisenberg

model and recover the classical result for large values of spin.
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FIG. S3. Curie temperature as a function of S. Classical result is from conventional spin dynamics calcula-

tion, quantum result is from Ref. [4]

As in quantum models the shape of the magnetisation curve now also depends on the size of the

moment–for classical models it is independent of the moment (Fig. S4). It is well known both from

experiments and theory that the shape of this curve depends on S [5]. The inability to reproduce

this with classical statistics has been a major of previous models.
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