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1  | INTRODUC TION

In socially monogamous mating systems, mating outside the pair 

bond (i.e. extra‐pair mating) is adaptive for females if females 

gain direct (e.g. access to resources) or indirect (i.e. genetic) ben‐

efits (Griffith, Owens, & Thuman, 2002). In birds, male age is a 

robust predictor of extra‐pair paternity (Cleasby & Nakagawa, 

2012). Models of female choice support a preference for old 

males because old males have proven their viability, and female 

preference for old males could evolve if female preference is her‐

itable and male viability is passed on to genetic offspring (Kokko 

& Lindstrom, 1996; Manning, 1985). Additionally, old males may 

be ageing or senescent males, which means that their sperm—

the only direct benefit passed on in an extra‐pair mating—will be 

of lower quality (Kong et al., 2012; Pizzari, Dean, Pacey, Moore, 

& Bonsall, 2008). A premeiotic age‐related reduction in sperm 

quality could incur direct (e.g. reduced fertilizing efficiency) 

and indirect (e.g. decreased offspring fitness) costs to females 
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Abstract
Evolutionary theory predicts that females seek extra‐pair fertilizations from high‐

quality males. In socially monogamous bird species, it is often old males that are most 

successful in extra‐pair fertilizations. Adaptive models of female extra‐pair mate 

choice suggest that old males may produce offspring of higher genetic quality than 

young	males	because	they	have	proven	their	survivability.	However,	old	males	are	
also more likely to show signs of reproductive senescence, such as reduced sperm 

quality. To better understand why old males account for a disproportionally large 

number of extra‐pair offspring and what the consequences of mating with old males 

are, we compared several sperm traits of both captive and wild house sparrows, 

Passer domesticus.	 Sperm	morphological	 traits	 and	cloacal	protuberance	volume	 (a	
proxy	for	sperm	load)	of	old	and	young	males	did	not	differ	substantially.	However,	
old males delivered almost three times more sperm to the female's egg than young 

males. We discuss the possibility of a post‐copulatory advantage for old over young 

males and the consequences for females mated with old males.
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mated	to	old	males	(Pizzari	et	al.,	2008).	For	instance,	 in	insem‐

ination experiments in houbara bustards, Chlamodytis undulata, 

advanced paternal age was linked with inhibited post‐hatching 

offspring	growth	(Preston,	Saint	Jalme,	Hingrat,	Lacroix,	&	Sorci,	
2015). Advanced paternal age was also associated with lower 

lifetime reproductive fitness in a wild house sparrow, Passer do‐

mesticus,	population	 (Schroeder,	Nakagawa,	Rees,	Mannarelli,	&	
Burke, 2015). Indeed, females suffering lower fecundity or lower 

quality offspring is a prediction of the polyandry hypothesis con‐

trasting the above‐described models of female choice for old 

males (Radwan, 2003). The polyandry hypothesis suggests that 

females opt for extra‐pair mating to avoid fertilizations by old 

males. The hypothesis predicts further that females are indif‐

ferent to male age during mate choice and old males are worse 

sperm competitors than young males (Radwan, 2003). A recent 

study found no evidence that female house sparrows preferred 

old	males	 for	mating	 (Girndt,	 Chng,	 Burke,	 &	 Schroeder,	 2018)	
but, like in other birds, old captive and wild house sparrow males 

also	achieve	most	extra‐pair	paternity	 (Girndt	et	al.,	2018;	Hsu,	
Schroeder,	Winney,	Burke,	&	Nakagawa,	2015).	These	are	intrigu‐

ing findings because if old males achieve most extra‐pair pater‐

nity but are not preferred in extra‐pair matings, it is unlikely that 

old males are worse sperm competitors than young males like the 

polyandry hypothesis suggests. Instead, old males might have a 

post‐copulatory advantage over young males.

Sperm	 quantity	 (e.g.	 sperm	 number)	 and	 sperm	 quality	 (e.g.	
morphology) are important for male reproductive success, and 

scientific knowledge about the effects of male age on sperm traits 

is rapidly growing. Meta‐analytical evidence showed that sperm 

quality decreases with increasing male age in humans, Homo sapi‐

ens (Johnson, Dunleavy, Gemmell, & Nakagawa, 2015), and a sim‐

ilar trend has been found in brown Norway rats, Rattus norvegicus 

(Syntin	 &	 Robaire,	 2001);	 blue‐footed	 boobies,	 Sula nebouxii 

(Velando, Noguera, Drummond, & Torres, 2011); barn swallows, 

Hirundo rustica (Møller et al., 2009); and red junglefowl, Gallus gal‐

lus	 (Dean	et	al.,	2010).	However,	 if	sperm	quality	decreases	with	
age, maybe other post‐copulatory traits are at work for old males 

to sire a disproportionally large number of extra‐pair offspring. 

What if old males, while producing lower quality sperm, have 

increased sperm production? A higher number of sperm could 

give old males a numerical advantage over young males during 

sperm competition despite the overall lower quality of their sperm 

(Parker, 1990).

Increased sperm production by old males has been ob‐

served in internally and externally fertilizing fish (e.g. Gasparini, 

Marino, Boschetto, & Pilastro, 2010; Mehlis & Bakker, 2013; 

Vega‐Trejo,	Fox,	 Iglesias‐Carrasco,	Head,	&	Jennions,	2019).	 In	
humans, male age and sperm number do not seem to be asso‐

ciated (Johnson et al., 2015). In birds, there are hints of sperm 

number being associated with male age when testes size is con‐

sidered to be a proxy for sperm quantity (De Reviers & Williams, 

1984;	Sax	&	Hoi,	1998).	Male	birds	in	their	first	year	of	breeding	
have	 testes	 that	 are	approximately	27%	smaller	 than	 testes	of	

older	 breeders	 (Calhim	 &	 Birkhead,	 2007).	 Also,	 male	 passer‐
ines develop a cloacal protuberance indicative of their repro‐

ductive status (Wolfson, 1952), relative testes size and capacity 

to store sperm (Birkhead, Briskie, & Møller, 1993). The larger a 

male's cloacal protuberance, the larger his relative testes size 

and hence sperm reservoir (Birkhead et al., 1993). Again, older 

males have a larger cloacal protuberance. In two Australian 

fairywren species, Malurus lamberti and splendens, older males 

had larger cloacal protuberances than first‐year breeders, and 

sperm number correlated positively with cloacal protuberance 

size (Tuttle, Pruett‐Jones, & Webster, 1996; but see Quay 1986). 

Cloacal protuberances were also larger in older reed buntings, 

Emberiza schoeniclus, and increased in size with age within males 

(Bouwman,	van	Dijk,	Wijmenga,	&	Komdeur,	2007).	Collectively,	
these findings provide support for age‐related variation in re‐

productive traits and are consistent with the observation that 

old males robustly gain more extra‐pair paternity across bird 

species (Cleasby & Nakagawa, 2012).

In house sparrows, it is unclear what sperm phenotype maxi‐

mizes fertilizing capacity. One study concluded that sperm with rel‐

atively short heads swam fastest, and sperm length was positively 

associated	with	 sperm	 longevity	 (Helfenstein,	 Podevin,	&	Richner,	
2010), but no such association was found in another study (Cramer 

et	al.,	2015).	Sexual	selection	will	favour	sperm	phenotypes	that	can	
both outcompete rival's sperm (e.g. be the fastest sperm [Knief et al., 

2017])	and	avoid	being	outcompeted	(Birkhead,	1989;	e.g.	avoid	ox‐
idative	 stress	 [Mora,	 Firth,	 Blareau,	 Vallat,	 &	 Helfenstein,	 2017]).	
Therefore, multiple sperm traits will affect sperm performance and 

multiple sperm traits need to be analysed to understand differences 

in sperm competitiveness.

Here,	we	tested	the	hypothesis	that	post‐copulatory	competi‐
tiveness changes with age in captive and wild house sparrows. Our 

specific aims were to test: (a) whether sperm length is associated 

with male age, without predicting directionality; and (b) whether 

the proportion of morphologically abnormal sperm is higher in old 

compared	 to	 young	males.	 Further,	 to	 indirectly	 assess	whether	
old males provide more sperm than young males, we studied (c) 

cloacal protuberance volume and (d) the number of sperm trapped 

on egg membranes (i.e. perivitelline layers, hereafter PVL; Wishart, 

1987).	In	birds,	the	egg	is	surrounded	by	the	PVL	and	the	number	
of sperm at the PVL exemplifies the number of inseminated sperm 

and the probability of an egg being fertilized (Brillard & Antoine, 

1990;	 Froman,	 Pizzari,	 Feltmann,	 Castillo‐Juarez,	 &	 Birkhead,	
2002;	Wishart,	1987).	Although	PVL	sperm	are	a	useful	noninva‐
sive proxy for the number of inseminated sperm and monitoring 

fertility in a pair (Croyle, Durrant, & Jensen, 2015), the dynamics 

behind the dramatic reduction in sperm number from the cloaca 

to the egg (Bakst, Wishart, & Brillard, 1994) are complex and not 

well	understood	(Birkhead	&	Brillard,	2007).	Various	reasons	such	
as interactions between sperm phenotype and the female sperm 

storage	tubules	or	vaginal	sperm	selection	(Hemmings,	Bennison,	
& Birkhead, 2016) add to explain variation in the number of sperm 

that reach the egg.



     |  3GIRNDT eT al.

2  | MATERIAL S AND METHODS

2.1 | Captive house sparrows

House	 sparrows	 were	 kept	 at	 the	 Max	 Planck	 Institute	 for	
Ornithology	in	Seewiesen,	Germany	(47.9752°N,	11.2332°E),	since	
2005. The cohorts of 2005 and 2006 were wild‐caught birds from 

rural Bavaria (Laucht, Kempenaers, & Dale, 2010), and breeding took 

place in most of the subsequent years. All birds were fitted with a 

unique numbered metal ring and combination of colour rings for 

identification. The specific husbandry under semi‐natural conditions 

has	 been	 described	 and	 illustrated	 previously	 (Girndt	 et	 al.,	 2017,	
2018).

2.2 | Wild house sparrows

The wild house sparrows are resident on Lundy Island, approximately 

19	km	off	the	coast	of	Devon,	England	(51.1781°N,	4.6673°W).	The	
population has been systematically monitored since 2000 allow‐

ing for individual identification and knowledge of precise individual 

ages, and social and genetic pedigrees. Annual resighting rates are 

91%–96%,	and	migration	to	and	from	the	mainland	is	almost	absent	
(Schroeder,	Cleasby,	Nakagawa,	Ockendon,	&	Burke,	2011;	Simons,	
Winney,	Nakagawa,	Burke,	&	Schroeder,	2015).

2.3 | Sperm collection techniques

Sperm	were	collected	during	the	reproductive	season	of	house	spar‐
rows	(March	until	August;	Anderson,	2006)	in	2014	and	2015.	Sperm	
were obtained using the standard techniques of faecal and abdomi‐

nal massage sampling, which we have described and illustrated in 

depth	previously	(Girndt	et	al.,	2017).	Briefly,	samples	were	stored	
in 200 μl	of	5%	formalin	before	placing	10	μl aliquots onto micro‐

scope	slides	for	morphological	assessment	of	sperm.	House	sparrow	
males replenish their ejaculates overnight (Birkhead, Veiga, & Møller, 

1994b). In captivity, we isolated males and females for at least 2 days 

before sperm collection to standardize samples for males’ mating 

histories, which affect post‐meiotic sperm senescence independent 

of male age (Pizzari et al., 2008; Vega‐Trejo et al., 2019). In the wild, 

males could not be isolated from females, and we only applied ab‐

dominal massage to collect sperm.

2.4 | Length of sperm components

Sperm	linear	measurements	were	as	described	(Girndt	et	al.,	2017).	
Briefly, we took digital images of the first ten intact (i.e. no broken 

tails or heads), unobstructed (i.e. not covered by detritus) and mor‐

phologically normal sperm (see the abnormality section below for 

a definition). We always started in the upper left corner of the mi‐

croscope	slide	using	a	Leica	DFC450‐C	camera	mounted	on	a	Zeiss	
Axioplan 2 microscope at 400× magnification (40× objective) in 

bright	 field	 settings.	 Sperm	 components	 (i.e.	 head	 including	 acro‐

some, flagellum including midpiece) were measured from digital 

images	using	the	Leica	Application	Suite	software	v4.2.	by	one	ob‐

server only (GC), who was blind regarding sample identities. Total 

length was calculated as the sum of the head and flagellum meas‐

ures, and mean observer repeatability was high for all sperm compo‐

nents (R	>	0.82;	Girndt	et	al.,	2017).

2.5 | Proportion of morphologically abnormal sperm

Sperm	were	classified	as	abnormal	if	they	deviated	from	the	typical	
passerine (oscine) shape, which consists of an acrosome, a nucleus 

and a flagellum, consisting of the midpiece whose mitochondria 

form	a	helix	around	the	axoneme	and	the	nonhelical	tail	(Aire,	2007).	
Abnormalities affected all sperm components, such as sperm heads 

(e.g.	bends	of	more	than	90°),	midpieces	(e.g.	distal	cytoplasmic	drop‐

lets)	and	tails	(e.g.	coiled,	stubbed	or	super	numerous).	Sperm	abnor‐
mality screening of the first 100 intact and unobstructed sperm was 

done by one observer only (AG), always starting in the upper left 

corner of each microscope slide. To establish observer repeatabil‐

ity, a subset of 20 microscope slides was randomly selected using 

the function sample in R version 3.5.3 (R Development Core Team, 

2013).	Sperm	were	then	screened	again,	following	the	same	proto‐

col, so that the individual sperm measured were identical on both 

occasions.	 However,	 the	 microscopes	 used	 differed	 between	 the	
two	occasions.	Although	we	mostly	used	the	Zeiss	Axioplan	2	micro‐

scope, we also relied on a substitute, Olympus BX50, microscope. 

Observer repeatability (here and all following data) was calculated 

using	the	R	package	rptR	v.	0.9.2	(Stoffel,	Nakagawa,	&	Schielzeth,	
2017)	in	R	version	3.5.3	(R	Development	Core	Team,	2013).	Because	
the second microscope introduced variation to the data, we added 

it as a fixed effect to calculate adjusted observer repeatability for 

abnormality scores. Adjusted observer repeatability was high: 

R	 =	 0.78	 ±	 0.11	 standard	 error	 (SE)	 (95%	CI	 (confidence	 interval):	
0.50–0.94, p < .0001)	(see	the	Supplements	for	the	unadjusted	ob‐

server	repeatability	analysis).	Further,	the	observer	could	guess	the	
age of some captive but never wild males from the sample descrip‐

tions but attempted to hide descriptions from view when scoring 

abnormal sperm to be blind in the majority of the measurements.

2.6 | Cloacal protuberance volume

The diameter and height of the cloacal protuberance were measured 

with callipers to the nearest 0.1 mm by one observer per population. 

Measurements took place before abdominal massages were applied 

(Quay, 1986). We used the cone formula (
1

3
�r2h, r = cloacal protuber‐

ance width/2, h = cloacal protuberance height) to calculate cloacal 

protuberance volume because a cone best describes the shape of 

the cloacal protuberance of house sparrows (Wolfson, 1952). The 

observer remeasured 136 captive males, kept in single‐sex aviaries 

within 48 hr, expecting cloacal protuberance size to be stable during 

that period (i.e. we expected absent or negligible within‐individual 

variance in cloacal protuberance during that period), and estimated 

observer repeatability, which was high: R	=	0.73	±	0.04	SE	(95%	CI:	
0.64 to 0.80, p < .001). Observer repeatability for the wild house 
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sparrows could not be estimated because of insufficient repeat 

measurements (e.g. six recaptures in 2015 with the shortest being 

28 days apart). Both observers measured the same 12 captive house 

sparrows once each to estimate repeatability, which was also high: 

(R	=	0.76	±	0.14	SE	(95%	CI:	0.38	to	0.92),	p = .004).

2.7 | Sperm on PVL

We collected unincubated eggs from captive females that were 

held	 in	 aviaries	 with	 only	 either	 old	males	 (7	 and	 8	 years	 old)	 or	
young males (1 and 3 years old). We did not collect eggs from the 

wild population. Our aviary set‐up (N = 9 aviaries) ensured that eggs 

could only have been fertilized by males of one age group, depend‐

ent on the aviary in which the egg was laid. Note that 3‐year‐old 

house sparrows would be considered ‘mature’ in the wild (e.g. less 

than	20%	of	wild	house	sparrows	survive	until	3	years	of	age)	but	
can be considered young in captivity where mortality is comparably 

lower	(Simons	et	al.,	2019).	Lower	mortality	in	captivity	leads	to	birds	
growing older and the absence of a typical age‐structured pyramid 

with	more	first‐year	than	older	breeders.	For	 instance,	57%	of	the	
captive males used for sperm linear analysis were older than 3 years 

(see data at the open science framework). Aviaries held eight to nine 

pairs of birds, apart from one aviary with 13 pairs. We counted sperm 

on the PVL and examined the fertilization status of 41 nonincubated 

eggs	 following	 an	 established	 protocol	 (Birkhead,	 Hall,	 Schut,	 &	
Hemmings,	2008).	We	did	not	count	holes	made	by	sperm	hydro‐

lysing the PVL because the number of sperm on the PVL correlates 

with	the	number	of	holes	(Birkhead,	Sheldon,	&	Fletcher,	1994a).	We	
carefully opened eggs with scissors, removed the germinal disc and 

washed	it	with	phosphate‐buffered	saline	(PBS).	We	put	the	germi‐
nal	disc	on	a	microscope	slide,	added	a	drop	of	DNA	stain	Hoechst	
33342 (0.05 mg/ml) and searched for diploid cells as evidence of 

fertilization	(Birkhead	et	al.,	2008)	with	the	Zeiss	Axioplan	2	micro‐

scope in fluorescent mode. Next, we removed the PVL from the yolk, 

washed	 it	 in	PBS	and	stretched	 the	entire	PVL	onto	a	microscope	
slide.	We	 again	 added	 a	 few	drops	 of	Hoechst	 and	 systematically	
counted fluorescent sperm nuclei using the same microscope and 

a tally counter. Eggs were prepared and examined by one observer 

only (AG), who was blind towards the experimental age treatment.

2.8 | Statistical analyses

We ran statistical models using R version 3.5.3 (R Development Core 

Team, 2013) and the package lme4 version 1.1‐21 (Bates, Mächler, 

Bolker, & Walker, 2014). We used the package arm version 1.10‐1 and 

the	function	sim	(Gelman	&	Hill,	2007)	to	simulate	values	from	the	
posterior distributions (N = 2,000 draws) of the model parameters. 

Throughout,	we	used	noninformative	priors.	From	the	simulated	val‐
ues,	we	extracted	95%	credible	 intervals	 (CrI).	CrI	not	overlapping	
zero can be interpreted as a frequentist p < .05 (Korner‐Nievergelt 

et al., 2015). In line with recent calls to improve statistical inference, 

we decided to report our observed effects as continuous meas‐

ures of strength of evidence against the null hypothesis (Amrhein, 

Greenland,	&	McShane,	2019;	Amrhein,	Korner‐Nievergelt,	&	Roth,	
2017),	using	the	language	of	the	‘statistical	clarity	concept’	(Dushoff,	
Kain, & Bolker, 2019), instead of emphasizing statistically significant 

results.

For	 all	 models,	 we	 followed	 recommendations	 to	 ensure	 that	
model assumptions were met, including ruling out overdispersion 

in non‐Gaussian models and multi‐collinearity between predictors 

(Korner‐Nievergelt et al., 2015). In all models, continuous variables 

(e.g. male age, day of year) were mean‐centred and scaled, so that 

the variables were measured in the unit of standard deviations (SD) 

from the mean. We specifically refer to either the captive or the wild 

house sparrow data set when describing our statistical model struc‐

ture, unless the model structure was identical for both populations.

2.8.1 | Length of sperm components

We fitted linear mixed models with the total length of single sperm 

components as the response variable. We used individual data from 

all sperm measured per male (range 10–30 sperm per male) instead 

of using means or medians of sperm length. Male age in years was 

an	explanatory	variable.	Further,	we	estimated	standardized	multi‐
locus	heterozygosity	(hereafter	sMLH)	as	a	proxy	for	the	degree	of	
inbreeding from genetic marker data, using the R package inbreedR 

version	0.3.2	(Stoffel	et	al.,	2016),	to	account	for	potential	inbreed‐

ing affecting sperm morphology. The identity and details of the 

genetic markers were published previously (Dawson et al., 2012; 

Girndt et al., 2018). We added sampling years (levels: 2014 and 

2015) and the method of sperm collection (captive house sparrow 

data only) as explanatory variables (levels: abdominal massage and 

faeces).	Further,	captive	male	house	sparrows	were	either	assigned	
or not to mixed‐sex aviaries (N = 16 aviaries), which created a sperm 

competition environment only for those males in mixed‐sex aviaries 

because males in male‐only aviaries could not compete for the ferti‐

lization of eggs. We therefore added aviary set‐up (levels: with and 

without females) as an explanatory variable to the captive data set. 

We included sample, male and aviary identities as random effects on 

the intercept to account for the nonindependence of sperm from the 

same sample, repeated measurements of males and potential aviary 

grouping effects in the captive house sparrow data set. We meas‐

ured	 3,262	 sperm	 from	 127	 captive	 male	 house	 sparrows,	 which	
were	between	1	and	10	years	old.	For	the	wild	house	sparrows,	we	
had	672	sperm	available	from	34	males	aged	1–4	years.

2.8.2 | Proportion of morphologically 
abnormal sperm

Abnormality counts were fitted as a proportional two‐column matrix 

response variable using cbind in R (i.e. number of abnormal sperm 

and number of normal sperm) in generalized linear mixed models 

assuming a binomial error structure. Male age was modelled as an 

explanatory	variable,	as	well	as	sMLH.	We	further	fitted	the	follow‐

ing explanatory variables to the captive data set: aviary set‐up (N = 7	
aviaries) (levels: with and without females), sperm collection method 
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(levels: abdominal massage and faeces), and microscope used (levels: 

Zeiss	and	Olympus).	Male	 identity	was	 fitted	as	 random	effect	on	
the intercept for the analysis of the captivity data to account for 

repeated measures. Year (levels: 2014 and 2015) was added as an ex‐

planatory variable to the wild house sparrow data. Models for both 

populations were overdispersed (Korner‐Nievergelt et al., 2015), so 

we	added	an	observation‐level	random	effect.	We	had	87	samples	
available	from	73	captive	(between	1	and	10	years	old)	and	23	sam‐

ples from 23 wild house sparrows (between 1 and 5 years old).

2.8.3 | Cloacal protuberance volume

To test for an association of the cloacal protuberance size with age, 

we fitted cloacal protuberance volume as a response variable in a 

linear mixed model. We accounted for potential seasonal and body 

size effects by adding day of the year (captivity: 14–21 June; wild: 6 

May–17	August)	and	tarsus	 length	as	continuous	explanatory	vari‐
ables. Additionally, a squared day of the year term was fitted for the 

wild house sparrow data because sampling took place during the 

whole breeding season, which could have led to nonlinear seasonal 

changes	in	cloacal	protuberance	volume	(Anderson,	2006).	Further,	
we included the explanatory variable aviary set‐up (N = 7	aviaries)	
(levels: with and without females) to the captive house sparrow 

analysis and year (levels: 2015 and 2016) to the wild house spar‐

row analysis. Male identity was fitted as random effect on the in‐

tercept, but the variance component was estimated as zero for the 

wild house sparrows. This may mean that we could not fully account 

for repeated measurements of males. To ensure that the model was 

robust, we reran it using only one randomly selected observation 

per	male	(function	sample	in	R	[R	Development	Core	Team,	2013];	
Table	S3).	We	had	195	observations	 from	142	captive	 (between	1	
and 10 years old) and 56 observations from 46 wild house sparrows 

(between 1 and 5 years old).

2.8.4 | Number of sperm on PVL

We show descriptive statistics for the number of sperm on the PVL 

(Figure	1b).	We	also	 ran	an	unequal	variances	 t test to compare the 

mean number of sperm (log‐transformed) from old and young males 

at	 40	 eggs.	 However,	 this	 approach	 should	 be	 treated	 cautiously	

because the male sperm donor and, therefore, the possibility of non‐

independence of data could not be established. Additionally, sperm 

counts (N = 40 eggs) were fitted as a response variable in a generalized 

linear mixed model assuming a Poisson error structure. Male age and 

female age (levels: old and young) were modelled as explanatory vari‐

ables and we estimated the percentage of variance explained by male 

and female age (R2
marginal)	following	(Nakagawa	and	Schielzeth,	2013).	

Aviary (N = 9) was fitted as random effect on the intercept. The model 

was overdispersed, so we added an observation‐level random effect.

2.9 | Data statement and accessibility

All	data	and	the	R	scripts	are	publicly	available	at	the	Open	Science	
Framework	 (https	://doi.org/10.17605/	osf.io/pkwsr	).	 We	 confirm	
that we have reported all measures, conditions and data exclusions 

for	 the	questions	addressed	 in	 this	publication.	Sample	sizes	were	
determined by subject availability.

3  | RESULTS

3.1 | Length of sperm components

We did not find a statistically clear effect of male age on the length 

of	 sperm	components.	 This	was	 also	 the	 case	 for	 sMLH	 (Tables	1	
and 2). As previously shown in the captive population (Girndt et al., 

2017),	 sperm	 sampled	 from	 faeces	were	 shorter	 than	 sperm	 sam‐

pled by abdominal massage (1). When the analysis was restricted 

to abdominal massage sampled sperm (2,148 examined sperm from 

116 males), the results were qualitatively similar to the main data set 

analyses, showing no statistical clear relationship between length of 

sperm	components	and	male	age	(Table	S1).	Unexpectedly,	and	not	
among this study's original predictions, we further found that sperm 

were longer in males from mixed‐ than single‐sex aviaries (Table 1). 

Additionally, we observed statistical effects on sperm length com‐

ponents between years in both populations (Tables 1 and 2).

3.2 | Proportion of morphologically abnormal sperm

Captive	house	sparrows	had	on	average	16.8%	±	12.9	(mean	±	SD, 

N = 87	 samples)	 morphologically	 abnormal	 sperm,	 compared	 to	

F I G U R E  1  Sperm	on	the	perivitelline	
layer (PVL). Two fluorescent house 

sparrow nuclei bound on the perivitelline 

membrane	stained	with	Hoechst	33342
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5.3%	±	8.7	(N = 23 samples) morphologically abnormal sperm in the 

wild house sparrows, which was a substantial difference (χ2 = 5.68, 

df = 1, p = .02). In neither data set did the proportion of morpho‐

logically abnormal sperm and male age show a clear statistical re‐

lationship (3). The statistical model on the wild house sparrow 

data	was	 overfitted,	which	 can	 lead	 to	 type	 1	 errors	 (Forstmeier,	
Wagenmakers, & Parker, 2016). Because we interpreted our result 

as a lack of statistical association between the proportion of abnor‐

mal sperm and male age (Table 3b), we can rule out that the result is 

a type 1 error.

The Olympus microscope caused a statistical upward bias of ab‐

normality scores in the captive population (Table 3). When we re‐

stricted	the	data	set	to	the	main,	Zeiss,	microscope	(51	samples	of	
38	males	 instead	of	87	samples	of	73	males),	our	 interpretation	of	
no clear statistical relationship between the proportion of morpho‐

logically abnormal sperm and male age remained qualitatively similar 

(Table	S2).

3.3 | Cloacal protuberance volume

There was no apparent statistical association between cloacal protu‐

berance volume and male age in either population. This was also the 

case	for	sMLH	(both	populations),	the	aviary	set‐up	(captive	popula‐
tion), method of sampling (captive population) and the year sampling 

took place (wild population). We further found a large among‐male 

variance in the captive population (Table 4). Cloacal protuberance 

volume showed a positive statistical association with tarsus size and 

day of the year in captivity (Table 4). In the wild, cloacal protuber‐

ance volume showed a negative statistical association with the day 

of sampling, highlighting a seasonal decrease (Table 4).

3.4 | Number of sperm on PVL

The number of sperm counted ranged from 0 to 1,013 (1 for an ex‐

ample of two sperm on a PVL). The mean number of old males’ sperm 

TA B L E  1   Results from a linear mixed model estimating the 

effect of male age on (a) the total, (b) the head, (c) the midpiece 

and	(d)	the	flagellum	length	of	3,262	sperm	from	127	captive	male	
house sparrows

Sperm length (μm)

Captive house sparrows
Estimate (lower CrI to 
upper CrI)

(a) Total length

(intercept) 99.48	(98.76	to	100.18)

Age 0.36	(−0.10	to	0.86)

sMLH −0.09	(−0.55	to	0.34)

Aviary set‐up (with females) 1.06 (0.42 to 1.66)

Method (faeces) −0.51	(−0.92	to	−0.09)

Year (2015) −0.32	(−0.89	to	0.25)

Random effects

Male ID 7.15	(5.72	to	8.80)

Aviary 0.04 (0.02 to 0.08)

Sample	ID 0.83	(0.70	to	1)

Residual variance 2.88 (2.81 to 2.95)

(b)	Head

 (intercept) 14.12 (13.82 to 14.43)

Age 0.06	(−0.08	to	0.19)

sMLH −0.08	(−0.18	to	0.03)

Aviary set‐up (with females) 0.15	(−0.15	to	0.42)

Method (faeces) −0.32	(−0.47	to	−0.18)

Year (2015) −0.53	(−0.80	to	−0.24)

Random effects

Male ID 0.25 (0.19 to 0.31)

Aviary 0.03 (0.01 to 0.06)

Sample	ID 0.17	(0.15	to	0.219)

Residual variance 0.86 (0.84 to 0.88)

(c) Midpiece

 (intercept) 66.43 (65.86 to 66.99)

Age 0.06	(−0.31	to	0.43)

sMLH 0.12	(−0.21	to	0.45)

Aviary set‐up (with females) 1.01 (0.53 to 1.51)

Method (faeces) −0.34	(−0.72	to	0.03)

Year (2015) 0.98 (0.51 to 1.46)

Random effects

Male ID 4.19	(3.37	to	5.08)

Aviary 0.02 (0.01 to 0.03)

Sample	ID 0.64	(0.53	to	0.76)

Residual variance 2.71	(2.65	to	2.77)

(d)	Flagellum

 (intercept) 85.45	(84.72	to	86.15)

Age 0.24	(−0.21	to	0.70)

sMLH 0	(−0.44	to	0.41)

Aviary set‐up (with females) 0.86 (0.28 to 1.46)

Method (faeces) −0.19	(−0.55	to	0.18)

Sperm length (μm)

Captive house sparrows
Estimate (lower CrI to 
upper CrI)

Year (2015) 0.14	(−0.43	to	0.70)

Random effects

Male ID 7.40	(5.93	to	9.02)

Aviary 0.07	(0.03	to	0.14)

Sample	ID 0.51 (0.42 to 0.60)

Residual variance 2.80	(2.73	to	2.86)

Note: We accounted for standardized multi‐locus heterozygosity 

(sMLH),	aviary	set‐up	(levels:	with	and	without	females),	sperm	collec‐
tion method (levels: abdominal massage and faeces) and year (levels: 

2014	and	2015)	of	sperm	collection.	Male	age,	as	well	as	sMLH,	was	
centred	and	scaled.	We	present	posterior	means	and	CrI	(95%	credible	
interval).

TA  B  L  E  1  (Continued)

(Continues)
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reaching	the	eggs	of	females	(mean	±	SD:	147	±	124,	N = 28 eggs) was 

nearly three times higher than the mean number of young males’ 

sperm	 (56	±	53,	N = 12	eggs,	Figure	2),	which	was	a	 considerable	
difference (unequal variances t test, t16.73 = 2.36, p = .03, supple‐

mentary	analysis	[Table	S4]).	Male	age	explained	16.4%	of	the	vari‐
ance and female age 0 (R2 marginal). We excluded an outlier egg with 

1,013 sperm (z‐score	=	7,	so	7	SD above the mean value of all sperm 

counted) from the t	test	(Figure	2).	Including	it	would	have	strength‐

ened	 the	 result.	 Further,	 of	 41	 eggs	 examined,	 39	were	 fertilized.	
The two unfertilized eggs originated from an aviary of each male age 

group.

4  | DISCUSSION

Our overall aim was to elucidate the factors promoting a posi‐

tive relationship between extra‐pair paternity and male age. 

Specifically,	 we	 predicted	 a	 sperm	 quantity–quality	 trade‐off	
related	 to	male	 age.	However,	we	 found	no	 evidence	 for	 such	 a	
trade‐off	 in	 two	populations	of	house	 sparrows.	Specifically,	we	
did not find a clear statistical association of sperm morphology 

or cloacal protuberance size with male age. Instead, we found 

that in captivity, the number of old males’ sperm in the eggs of 

females was almost three times higher than the number of young 

males’ sperm. Our result is intriguing because neither the number 

TA B L E  2   Results from a linear mixed model estimating the 

effect of male age on (a) the total, (b) the head, (c) the midpiece 

and	(d)	the	flagellum	length	from	672	sperm	of	34	wild	male	house	
sparrows

Sperm length (μm)

Wild house sparrows

Estimate (lower CrI to 
upper CrI)

(a) Total length

 (intercept) 99.22 (98.06 to 100.35)

Age −0.07	(−1.03	to	0.90)

sMLH 0.52	(−0.51	to	1.58)

Year (2015) −2.81	(−4.44	to	−1.22)

Random effects

Male ID 9.14	(7.26	to	11.80)

Residual variance 2.60	(2.47	to	2.74)

(b)	Head

 (intercept) 13.10 (12.82 to 13.39)

Age −0.05	(−0.30	to	0.19)

sMLH 0.13	(−0.11	to	0.37)

Year (2015) −0.29	(−0.73	to	0.17)

Random effects

Male ID 0.57	(0.47	to	0.70)

Residual variance 0.82	(0.78	to	0.86)

(c) Midpiece

 (intercept) 68.02	(67.35	to	68.66)

Age 0.40	(−1.08	to	0.07)

sMLH −0.52	(−0.31	to	0.42)

Year (2015) −0.10	(−1.22	to	1.10)

Random effects

Male ID 2.64 (2.03 to 3.35)

Residual variance 2.66 (2.52 to 2.81)

(d)	Flagellum

 (intercept) 86.06	(85.01	to	87.17)

Age 0.05	(−0.83	to	0.91)

sMLH 0.38	(−0.52	to	1.26)

Year (2015) −2.33	(−3.82	to	−0.87)

Random effects

Male ID 7.30	(5.71	to	9.28)

Residual variance 2.57	(2.44	to	2.71)

Note: We	accounted	for	sMLH	and	year	of	sperm	collection	(levels:	
2014	and	2015).	Male	age,	as	well	as	sMLH,	was	centred	and	scaled.	We	
present posterior means and CrI.

TA B L E  3   Results from a generalized linear mixed model on the 

proportion of morphologically abnormal sperm in relation to male 

age	in	captive	(87	samples	of	73	males)	and	wild	house	sparrows	(23	
samples of 23 males)

Proportion of morphologically abnormal sperm (logit‐link scale)

 

Estimate (lower CrI to 
upper CrI)

(a) Captive house sparrows

 (intercept) −2.24	(−2.66	to	−1.84)

Age 0.16	(−0.06	to	0.38)

sMLH −0.09	(−0.33	to	0.12)

Aviary set‐up (with females) 0.15	(−0.58	to	0.80)

Method (faeces) −0.09	(−0.56	to	0.37)

Microscope (Olympus) 0.77	(0.11	to	1.44)

Random effects

Male ID 0.26 (0.18 to 0.36)

Aviary 0 (0 to 0)

Observation‐level random effect 0.57	(0.43	to	0.73)

(b) Wild house sparrows

 (intercept) −3.84	(−4.50	to	−3.16)

Age 0.22	(−0.39	to	0.83)

sMLH 0.62	(−0.07	to	1.31)

Year (2015) 0.44	(−1.01	to	1.90)

Random effects

Observation‐level random effect 1.73	(1.14	to	2.49)

Note: We	accounted	for	sMLH	in	both	populations,	aviary	set‐up	(levels:	
with and without females), sperm collection method (levels: abdominal 

massage	and	faeces),	the	microscope	used	(levels:	Zeiss	and	Olympus)	in	
the captive house sparrows and year (levels: 2014 and 2015) in the wild 

house	sparrows.	Male	age,	as	well	as	sMLH,	was	centred	and	scaled.	We	
present posterior means and CrI.
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of mating attempts, the number of copulations nor female choice 

are explained by male age in this population (Girndt et al., 2018). 

Hence,	 precopulatory	 differences	 do	 not	 seem	 to	 explain	 the	
age‐related difference in extra‐pair copulation success and it is 

tempting to suggest age‐related post‐copulatory differences be‐

tween old and young males. Old males might have inseminated 

more sperm, and/or there was cryptic female choice (Eberhard, 

2009) of sperm from old males. Yet, our result is limited by a lack 

of information on the identities of the males that provided the 

sperm.	 For	 example,	 did	 all	 males	 in	 each	 aviary	 inseminate	 fe‐

males? Also, whether more sperm on PVLs constitute a curse or 

a blessing remains to be seen too. This is because the more the 

sperm are inseminated, the higher the probability that the egg gets 

fertilized	(Brillard	&	Antoine,	1990;	Froman	et	al.,	2002;	Wishart,	
1987),	but	the	risk	of	embryo	mortality	caused	by	multiple	sperm	
entering	 the	 egg	 (i.e.	 polyspermy;	 Forstmeier	 &	 Ellegren,	 2010)	
might	also	be	elevated.	 In	our	study,	95%	of	eggs	were	fertilized	

(N = 41	eggs	total)	pointing	at	two	things.	First,	there	was	no	dif‐
ference	 in	 the	 fertilizing	ability	of	young	and	old	males.	Second,	
infertility	 was	 rare	 (Schmoll	 &	 Kleven,	 2016).	 Indeed,	 in	 house	
sparrows, the biggest cause of unhatched eggs is embryo mortal‐

ity	(Birkhead,	Veiga,	&	Fletcher,	1995).	Under	the	assumption	that	
old males inseminate more sperm, this could mean that they out‐

compete young males with sperm numbers in sperm competition 

(Parker, 1990), at the cost of an elevated risk of unhatched eggs. 

Subsequent	 efforts	 could	 investigate	 the	 idea	of	 such	 a	double‐
sided effect of male age.

Cloacal protuberance volume was positively associated with tar‐

sus size, as well as date of measurement in captive house sparrows, 

whereas it was negatively associated with the date of measurement 

in the wild house sparrows. In the wild, measurements included the 

end of the breeding season, so the decline in cloacal protuberance 

volume can be interpreted as the regression of male reproductive 

gonadal	growth	(Anderson,	2006;	Sax	&	Hoi,	1998).	We	also	found	
a large among‐male variance in cloacal protuberance volume in the 

captive males, emphasizing that individual‐level predictors other 

than age and body size must be at play. It would be worthwhile to 

analyse other individual‐level predictors, such as individual mating 

status,	in	the	future	(Sax	&	Hoi,	1998).
There is evidence from nonavian studies for a positive associ‐

ation between sperm length and male age (Gasparini et al., 2010; 

TA B L E  4   Results from a linear mixed model on cloacal 

protuberance volume (mm3) in relation to male age in captive 

(195 observations of 142 males) and wild house sparrows (56 

observations of 46 males)

Cloacal protuberance volume (mm3)

 

Estimate (lower CrI to upper 
CrI)

(a) Captive house sparrows

 (intercept) 49.37	(42.05	to	57.03)

Age −1.07	(−4.43	to	2.34)

Aviary set‐up (with females) 2.57	(−7.91	to	13.90)

Day of year 4.13	(0.60	to	7.49)

Tarsus 2.86 (0.06 to 5.64)

Random effects

Male ID 222.69 (184.93 to 264.59)

Aviary 15.12 (4.45 to 31.69)

Residual variance 9.03	(8.19	to	9.97)

(b) Wild house sparrows

 (intercept) 3.41 (3.12 to 3.68)

Age 0.10	(−0.07	to	0.26)

Day of year −0.17	(−0.51	to	0.15)

Day of year2 −0.20	(−0.46	to	0.06)

Tarsus −0.04	(−0.21	to	0.12)

Year (2016) −0.04	(−0.54	to	0.47)

Random effects

Male ID 0 (0 to 0)

Residual variance 0.61	(0.50	to	0.75)

Note: We accounted for day of the year (captivity: 14–21 June; wild: 

6	May–17	August)	and	tarsus	size	in	both	populations.	Aviary	set‐up	
(levels: with and without females) was added to the analysis on captive 

house sparrows, and year (levels: 2015 and 2016) was added to the 

analysis on wild house sparrows. Cloacal protuberance volume of wild 

house sparrows was log‐transformed.

F I G U R E  2   The effect of age treatment on the number of sperm 

on the PVL. The number of sperm on perivitelline layers (PVL) of 

41 eggs was approximately three times higher in aviaries with old 

(>6 years) than aviaries with young males (1–3 years). We visualized 

the raw data including an outlier (one egg with 1,013 sperm) using 

a raincloud plot, combining box, split violin and scatter plots (Allen, 

Poggiali, Whitaker, Marshall, & Kievit, 2019). The outlier was not 

included in statistical analyses
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Green, 2003), but the lack of a clear statistical association be‐

tween sperm length and male age in our data corroborates the re‐

sults in other passerines with less precise age information (Cramer, 

Laskemoen,	Kleven,	&	Lifjeld,	2013;	Laskemoen,	Fossøy,	Rudolfsen,	
& Lifjeld, 2008; Møller et al., 2009). Our results further revealed 

differences in sperm length in relation to the year of sampling (a), 

the social environment (b) and the method of sperm sampling (c). (a) 

The result of differences in sperm length across years might reflect 

an	underlying	seasonality.	House	wrens,	Troglodytes aedon (Cramer 

et al., 2013), and male red‐winged blackbirds, Agelaius phoeniceus 

(Lüpold, Birkhead, & Westneat, 2012), show seasonal changes in 

sperm length. In the latter population, sperm length additionally 

varied across years (Lüpold et al., 2012). (b) We found that males 

kept with females had longer midpieces and flagella than males kept 

with males only. This could indicate a plastic male response to sperm 

competition, similar to that observed in Gouldian finches, Erythrura 

gouldiae, that increased their midpiece size in high‐competition en‐

vironments (Immler, Pryke, Birkhead, & Griffith, 2010). Indeed, the 

social environment affects reproductive development in house spar‐

rows, with males exhibiting declining sperm production and testes 

degeneration when caged individually (Lombardo & Thorpe, 2009). 

Also, house sparrows’ midpiece size shows only weak repeatability 

(Helfenstein	et	al.,	2010),	which	might	support	the	idea	of	a	plastic	
response to the social environment. What is unclear is how longer 

midpieces and flagella affect a sperm's fertilization success because, 

whereas sperm with longer midpieces and flagella make the best 

swimmers with the highest fertilization success in zebra finches, 

Taeniopygia guttata	(Knief	et	al.,	2017), in house sparrows, midpiece 

length and sperm velocity seem to be negatively correlated (Cramer 

et al., 2015). (c) Additionally, sperm length varied within males in re‐

lation to sperm collection method, which is discussed in detail else‐

where	(Girndt	et	al.,	2017).
The proportion of morphologically abnormal sperm did not 

show a statistically clear association with male age. This was sur‐

prising	 because	 we	 had	 relatively	 many	 old	 house	 sparrows	 (47	
captive males older than 5 years) available and these males are ex‐

pected to have more mutations in their germline than young males 

(Kong et al., 2012). Yet, our sample size is modest compared to a 

study using a breeding facility of 1,080 houbara bustards, where, in 

males beyond their prime, male age and the proportion of abnormal 

sperm	were	positively	associated	(Preston,	Jalme,	Hingrat,	Lacroix,	
&	Sorci,	2011).	Although	sperm	morphology	is	an	important	factor	
to evaluate a male's fertilization efficiency (Preston et al., 2015), it 

is	 also	 a	 highly	 complex	 trait	 that	 is	 difficult	 to	 standardize	 (Sikka	
&	Hellstrom,	2016).	One	reason	is	its	sensitivity	to	an	apparatus	as	
simple as a microscope, as evidenced in our results. It is thus possible 

that other analytical approaches, such as sperm DNA integrity or 

oxidative	stress	status	assays	(Sikka	&	Hellstrom,	2016),	are	better	
suited to detect qualitative differences in sperm of old and young 

males.

To conclude, sperm morphologies important for fertilization 

success were unrelated to male age in captive and wild house 

sparrow. Morphologically abnormal sperm, exemplifying lower 

quality	sperm	(du	Plessis	&	Soley,	2011),	did	not	show	a	clear	sta‐
tistical relationship to male age either, and male's cloacal protu‐

berance sizes were suggestive of similar relative testes sizes and 

sperm reservoirs in old and young house sparrows. Importantly, 

the number of sperm reaching the site of fertilization suggested 

that PVL sperm number and male age were positively correlated, 

but more sperm at the PVL did not translate into a higher number 

of eggs being fertilized. Age‐related variation in sperm traits could 

play an important role in the evolution of polyandry. Contrary to 

models of female choice for old age, it has been suggested that 

female extra‐pair mating evolved to help females avoid fertiliza‐

tions by senescent males (Radwan, 2003). This idea is plausible 

under the scenario that old males are worse sperm competitors 

than younger males (Radwan, 2003). Our data do not seem to sup‐

port this prediction because post‐copulatory traits were mostly 

similar between old and young male house sparrows and old males 

might even outcompete young males by sperm number at the site 

of fertilization. Our study is therefore not only an important step 

towards elucidating post‐copulatory traits of old versus young 

male passerines but also towards a better understanding of female 

polyandry in mating systems where extra‐pair males provide no 

other	 direct	 benefits	 than	 sperm.	 Future	 data	will	 reveal	 if	 con‐

ditions are met for adaptive interpretations of female extra‐pair 

mating with old males or if mating with old males bears a cost.
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