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Abstract. Masonry arches are vulnerable to seismic actions. Over the last few years, extensive research has developed 
strengthening strategies and methods to resist these seismic actions. However, from such studies, it is evident that the 
application of reinforcement to a masonry arch is done such that its failure limit is transformed from stability to a strength. 
This direct transformation overlooks the intermittent stages that exist, and thus provides an incomplete picture to the 
potential behaviors of the system. These intermittent stages can be established through subjecting the arch to hinge control 
and have shown the potential to increase capacity and control failure, but the computational costs for assessing the non-
linear dynamic behavior of all potential mechanisms is high. This work presents a hinge-joint selection strategy from 
magnitude variations of short span non-linear dynamic loading through the two-dimensional Discrete Element Method 
(DEM) based software UDEC. Each voussoir of the arch was represented by a distinct block within the DEM. Mortar joints 
were modelled as zero thickness interfaces which can open and close. Twenty-five unique configurations of an arch with 
controlled hinges were developed and each was subjected to short duration seismic velocity profile with varying 
magnitudes. From this analysis an optimal hinge set with is identified. 

INTRODUCTION 

Reinforcement of masonry arches is necessary for preventing seismic induced collapse. Of the various techniques, 
fiber reinforced polymers (FRP) and textile reinforced mortars (TRM) both focus on reinforcing the development of 
flexural joints. Typically, their application is designed to maximize capacity which transforms the traditional minimum 
mechanism analysis into a material strength problem (i.e. rupture, crushing or delamination) [1-4]. It has been revealed 
through considering the intermittent stages between the minimum mechanism and full strengthening under static 
assessments that the potential exists to increase capacity and control failure for arches subjected to hinge control [5-
7]. It is now necessary to begin expanding the evaluation beyond static conditions, but non-linear dynamic loading is 
computationally expensive. Therefore, it is necessary to establish selection reduction strategies to reduce the number 
of hinge sets requiring full non-linear dynamic analyses. This work presents the numerical examination of a class of 
25 admissible mechanisms for a dry-stack masonry arch subjected to hinge control and identifies the optimal hinge 
set configuration based upon a magnitude variation of a short-span non-linear dynamic sequence.  

ARCH MODEL 

The arch model used in this investigation is a 27-block semi-circular arch whose arch and block geometry is shown 
in Fig. 1. Figure 2 identifies the nomenclature used for the model. 



 
FIGURE 1. Arch model geometry and block dimensions 

 

 
FIGURE 2. Arch model nomenclature 

 

DEM Overview and the Developed Model 

The discrete element method (DEM) is a discontinuum analysis technique and it is presented in the UDEC 
(Universal Distinct Element Code) software developed by Cundall in the early 1970s for numerical research into the 
sliding of earth and rock masses. The software has since been used for a variety of applications. For the masonry 
analysis in this work, the units are represented as an assembly of rigid blocks. Rigid block geometries maintain their 
defined shape regardless of the loading. The mortar joints are represented as zero thickness interfaces between the 
blocks to model a dry-stack condition. Contact is represented by a set of points with no consideration of the stress 
distribution of the contact surface. Contact assignments allow the formulation of interface constitutive relations in 
terms of the stresses and relative displacements across the joint. The nodal displacements and block rotations are 
solved explicitly by differential equations from the known displacements, and Newton’s second law of motion 
provides the motion of the blocks. Thus, large displacements and rotations of the blocks are permitted. Convergence 
to static solutions is obtained by means of adaptive damping, as in the classical dynamic relaxation methods. 

Independent geometric models were created for the control arch model and for each tested hinge set. The control 
arch contained no hinge control and was modelled by 27 rigid voussiors connected by 26 joint interfaces (see Fig. 3). 
Each mechanical joint set was represented by three rigid voussoirs, two rigid bases and four joints as shown in Fig. 3. 
All joints were defined as zero-thickness interface elements that follow the Coulomb failure criterion. A description 
of modelling masonry with DEM can be found at [8, 9]. 

  
(a) (b) 

FIGURE 3. DEM model geometry for (a) the control arch and (b) a typical hinge-controlled arch 
 



The material properties assigned to the joints of each arch model are provided in Table 1. The required material 
parameter for representing rigid voussoirs is the unit weight (d), which was taken as 550 kg/m3. Elastic-perfectly 
plastic coulomb slip joint area contact interfaces were used for the joints. The joint normal and shear stiffness were 
set high to remove potential block penetrations. To represent dry-joints, the cohesion, tensile strength and the dilatation 
angle of the interfaces were set to zero. Self-weight was modelled as gravitational loads. 

TABLE 1. Dry-joint material properties for the DEM models 
Normal Stiffness 
[GPa/m] 

Shear Stiffness 
[GPa/m] 

Friction  
Angle [°] 

Cohesive  
Strength [kPa] 

Tensile  
Strength [MPa] 

Dilation 
Angle [°] 

20 10 22 0 0 0 
 
Self-weight effects were assigned as gravitational load and each model was brought into a state of equilibrium 

under its weight. Then, external loading was applied through the velocity component of a time history seismic 
sequence applied to the base of the model. Crown displacements of the arch were recorded. 

ANALYSIS PROCEDURE FOR JOINT SELECTION 

The dynamic analysis procedure for identifying the optimal mechanical joint set involved a two-stage process. 
First, a collapse time was obtained by applying the dynamic ground velocity profile to the control arch. The collapse 
time established the reduced analysis duration of the dynamic loading applied to the 25 unique hinge sets established 
through hinge control. This was repeated at a magnitude of one, two, three, four and five times the original velocity 
profile. The crown and base displacements were recorded, and the final horizontal crown displacement was calculated 
and compared for each hinge set and earthquake scale. From the comparison, the optimal hinge configuration was 
identified by the hinge set with the minimum final deformation at the unreinforced collapse time. 

Earthquake Velocity Data 

The ground velocity vector from Bucharest 1977 earthquake (see Fig. 4) was applied in both the horizontal and 
vertical directions for each analysis run. As stated, the scale of the vectors ranged from one and five times the original. 

 

 
FIGURE 4. Velocity data for the 1977 Bucharest earthquake 

Hinge Sets 

Tables 2 and 3 identify the 25 tested hinge sets. The selected hinge sets are the minimum configurations for the 
admissible locations of base hinges (H1 and H4) as determined through the development of a collapse load diagram 
[7]. 

TABLE 2. Hinge joint locations for hinge sets HS01 through HS10. Refer to Fig. 2 for joint identification 
 HS 

01 
HS 
02 

HS 
03 

HS 
04 

HS 
05 

HS 
06 

HS 
07 

HS 
08 

HS 
09 

HS 
10 

HS 
11 

HS 
12 

HS 
13 

H1 J1 J1 J1 J1 J1 J2 J2 J2 J2 J2 J3 J3 J3 
H2 J8 J8 J8 J8 J8 J8 J9 J9 J9 J9 J10 J10 J10 
H3 J17 J17 J16 J16 J16 J16 J17 J17 J17 J18 J17 J17 J16 

H4 J26 J25 J24 J23 J22 J22 J23 J24 J25 J26 J26 J25 J24 

 



TABLE 3. Hinge joint locations for hinge sets HS14 through HS25. Refer to Fig. 2 for joint identification 
 HS 

14 
HS 
15 

HS 
16 

HS 
17 

HS 
18 

HS 
19 

HS 
20 

HS 
21 

HS 
22 

HS 
23 

HS 
24 

HS 
25 

H1 J3 J3 J4 J4 J4 J4 J4 J3 J3 J3 J3 J3 
H2 J9 J9 J10 J10 J10 J11 J11 J10 J10 J10 J9 J9 
H3 J16 J16 J16 J17 J17 J17 J18 J17 J17 J16 J16 J16 

H4 J23 J22 J22 J23 J24 J25 J26 J26 J25 J24 J23 J22 

RESULTS 

The unreinforced collapse time was identified as the time the keystone struck the ground. This time was 5.7 
seconds. Applying the collapse time to the analyses of the 25 hinge sets revealed that none of the hinge-controlled 
arches failed within the collapse time. This held for all magnitude increases as well. Figure 6 shows the final horizontal 
crown displacements of all the tests. From Fig. 6 hinge set 05 was clearly identified as the optimal hinge set. 

 

 
FIGURE 5. Final displacement versus hinge sets for all scaled dynamic analyses performed for the collapse time duration 
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