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Epilepsy Seizure Prediction on EEG Using

Common Spatial Pattern and Convolutional Neural

Network
Yuan Zhang, Senior Member, IEEE, Yao Guo, Po Yang, Senior Member, IEEE,

Wei Chen, Senior Member, IEEE, and Benny Lo, Senior Member, IEEE

Abstract—Epilepsy seizure prediction paves the way of timely
warning for patients to take more active and effective intervention
measures. Compared to seizure detection that only identifies
the inter-ictal state and the ictal state, far fewer researches
have been conducted on seizure prediction because the high
similarity makes it challenging to distinguish between the pre-
ictal state and the inter-ictal state. In this paper, a novel solution
on seizure prediction is proposed using common spatial pattern
(CSP) and convolutional neural network (CNN). Firstly, artificial
pre-ictal EEG signals based on the original ones are generated
by combining the segmented pre-ictal signals to solve the trial
imbalance problem between the two states. Secondly, a feature
extractor employing wavelet packet decomposition and CSP
is designed to extract the distinguishing features in both the
time domain and the frequency domain. It can improve overall
accuracy while reducing the training time. Finally, a shallow
CNN is applied to discriminate between the pre-ictal state and
the inter-ictal state. Our proposed solution is evaluated on 23
patients’ data from Boston Children’s Hospital-MIT scalp EEG
dataset by employing a leave-one-out cross-validation, and it
achieves a sensitivity of 92.2% and false prediction rate of 0.12/h.
Experimental result demonstrates that the proposed approach
outperforms most state-of-the-art methods.

Index Terms—seizure prediction, EEG, common spatial pat-
terns, convolutional neural network

I. INTRODUCTION

EPILEPSY is a common chronic brain disease with ap-

proximately 50 million patients worldwide, the premature

death rate of whom is 2 to 3 times that of disease-free

individuals, and it poses a heavy burden on the patients, their

families and the society [1], [2]. Accordingly, the study of

seizure prediction has always played an important role in the
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field of biomedicine to offer hope of orthobiosis and proper

functioning to those patients who cannot be cured by surgery

[3]. However, accurate and generalized seizure prediction is

very difficult to achieve due to two important factors [4],

[5]. Firstly, EEG signal itself is highly complex and varies

irregularly over time. Secondly, the pre-ictal and the inter-

ictal EEG states across individuals are highly variable. For

these reasons, an automated patient-specific seizure prediction

approach which could reduce the serious consequences of

seizure by detecting the onset and raising an alarm is both

highly challenging and desired.

In the early stages, classification between the ictal state

and the inter-ictal state for seizure detection was popular

approach [6]–[9]. Automatic seizure detection can quickly and

accurately estimate an approximate period of seizure. In one

of our previous works, we utilized an extended correlation-

based feature selection and logistic model trees to classify the

ictal state, the inter-ictal state and the normal state, with the

accuracy of 97.6% [10]. Although it can detect seizures, can

not be used in monitoring treatment due to lack of predicting

epilepsy onset. Unfortunately, only limited attention has been

paid to seizure prediction due to the lack of unified assessment

criteria, until Maiwald unequivocally defined the term for

prediction methods and predict the oncoming onset using

dynamical similarity index and threshold crossing [11]. After

that, many researches on seizure prediction has emerged based

on different dataset [12]–[14].

Nowadays, machine learning is an advanced technique to

predict seizure. Among them, dynamical similarity index,

mean phase coherence, phase-locking value, zero-crossings are

effective algorithms to extract features, and gaussian mixture

models, adaboost, support vector machine (SVM) and convo-

lutional neural network (CNN) are used widely for seizure.

However, these methods cannot achieve high sensitivity and

low false prediction rate (FPR) simultaneously. In addition,

most methods overlooked the data imbalance problem that

the pre-ictal signals are far less than that of the inter-ictal

signals. To address these issues in developing a reliable seizure

prediction algorithm, we adopt data augmentation to balance

data and utilize common spatial pattern (CSP) together with

CNN to predict the occurrence of seizures. As an effective

spatial filtering algorithm CSP can search the component

signal which best transduces the cerebral activity in seizure

prediction. CNN has already been widely used including but

not limited to face recognition, natural language processing
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and emotion recognition, with few development in EEG data

analysis. Moreover, to the best of our knowledge, the com-

bined model of CSP and CNN is for the first time applied to

EEG data classification.

The main contributions of our work are as follows: (1) A

novel algorithm comprising of two consecutive components

is designed. The first part is an extractor to extract feature

matrix obtained by CSP from raw EEG signals and their

several frequency bands. Then, a shallow CNN with two

blocks is constructed to predict the oncoming seizure. The

designed extractor can extract temporal, spatial and frequency

characteristics of each class from multi-channel EEG signals,

while the CNN can be trained for seizure prediction. (2) We

implement signal segmentation and recombination in the time

domain to augment the amount of pre-ictal EEG signals, to

prevent the model from suffering from the trial imbalance

problem. (3) The balanced data are applied to our architecture.

The average prediction accuracy reaches 92.2% meanwhile

the average FPR is 0.12/h, outperforming most state-of-the-

art seizure prediction methods in recent literature.

The remainder of the paper is organized as follows. Section

II introduces typical works using machine learning. Section

III provides the details of our proposed method. In Section IV,

the results of this method are presented. Section V presents a

discussion on the results, and comparisons with related work.

Finally, the paper is concluded in Section VI.

II. RELATED WORK

In recent years, the continuous exploration of artificial

intelligence has further promoted the development of smart

health [15]. Seizure prediction, as a hotspot of smart health,

can alleviate the suffering of patients and protect their safety.

Feature extraction and classification are especially important

for seizure prediction algorithms, which play a key role in

improving recognition results [16].

Studies on seizure prediction can be divided into two

categories according to the type of classifier applied. In the first

category, one or two kinetic indicators and threshold crossing

are used to forecast an impending seizure onset. The seizure

is expected to come when the indicator is apparently above

or below the calculated threshold [17]. Once the increasing

or decreasing tendency in the value over time appears, an

alarm is triggered to warn an approaching onset. Among

them, Iasemidis studies the T-index of the largest exponent

[18], found that the largest Lyapunov curve for the pivotal

channels in temporal lobe presents a dynamical change before

the onset. In the second category, the entire EEG signals

from patients are divided into segments (several seconds in

general as a trial), and then labeled as inter-ictal, pre-ictal,

and ictal [19]. Among them, ictal signals have no contribution

to seizure prediction and are discarded before classification. In

this approach, a binary machine learning classifier is trained

to distinguish the two states. A disadvantage of the first

approach over the second one, is that no single or two features

simultaneously have noticeable changes for all-patients when

the seizure come. The feature extraction and classification is

the most important procedure for the second approach, and

suitable choice and design can produce superior performance

[20].

Zandi proposed a novel method that applied zero-crossing

interval histogram and variational Bayesian Gaussian mixture

model to predict the oncoming onset of 20 patients from the

Vancouver General Hospital database [21]. Turky used CSP

to extract a feature set which was fed into LDA classifier to

distinguish between the pre-ictal EEG segments and the inter-

ictal EEG segments [22]. Mayer used phase/amplitude lock

values (PLV/ALV) to calculate the phase and amplitude differ-

ence between EEG electrodes local and remote to the epileptic

event [23]. Dongrae used EEG signals of 21 patients from

Boston Children’s Hospital-MIT scalp EEG dataset CHB-MIT

and applied phase-locking value to the gamma frequency band

decomposed by empirical mode decomposition, multivariate

empirical mode decomposition, and noise-assisted multivariate

empirical mode decomposition [24]. Recent research efforts

have focused on developing a method to extract features that

can effectively predict seizures for patients.

With the rapid advancement of deep learning, CNN becomes

the most popular method for seizure prediction. Truong uti-

lized the short-time fourier transform (STFT) on 30s EEG

windows without overlap to extract time-frequency informa-

tion as an input of classifier [25]. After standardization, a CNN

structure with three convolution layers, each layer including a

batch normalization unit, a convolution unit and a max-pooling

unit, is trained to separate the pre-ictal trials from the inter-

ictal trials. They used 13 patients from the same database to

test the proposed methodology. The average seizure prediction

sensitivity reached 81.2% with an FPR being 0.16/h. Khan

designed a CNN architecture with six convolutional layers to

extract features which can differentiate pre-ictal from inter-

ictal EEG segments [26]. The detail coefficients obtained by

the wavelet transform of each EEG channel at assorted scale

was fed as input to CNN. They used 15 patients from the CHB-

MIT dataset to test the proposed methodology and achieved

an average FPR of 0.142/h.

We note that all previous researches overlook the length

of the pre-ictal signals is much less than that of the inter-

ictal signals in seizure prediction. We balance the data by

generating extra pre-ictal states and discard some inter-ictal

states. Moreover, CSP as a feature extraction method with

superior performance in the brain-computer interface field

lacks of attention in seizure prediction. Only [22] used CSP as

an extractor for binary classification, nevertheless the results

for binary classification were unsatisfactory. Also, extracting

features in different frequency and temporal bands simulta-

neously is an ideal method for improving the classification

precision [27]. In addition, due to EEG data with multi-channel

signals, as a special two-dimensional signal, whose number

of channel and samples extreme dissimilarity. Raw signals

after simple pre-processing such as cutting or flipping are still

unfeasible for direct use as inputs. Although EEG signals after

time-frequency transform can be fed into deep CNN, it takes

too much time in training which is undesirable in clinic. The

CNN with multilayer is easy to overfitting in terms of small

dataset, which is unfortunately aligned with light seizure of

only several hundred EEG trials. To solve these challenges,
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TABLE I: The detailed description of the CHB-MIT EEG dataset. Gender: Female (F) and Male (M). Seizure type: Simple

partial seizure (SP), Complex partial seizure (CP) and Generalized tonic-clonic seizure (GTC). Brain Location: Frontal,

Temporal, Occipital and Parietal. No. of seizures: The number of seizures.

Patient ID Gender Age Seizure type Brain location No. of seizures

01 F 11 SP, CP Frontal 7

02 M 11 SP, CP, GTC Temporal 3

03 F 14 SP, CP Frontal 7

04 M 22 SP, CP, GTC Temporal 4

05 F 7 CP, GTC Frontal 5

06 F 1.5 CP, GTC Temporal/Occipital 10

07 F 14.5 SP, CP, GTC Temporal 3

08 M 3.5 SP, CP, GTC Frontal 5

09 F 10 CP, GTC Temporal/Occipital 4

10 M 3 SP, CP, GTC Temporal 7

11 F 12 SP, CP, GTC Parietal 3

12 F 2 SP, CP, GTC Temporal 40

13 F 3 SP, CP, GTC Temporal/Occipital 12

14 F 9 CP, GTC Frontal/Temporal 8

15 M 16 SP, CP, GTC Temporal 20

16 F 7 SP, CP, GTC Temporal 10

17 F 12 SP, CP, GTC Temporal 3

18 F 18 SP, CP Frontal 6

19 F 19 SP, CP, GTC Frontal 3

20 F 6 SP, CP, GTC Temporal/Parietal 8

21 F 13 SP, CP Temporal/Parietal 4

22 F 9 - Temporal 3

23 F 6 - Temporal 7

we design a lightweight CNN to identify the pre-ictal state

and the inter-ictal state.

III. MATERIAL AND METHODOLOGY

A. EEG DATA

The EEG data used in this paper is acquired from the CHB-

MIT EEG dataset including scalp EEG (sEEG) recordings of

23 patients suffering from medically intractable focal epilepsy.

To assess whether patients can be alleviated by surgical

intervention, the EEG data is collected by the Neurofile NT

digital video EEG system. Each case refers to EEG signals

of a patient, containing between 9 to 24 continuous EDF files

(EDF is a proprietary format for storing EEG signals and EEG

signals in an EDF are referred to as a sample in this paper) and

an annotation document clearly states the electrode utilization

and the time of seizure start and seizure end in each EDF file.

The start and end time of seizure is recorded in the annota-

tion by clinical experts after visual inspection. Each recording

is named as Chb n, where i denotes patient ID and n indicates

the nth sample for patient i. All the detailed information of

the 23 cases is listed in TABLE I.

B. Pre-processing

Since the abnormal discharge of epilepsy seizure mainly

occurs in the frequency ranging from 5Hz to 50Hz, a fifth-

order Butterworth band-pass filter was applied to obtain the

corresponding frequency band. Consequently, the filtered data

mentioned hereafter all refer to the EEG signals in the fre-

quency ranges of 5-50Hz. Because the electrode utilized for

each patient in multiple experiments is somehow different, it is

difficult to analyze without selecting their common channels.

Therefore, we have picked 18 channels that all patients have,

including FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-C3, C3-

P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8,

T8-P8, P8-O2, FZ-CZ and CZ-PZ. Epilepsy seizure EEG

recordings contain inter-ictal, pre-ictal and ictal durations (as

shown in Fig. 1).

The seizure prediction horizon (SPH) needs to be defined

before algorithm implementation. However, the pre-ictal hori-

zon prescribed is still controversial. In our work, we follow the

SPH defined by Maiwald. They believe that 30 minutes as the

pre-ictal horizon is an appropriate range which can effectively

remind the patient without causing over term tension [11].

Epilepsy seizure EEG recordings contain inter-ictal, pre-ictal

and ictal states (as shown in Fig. 1). Epilepsy seizure predic-

tion allows the detection of seizure before its occurrence for

the patients to get timely and effective assistance. However,

once the ictal data is detected, the optimal reaction time has

already passed. Accordingly, identifying the ictal state does

not make sense for epileptic seizure prediction, and thus we

discard the ictal data to perform binary classification between

the pre-ictal and inter-ictal states.

We encounter the following issues on truncating the pre-
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Fig. 1: Definition of the seizure inter-ictal horizon (SIH),

seizure pre-ictal horizon (SPH) and seizure occurrence period

(SOP).

ictal period. Firstly, seizures for most samples often start

before 30 minutes, however, the SPHs do not satisfy the 30-

minute required. In such circumstance, we have to fill the

part less than 30 minutes with the latter part of a previous

consecutive sample to get close to 30 minutes. Secondly, some

EDF recordings are lost, resulting in interruption between

two adjacent samples. For example, chb13 62 starts record

at 04:20:55 and seizure at the 851th s (about 14 minutes),

however, the previous record chb13 60 ends at 03:20:41.

Accordingly the duration of only 14 minutes is segmented

as a pre-ictal state of this seizure. Each truncated recording

includes pre-ictal and inter-ictal state and is divided into

5s EEG signals as trials for binary classification. The data

segmentation method is illustrated in Fig. 2. Fig. 3 shows two

sample trial segments of the inter-ictal state and the pre-ictal

state, which indicates the difference between these two types

of signals.

Fig. 2: Data segemention without overlapped.

(a) Inter-ictal

(b) Pre-ictal

Fig. 3: Two example trials segemented from the inter-ictal state

and the pre-ictal state.

C. Data augmentation

The trial imbalance problem is not unique but could be knot-

tier for seizure prediction when machine learning is concerned.

As for the CHB-MIT dataset, the percentage of pre-ictal trials

to the inter-ictal trials can be less than 1:15 in most cases.

In general, undersampling and oversampling methods are used

together to generate a balanced dataset from imbalance dataset.

To balance the two types of data, undersampling reduces

the size of the majority class, and oversampling generates

extra artificial data, respectively. Compared to undersampling,

oversampling is more difficult to achieve due to too many

sampling points in an EEG signal. Traditional data augmen-

tation methods such as Bootstrapping [28] and SMOTE [29],

cannot generate an authentic artificial sample that is difficult

to extricate from real samples. In this step we explore two

schemes through extensive experiments in generating the pre-

ictal trials. The first one is to recombine EEG signals by means

of multi-segment cutting and splicing [30] and the second one

is to generate EEG data by generative adversarial networks

(GAN) [31]. Both the algorithm complexity and the training

time needs to be taken into consideration. In addition, the

artificial EEG data generated by GAN lack channel correlation

because the EEG signals are generated from separate single

channel. For these reasons, the former scheme is finally

adopted to generate extra pre-ictal EEG signals.

The idea of our pre-ictal trial augmentation is to first split

each training EEG trial into three segments, and then generate

new artificial trials as a concatenation of segments coming

from diverse and randomly selected training trials of the pre-

ictal state (as shown in Fig. 4). We randomly discard some of

the inter-ictal signals from a training set to make the ratio of

the inter-ictal trial to the pre-ictal trial reach two. Meanwhile,

we generate additional pre-ictal signals and put them in the

training set to make the ratio of the inter-ictal trial to the pre-

ictal trial reach 3/2. This scheme facilitates generating a large

number of new trials, which are different from the original

ones but are closely relevant and may be similar to other trial,

since they are part of the real trials and have the same temporal

structure. By adding these new data to the original training set

to enrich the feature space in a correlative way can ease the

training of the subsequent machine learning algorithms.

D. Feature extraction

1) Common spatial pattern: As an extension to PCA, CSP

could find a projection matrix composing of several pairs

of space filtering vector. The multi-channel EEG signals are

projected into a new space through the projection matrix [32]

so that the variance of one class is maximized and the other

is minimized by the following function J(ω):

J(ω) =
ωTC1ω

ωTC2ω
(1)

where C1 and C2 are covariance matrices of pre-ictal data and

inter-ictal data, and ω is the spatial filter matrix. The detailed

process of CSP is as follows.

The covariance of each trial of the two kinds of EEG signals

is calculated by equation (2),

C =
EN∗PE

T
N∗P

trace(EN∗PE
T
N∗P )

(2)

where EN∗P denotes the trail’s original EEG signal, N is the

number of channels, P is the number of points, xT denotes the
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Fig. 4: The flow diagram of data augmentation.

transpose of the matrix x and trace(x) is the sum of diagonal

elements of matrix x. The sum of covariance matrices for

both classes’ EEG signals Cc is calculated using C1 and C2

as follows:

Cc = C1 + C2 (3)

The covariance matrix sum Cc is decomposed by eigenvalue

decomposition as:

Cc = UcAcU
T
c (4)

where U is the N ∗N diagonal matrix of eigenvector, and Ac

is the N ∗N matrix of eigenvalue for all EEG signals.

To remove the channel-to-channel correlation, we can

rescale each feature UT
c by A

−1/2
c . Specifically, the whitened

data P is obtained as follows:

P = A−1/2
c UT

c (5)

Thus, PCcP
T = IN∗N is observed by the matrix decom-

position as follows:

PCcP
T = A−1/2

c UT
c UcAcU

T
c (A−1/2

c UT
c )T = IN∗N (6)

where I indicates identity matrix. Besides, S1 and S2 can be

defined by C1 and C2:

S1 = PC1P
T = BA1B

T (7)

S2 = PC2P
T = BA2B

T (8)

where S1 and S2 share common eigenvectors B, and A1 +
A2 = IN∗N .

The spatial filter ω is obtained by equation (9).

ω =
(

BTP
)T

(9)

Z can be calculated by spatial filtering using equation (10).

ZN∗P = ωN∗NEN∗P (10)

Features can be obtained by extracting the first m and the

last m line of Z.

2) Feature extrator: CSP can effectively extract discrimi-

native patterns from EEG signals. In [22] the authors utilize

CSP to extract features from raw EEG signals. Nevertheless,

the performance of this spatial filter depends on the operational

frequency band of the EEG and there exists difference in the

operational frequency between individuals. It is unfeasible to

manually select a specific frequency range for each subject.

Therefore, different from [22], we extracted the features from

9 bands including 8 sub-frequency bands and the original

data. The wavelet packet decomposition, as a superior time-

frequency analysis tool, divides EEG signals into 8 sub-

bands with the same frequency span. The classifier used in

Section III.E assigns different weight to each frequency band

to automatically select the suitable ones for all the patients.

We obtain the 9*18 feature matrix from 8 sub-bands and one

original data including EEG 1, EEG 1 1,..., and EEG 1 8 as

shown in Fig. 5. In addition, to make full use of the temporal

correlation in the feature matrix, we divide the EEG trial into

2 segments of 2.5s (such as EEG 1 and EEG 2 as shown in

Fig. 5), and extract features to finally obtain a feature matrix

with size of 18∗18. The features after normalization is fed into

classifier. Using the feature extractor can reduce the training

time since the input size of the classifier is apparently smaller

than using original EEG signals. The overall implementation

process of the extractor is depicted in Fig. 5.

E. Classification and evaluation

CNN is a classical deep neural network most commonly

applied in computer vision and natural language processing.

In our work, the feature matrix after normalization is fed into

a shallow CNN as input with two blocks (as shown in Fig.

3). Each block consists of a convolution unit (C1, C2) with a

leaky rectified linear unit (Leaky Relu) activation function, a

max-pooling unit (S1, S2) and a dropout unit with rate of 0.5

(the dropout layer of the first block is not shown in Fig. 6).

3 ∗ 3 kernel with the stride of 1 ∗ 1 is applied to C1

and C2. Leaky Relu activation is applied to the convolution

results before the max-pooling layer. The first block and the

second block have 6 and 16 convolution kernels, respectively.

Features extracted further by the two blocks are flattened

and connected to two fully connected layers with output

sizes of 84 and 2, respectively. The former fully connected

layer and the latter use a sigmoid activation function and

a soft-max activation function, respectively. Because of the

limited available datasets, we design a shallow CNN to prevent

overfitting. In addition, we randomly pick one of the seizure
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Fig. 5: The flow diagram of the extractor.

Fig. 6: CNN architecture for seizure prediction.

samples from the training set as a validation set to further

overcome overfitting. After each training epoch, the accuracy

is calculated with respect to the validation set to check if the

network starts to overfit. Although the output of the classifier

represents the state of a 5s EEG trial, each trial is analyzed

independently without considering the association between the

previous and latter states. A good predictor depends on several

trials to forecast the oncoming state, however, a prediction

result relying on only one trial will result in high false

alarm rate. To eliminate the possibility of such case, Kalman

filtering is used to reduce mispredictions. The Kalman filtering

equation is described as follows.

fout [n] =

∑n
k=n−T O [k]

T
(11)

where O [k] denotes the output of classifier. The O [k] equals

0 when output is inter-ictal state and the O [k] equals 1 when

the output is pre-ictal state. T denotes the necessary time

for continuous monitoring and is set to 5 in our experiment.

fout [n] is the output after filtering. When it reaches 1, the

alarm is triggered.

Cross-validation is a technique used to evaluate whether the

results of a statistical analysis can be generalized to a separate

data set. To obtain reliable output, we choose the leave-one-out

cross-validation to verify the model in real scenarios. Suppose

there are N seizures data for a certain patient. Each seizure

data is adopted as a single test set, and the remaining N − 1
samples are used as training set to obtain N prediction results

for each seizure. The average of the classification accuracy of

the N results is defined as the performance of the classifier.

Comparing with k-fold cross-validation, leave-one-out cross-

validation is deterministic in that there could be no random

factors happening and the whole process is repeatable.

Seven evaluation metrics to measure algorithm performance

are applied in our work: sensitivity, FPR, accuracy, area under

the curve (AUC), recall, F-measure and kappa. Sensitivity is

defined as the percentage of seizure correctly predicted in the

total number of seizures, which can measure the ability of

correct seizure prediction. FPR represents the ratio of inter-

ictal trials which are currently misclassified as pre-ictal trials to

all the pre-ictal trials. It is an index to calculate the possibility

of misdiagnosis. In addition, some common evaluation indexes

including accuracy, AUC, recall, F-measure and kappa are

used to measure the classification ability of our model.

IV. RESULTS

In this work, we evaluate the proposed algorithm on CHB-

MIT sEEG dataset using leave-one-out cross-validation. TA-
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TABLE II: The performance of the proposed algorithm on 23 patients.

Case

ID

No. of

Seizures

Sensitivity FPR/h Accuracy AUC Recall F-measure Kappa

01 7 1 0.08 0.94 0.94 0.92 0.95 0.89

02 3 0.67 0.08 0.92 0.92 0.92 0.93 0.95

03 7 1 0.04 0.96 0.96 0.96 0.96 0.92

04 4 1 0.04 0.96 0.97 0.95 0.97 0.89

05 5 1 0.12 0.89 0.89 0.90 0.90 0.78

06 10 1 0.12 0.86 0.86 0.86 0.85 0.71

07 3 1 0.04 0.93 0.93 0.97 0.93 0.86

08 5 0.8 0.2 0.8 0.8 0.78 0.79 0.60

09 4 1 0.06 0.9 0.91 0.94 0.91 0.82

10 7 1 0.02 0.96 0.96 0.98 0.95 0.91

11 2(3∗) 1 0.01 0.97 0.98 0.99 0.98 0.95

12 21(40∗) 1 0.44 0.9 0.85 0.92 0.94 0.72

13 10(12∗) 0.9 0.18 0.89 0.88 0.92 0.91 0.76

14 8 0.75 0.18 0.84 0.85 0.84 0.85 0.69

15 17(20∗) 1 0.26 0.95 0.95 0.96 0.95 0.9

16 9(10∗) 1 0.22 0.86 0.86 0.87 0.88 0.72

17 3 1 0.04 0.91 0.92 0.95 0.91 0.83

18 6 0.83 0.14 0.87 0.87 0.89 0.87 0.74

19 3 1 0.1 0.99 0.99 0.99 0.99 0.98

20 8 1 0.02 0.94 0.94 0.98 0.91 0.88

21 4 0.75 0.24 0.8 0.8 0.81 0.86 0.6

22 3 0.67 0.18 0.79 0.8 0.83 0.79 0.6

23 7 1 0.08 0.95 0.95 0.93 0.95 0.9

Total 156 0.92 0.12 0.90 0.90 0.92 0.91 0.81

∗ Two seizures are combined when the second one is in the postseizure interval of the first one.

BLE II presents the results of the proposed method on 23

patients. An average sensitivity of 92% and an average FPR

of 0.12/h is achieved.

The visualization of the 18*18 feature matrix of the pre-ictal

state and inter-ictal state for patient 1 is presented in Fig. 7.

The larger the feature value, the darker the corresponding point

will appear in Fig. 7. On the contrary, lighter color indicates

corresponding smaller features. It is evident that the two types

of features have clear distinction. The maximum of feature

values in each column always lie in the end row for the inter-

ictal state in Fig.7 (a), however for the pre-ictal state in Fig.7

(b), it is on the contrary that their maximum value lies in the

first row. Thus, it fully verifies that our extractor has strong

ability to learn their differences.

To evaluate the performance of the designed CNN, we

conduct extensive experiments on 23 patient using SVM and

multilayer perceptron (MLP). SVM has the advantages of

strong generalization ability [33]. MLP has been widely used

in biology and computer science due to its strong adaptability

and fault tolerance. TABLE III summarizes the performance

of the SVM, MLP and CNN. It can be observed that CNN

offers the best performance in terms of 5 evaluation indexes.

The last column of TABLE III presents the p-value obtained

from the paired t-test. These two p-values (0.002 and 0.001)

demonstrate that the improvement of CNN over other methods

is statistically significant.

V. DISCUSSION

Threshold crossing and machine learning classifier are two

popular directions for seizure prediction, some of which have

high sensitivity or low FPR. Our results with high sensitivity

and low FPR are compared with the-state-of-art methods using

the same CHB-MIT dataset and Freiburg Hospital EEG dataset

(FH dataset). TABLE IV summarizes some key information of

these works in chronological order.

The two datasets used in TABLE IV are CHB-MIT dataset

and FH dataset which belong to sEEG and intracranial EEG

(iEEG), respectively. The iEEG signals have higher signal-to-

noise ratio and spatial resolution compared to sEEG signals.

The sEEG signals are highly susceptible to power frequency

interference, baseline drift and other noises from the external

environment compared with the iEEG. This leads the fact

that the same algorithm has lower sensitivity and higher FPR

rate for sEEG. Nevertheless, iEEG data collection is prone

to infection and may introduce other complications during

craniotomy. Consequently, seizure prediction based on sEEG

is more suitable to promote in a real-life scenario. This trend

can also be recognized from TABLE IV that CHB-MIT, a

popular EEG dataset collected from the scalp is increasingly

acknowledged by researchers in this field.
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(a) Inter-ictal (b) Pre-ictal

Fig. 7: Two features extracted from the inter-ictal state and the pre-ictal state.

TABLE III: The comparison between using different classifiers.

Classifier Accuracy AUC Recall F-measure Kappa p-value

CNN 0.90 0.90 0.92 0.91 0.81 -

MLP 0.82 0.81 0.83 0.83 0.61 0.002

SVM 0.75 0.75 0.77 0.76 0.58 0.001

p-value denotes the pair T-test between accuracy of CNN and another classifier.

The research endeavors on epilepsy prediction, from thresh-

olding crossing to conventional machine learning and then

to deep learning, are roughly outlined in TABLE IV. [11],

[34], [35], [36] and [37] adopt threshold crossing to predict

seizure, but has been unable to realize the satisfactory perfor-

mance. Hence, people gradually give up this scheme. Some

conventional machine learning classifiers did a good job [2],

[23], [38]. Among them, [2] used univariate spectral power

and SVM classifier to achieve a high sensitivity of 98.3%

and FPR of 0.29/h, and [38] achieved a sensitivity of 95.4%

and FPR of 0.36/h using phase-match error, deviation and

LS-SVM classifier. Both of them were are tested on iEEG

dataset. Another interesting point lies in that, although [38]

is not so good as [2] in terms of sensitivity and FPR, it were

tested on more patient cases for better potential clinical usage.

Comparing with them, we use sEEG with more patient cases

in the experiments, realizing lower FPR.

Compared to those methods tested on the CHB-MIT dataset,

the highest sensitivity is reached by our method. Comparing

with [25], they used CNN with more blocks than we, however

their result is even slightly weaker. These facts discussed above

demonstrate that good performance can be obtained by the

proposed method for seizure prediction.

VI. CONCLUSION

In this paper, we propose a novel approach for seizure

prediction based on data augmentation, CSP and CNN to

perform data equalization, feature extraction and classification

on 23 patients from CHB-MIT dataset. To solve the trial

imbalance problem, we generate the pre-ictal trials and discard

some inter-ictal trials. According to the temporal-frequency

characteristics of EEG, an extractor using CSP in nine fre-

quency bands and two temporal bands is designed. A six-

layer CNN as a classifier is designed for seizure prediction.

Extensive experimental results demonstrate that the proposed

algorithm outperforms other state-of-the-art methods in terms

of sensitivity and FPR. The present study on seizure prediction

provides an effective option based on sEEG signals in clinical

diagnosis.
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