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Deep Convolutional Neural Networks for Human

Action Recognition Using Depth Maps and Postures
Aouaidjia Kamel, Bin Sheng, Member, IEEE,Yang Po, Member, IEEE, Ping Li, and Ruimin Shen

Abstract—In this paper, we present a method for human
action recognition from depth images and posture data using
convolutional neural networks (CNN). Two input descriptors are
used for action representation, the first input is a depth motion
image (DMI) that accumulates consecutive depth images of a
human action, whilst the second input is a proposed moving joints
descriptor (MJD) which represents the motion of body joints over
time. In order to maximize feature extraction for accurate action
classification, three CNN channels are trained with different
inputs. The first channel is trained with depth motion images,
the second channel is trained with both depth motion images
and moving joint descriptors together, and the third channel is
trained with moving joint descriptors only. The action predictions
from the three CNN channels are fused together for the final
action classification. The experiments show that the results of
fusing the output of three channels are better than using one
channel or fusing two channels only. The proposed method was
evaluated on three public datasets: MSRAction3D, UTD-MAHD,
and MAD dataset. The testing results indicate that the proposed
approach outperforms most of existing state of the art methods
such as HON4D and Actionlet on MSRAction3D. Although MAD
dataset contains a high number of actions (35 actions) compared
to existing action RGB-D datasets, the proposed method achieved
91.86% of accuracy.

Index Terms—Action Recognition, Depth Motion Image, Mov-
ing Joints Descriptor, Convolutional neural network.

I. INTRODUCTION

HUMAN action recognition is necessary for various com-

puter vision applications that demand information of

people’s behavior, including surveillance for public safety,

human-computer interaction applications and robotics [1]-[3].

However, action recognition in colored images is challenging

task due to several factors, such as complex background,

illumination variation, and clothing color, which make it

difficult to segment the human body in every scene. The lack

of depth cues in colored images has a negative impact on

recognizing the action. Especially when it is performed in the

camera direction. Depth sensors like Microsoft Kinect provide
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RGB-D images with illumination invariant, uniform color, and

depth information that eases the ambiguity of human’s motion.

Additionally, depth sensors integrated real-time body skeleton

estimation, providing relatively accurate posture information

on the body joints in 3d coordinates system.

Fig. 1. The framework of the proposed action recognition method.

Recently, action recognition research has been directed

toward using depth sensors due to the expressive features

provided either from depth maps data or body posture data.

The key success for an action recognition method lies on a

good representation that provides distinctive features of each

action for classification. Using depth map data from front

view only for action recognition is still ambiguous for some

actions, which leads to the wrong classification, because two

actions may look similar from the front view, but they have a

different appearance from side views. However, some existing

methods such as [4] use feature extraction from different views

in order to collect enough features about the action. On the

other hand, using posture data for action representation is very

sensitive to the movement of joints, which may reflect on

recognizing two similar actions as different actions when they
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are performed in a slightly different ways. A better approach

for action recognition should be based on using the two types

of data to overcome the weaknesses of using just one type.

Regardless the data used for the action representation, feature

extraction, and classification techniques play a major role in

the recognition process. Basically, the approaches that are

based on handcraft feature extraction such as [5] and [6],

employ SVM as a classifier. However, in recent few years,

deep learning and especially convolutional neural network (C-

NN) which was inspired by the human visual cortex hierarchic

processing, have made a huge success in image classification

[7]. CNN is a powerful technique for both feature extraction

and classification, it can automatically learn discriminative

features from a training data.

In this paper, a new method is proposed for human action

recognition from depth maps and posture data using three

channels of a deep convolutional neural network model,

The contribution of the proposed work can be summarised

in :

• In order to strengthen the weaknesses of using one type

of data for action recognition, two action representations

are used. Depth map representation and body joint rep-

resentation. The proposed body joints representation is

inspired by the way that the human body joints move to

cover the joints direction in addition to the changing in

joints position Fig. 5.

• A well designed CNN model is trained especially to ex-

tract features from the two types of action representation,

taking the computation time in consideration by using

”Network In Network” structure [26]. Three channels of

the model are used to extract features from various input

data.

• Fusion operations between prediction results of the three

CNN channels are proposed in order to enhance the pre-

diction accuracy. The proposed method offers a flexibility

in choosing the way to classify the action by two types of

data, three CNN channels, and many fusion operations.

• A large amount of training data is one of the key success

of a CNN model prediction accuracy. Due to the lack of a

large RGB-D action recognition dataset, using two action

representations helps to reinforce the learning process on

a small amount of data.

The first representation is a Depth Motion Image descriptor

(DMI) similar to [4], but with a little difference in the

computation method. It assembles the depth maps of an

action in order to capture the changing in depth of human

motion. The second representation is a proposed Moving

Joints Descriptor (MJD) inspired from [8]. It represents the

body joints movement over time using spherical coordinates

instead of directly using Cartesian coordinates. The motivation

behind choosing spherical coordinates is that the human body

joints generally move around a fixed point of the body center

in a circular manner. The changing in the angle provide

further information about the joint direction, unlike Cartesian

coordinates representation that provides only the changing in

the joints position.

The action recognition process introduced in this paper

involves three CNN channels trained with DMI and MJD

Fig. 2. Moving Joints Descriptor (MJD). Example of draw circle action from
the MSRAction3D dataset, left-top: Skeleton sequence, left-bottom: Creation
of RGB Moving Joints Descriptor Image, right: Skeleton model shows the
three spherical coordinates of joint j9. Where N: total number of frames, s:
joint number, and n: frame number.

Fig. 3. Depth Motion Image (DMI). Example of draw circle action from
MSRAction3D dataset, left: depth map sequence, middle: Depth Motion
Image, right: Cropping ROI.

descriptors for feature extraction and classification. The first

channel is trained with DMI, the second channel is a connec-

tion between two sub-channels, sub-channel is trained with

DMI and the other is trained with MJD, while the third

channel is trained with MJD only. The proposed approach

generates three outputs from the CNN channels and nine other

outputs produced from fusion operations between the three

channels. The maximum action score value of all the outputs

is considered as the final action prediction result. The results

generated from fusing the three CNN channels are better

than the ones generated using a single channel or two fused

channels only. In fact, each channel learns features that can’t

be seen in the other channels which make combining them

together produce better results. Many fusion operations are

proposed in order to analyze and select the best operation that

produces high accuracy prediction.

The experimental results of the proposed approach are

compared with state of the art methods on three public

datasets, MSRAction3D, UTD-MAHD, and MAD dataset.

The comparison outcomes proved that the action recognition

accuracy is better than most of existing methods and proved

also that recognition accuracy is stable even with a large

number of actions such as MAD dataset.

The remainder of this paper is organized as follows. A

review of the related work is presented in Section II. After

that, technical details of the proposed approach are given in

Section III followed by the experiments and results in Section

IV. A conclusion is reported in section V.
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II. RELATED WORK

Several recent depth-based approaches have been reported to

improve human action recognition accuracy. An action graph

based on a sampled 3D representation from a depth map

to model the human motion is proposed in [9]. Several 4D

descriptors have been used to represent the human action.

In [5] a histogram of oriented 4D normals (HON4D) used

in order to describe the action in 4D space covering spatial

coordinates, depth and time. [10] also represents the depth

sequence in 4D grids by dividing the space and time axis into

multiple segments. Another 4D descriptor proposed by [11]

called Random Occupancy Pattern (ROP) which deals with

noise and occlusion combined with sparse coding approaches

to increase robustness. Action recognition from different side

views has been applied to gain more discriminative features.

[4] generates side view from the front view of the depth

map, both views are transformed to DMA (Depth Motion

Appearance) descriptor and DMH (Depth Motion History)

descriptor. Then, SVM is trained with the to descriptors to

classify the action. Recently [12] generate top and side views

by rotating 3D points from the front view. The three views are

used as inputs to three convolutional neural network models

for feature extraction and action classification.

In parallel to depth-based approaches, skeleton-based meth-

ods also have a huge contribution to the action recognition

research area. In [13], each joint is associated with a Local

Binary Pattern descriptor which is translation invariant and

provide highly discriminative features. Additionally, a tem-

poral motion representation called Fourier Temporal Pyramid

is also proposed in order to model the joints movements.

EigenJoints is a new type of features proposed in [14] to

combine action information including static postures, motion

and offset features. A framework based on sparse coding and

temporal pyramid matching is proposed in [15] for better 3D

joint features representation. A histogram of 3D joint location

called HOJ3D in [16] represents the human joints locations.

Then, a posture words are built from HOJ3D vectors and

trained using a Hidden Markov Model to classify the actions.

In [17] a framework is proposed for online human action

recognition using a new Structured Channeling Skeletons fea-

ture (SSS) which can deal with intra-class variations including

viewpoint, anthropometry, execution rate, and personal style.

[18] proposed non-parametric Moving Pose (MP) for low-

latency human action and activity recognition, the framework

considers pose information, speed, and acceleration of the

joints in the current frame within a time window. A hier-

archical dynamic framework was reported in [19] based on

using deep belief networks for feature extraction and encoding

dynamic structure into a HMM-based model. [20] addresses

action recognition in videos by modeling the spatial-temporal

structures of human poses. The method improves the pose

estimation first, then groups the joints into five body parts.

Moreover, data mining techniques have been applied to get

spatial-temporal pose structures for action representation. [8]

and [21] transform the joint coordinates to a 2D image descrip-

tor. A convolutional neural network model is used for action

classification from the descriptor. Very recent works: SOS

[22] and Joint Trajectory Maps [12] propose a new approach

which transforms the skeleton joints trajectories shapes from

3D space into three images that represent the front view, the

top view and the side view of the joints’ trajectory shapes.

Three convolutional neural networks extract features from the

three images to classify the action.

Convolutional neural network [23] is a powerful technique

for feature extraction and classification. Recent action recogni-

tion approaches started to focus more on using CNN for action

classification rather than using SVM. Researchers in deep

learning try always to come up with new techniques to im-

prove the CNN architectures and enhance the performance of

feature extraction, classification and computation speed. [24]

summarise recent advances in convolutional neural network

in term of regularisation, optimisation, Activation functions,

loss functions, weight initialization and so on. Recent CNN-

based action recognition methods are based on using multiple

action representations that employ many CNN channels for the

processing. In [25], many feature concatenation architectures

are proposed in order to improve the classification accuracy

using multiple sources of knowledge.

In spite of the fact that the previous approaches achieved

good results, the problem of action recognition is still open

and require more robust action representations and feature

extraction techniques to improve the accuracy and overcome

the weakness of the previously mentioned methods. To this

end, the proposed work in this paper investigates the use

of both types of data, depth maps and postures to enhance

the action recognition throw the power of CNN for feature

extraction and classification.

Fig. 4. Human body joints motion direction during a running action. The
joints motion more subject to a rotation, which makes the spherical coordinate
system more suitable to represent the joints movements.

III. APPROACH OVERVIEW

The framework of the proposed action recognition method

is presented in Fig. 1.we use two types of data for human

action representation, depth maps, and body postures. Each

depth map frame is associated with the body postures. Each

of the two inputs is transformed to a descriptor that assembles

the input sequence in one image in order to provide an

informative description of the action. Namely, DMI for depth

maps and MJD for body joints. The DMI descriptor captures

the changing in depth of the action during the body motion.

The MJD descriptor which inspired from the nature of the

human body joints movement around a fixed point to capture
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Fig. 5. Preprocessing results of seven actions samples from the MSRAction3D dataset.

the joints direction and the changing in the joint position.

The MJD descriptor overcome the lack of side views in the

DMI descriptor Three CNN models of the same structure are

trained and tested with the two descriptors in a way that one

model takes two descriptors as input and each of the two

other models takes only one descriptor. The reason behind

this assumption is to exploit the power of CNN for extracting

features from the two descriptors in different ways with

multiple channels for the sake of improving the classification

accuracy.

We propose several score fusion operations to get a high

score of the accuracy prediction by combining the outputs of

the three models. The model training and testing are performed

on three action datasets that contain both depth images and

posture data.

IV. ACTION RECOGNITION METHOD

A. Data Preprocessing

1) Depth Motion Image (DMI): Depth motion image de-

scribes the overall action appearance by accumulating all depth

maps of the action over time in order to make a uniform

representation that can define each action with its own specific

appearance from the front view. It captures the changing in

depth of the moving body parts. The DMI representation

provide distinctive features for each action which ease the

feature extraction task for the CNN model.

The following equation illustrates the calculation of DMI.

DMI(i,j) = 255−min(I(i, j, t))

∀t ∈ [k...(k +N − 1)]
(1)

Where I(i,j,t) is the pixel position (i,j) of a frame I at time

t, DMI is a grey image (8 bits) that represents the depth

difference from frame k to k+N-1. The pixel value of DMI

image is the min value of the same pixels position of the

depth maps sequence of the action.

The resulting image is normalized by dividing each pixel

value by the max value of image pixels, then the ROI (Region

Of Interest) is cropped to get rid of uninformative black pixels.

Fig. 3 shows a draw circle action sequence with its DMI and

Fig. 5(top) shows seven DMI actions samples created from the

MSRAction3D dataset.

2) Moving Joints Descriptor (MJD): From the 20 joints

of the skeleton model provided by the datasets, only 13

most informative joints including the hip center are selected.

Fig. 2(right) shows the joints selected for the processing.

The posture data provided by the datasets are presented in

a form of Cartesian coordinates (x, y, z). However, Action

representation using Cartesian coordinates is sensitive to joints

movement, which may reflect on representing two similar

actions as different actions. The movement of human body

joints during the motion is subject to some restrictions. They

can’t move farther than a limited distance from the hip center

joint. Furthermore, each body joint has a limited range of

angle to move. Those restrictions can be modeled by spherical

coordinates as presented in Fig. 4. The distance r represents

how is the joint far from the hip center O. The angles θ and

φ are useful to indicates the movement direction of the joint.

In order to construct the MJD from spherical coordinates,

the Cartesian coordinates of joints are transformed to spherical

coordinates taking the hip center joint O as the origin of

the system. The transformation is described in equations (2)

and (3). In spherical coordinates system, the joint motion is

subject to three metrics, the angle θ represents the vertical

angle of the joint with the z-axis, the angle φ represents the

horizontal angle with the x-axis, and the radius r represents

the distance between the origin and the joint. For the sake

of capturing the changing in θ, φ and r. Three grey images

R, G and B are constructed to represent the changing in

the angles θ, φ and the radius r respectively over time. The

rows number of the images represents the joints number, the

columns number represents the frames number of the action

and the pixel value is the coordinate of the joint s in the

frame n as illustrated in equation(4). Finally, an RGB image

is constructed by combining the three grey images together

to produce the finale descriptor image. The representation

proposed tries to extract the most informative features of the

body motion by capturing the variation in the angle θ, the

angle φ and the radius r over the frames sequence. Each of

those three grey images provides an action representation, but

using only one of them as an action descriptor is not enough,

because two different actions may have the same angle θ which

results in the wrong classification. However, we can’t find

two actions that have the same angles θ, φ and radius r. The

combination of the three grey images provides more distinctive
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representation. Fig. 2(left) illustrates the construction of MJD.

Joints = {O, J1, J2, ..., J12}, Js = (θ, φ, r) (2)

r =
√

x2 + y2 + z2, θ = arccos
z

r
, φ = arctan

y

x
(3)

R(k, l) = {θ : θ of the joint s in frame n}

G(s, n) = {φ : φ of the joint s in frame n}

B(s, n) = {r : r of the joint s in frame n}

MJD = R+G+B

(4)

Where x, y and z are the Cartesian coordinates. θ, φ and r

are the spherical coordinates. R,G and B are grey images, and

MJD is the Moving Joints Descriptor image.

B. Convolutional Neural Network Model

1) Model Description: After the data preprocessing task,

the two descriptors DMI and MJD are resized to 112x112 and

used as input to the CNN model. The model is composed of

convolutional layers for feature extraction and pooling layers

for dimensionality reduction. 32 convolutional filters of size

7x7 are used in the first convolutional layer, and three 5x5

convolutional filters are used in the second, third and the

forth convolutional layers with 64, 128 and 256 filters number

respectively. The last convolutional layer applies 512 filters

with a size of 3x3.

Each of the convolutional layers mentioned before is fol-

lowed by a ”Network In Network” structure proposed by

[26]. It is based on using convolution filters with 1x1 size

and larger numbers than the previous layer, which makes the

model deeper and have more parameters without completely

changing the network structure, and with cheap computation

cost. However in our CNN model, the number of 1x1 convo-

lutional filters is the same as the previous layer. During the

training experiments, we found that using 1x1 convolutional

without increasing the depth size improve the accuracy without

a noticeable influence on the computation time. Fig 7. shows

how the two 1x1 convolutional layers are used. The size of

the output feature map after using two 1x1 convolution layers

is the same as the input.

Three max-pooling layers of filter size 3x3 are used for

dimensionality reduction. Each convolutional layer in the

model is followed by ReLu (Rectified Linear Units) activation

function for increasing non-linearity. A fully connected layer

with a size equal to the number of actions is used as the result

of feature extraction. Fig. 6 describes the network architecture

including layers output sizes and filters. A Multinomial Logis-

tic Loss function is applied with stochastic gradient descent

algorithm to update the weights during the training process.

The textures of the two input images either DMI or MJD

make it difficult to capture distinctive features when the

convolutional operation is applied with small filter size. For

example, the application of 3x3 filters on the input image

at the very beginning is not efficient because two images

that represent different actions may have similar features in

a 3x3 region, which is the reason behind using 7x7 filters

and 5x5 filters in the first convolutional layers. Usually, CNN

architectures end up with one or two fully connected layers

before the last classifier layer. However, in the proposed model

and according to the training experiments, we found that using

only one fully connected layer as a classifier after the pooling

layer preserve features and generates better results. At the

testing phase, softmax regression layer is used to generate a

score for each class based on the trained weights. The class

which has the highest score is considered as the correct class.

Fig. 7. The network block structure used to improve the CNN model
performance accuracy with less computation cost. H, W, and D refer to height,
width, and depth of the feature maps.

Fig. 8. Top: samples of feature maps from the second channel Ch2 of the
CNN model (DMI features from sub-channel Sub1 and MJD features from
sub-channel Sub2). Bottom: samples of trained 7x7 filters.

2) Model training: The CNN model described previously

was involved in three different training channels. We denote

channel 1 as Ch1, channel 2 as Ch2 and channel 3 as

Ch3. The channel Ch1 was trained with DMI descriptors,

the channel Ch2 was trained with DMI and MJD descriptors

together, and channel Ch3 was trained with MJD only. The

Channel Ch2 is a composition of two others sub-channels:

Sub1 and Sub2. Each of the two sub-channels was trained

with one kind of descriptors, namely Sub1 was trained with

DMI descriptors and Sub2 was trained with MJD descriptors.

The two sub-channels are concatenated after the last pooling

layer, which results in a new layer of depth size equal to

the sum of the output of the two pooling layers of sub-

channels. The concatenation operation was inspired by [25]

which propose different concatenation methods based on fus-

ing the last fully connected layers. However in our case, and

according to our experiments, we found that the concatenation

between the outputs of pooling layers is more efficient than

the concatenation of fully connected layers.

The three channels mentioned before were trained together

at the same time with the same parameters. The appropriate

learning rate for the network to converge is 0.0008 with a

weight decay of 0.0005 and a momentum of 0.9. The batch

size selected for the training is 50 images for the three channels

with all the datasets. The weight initialization was performed

using Xavier method [24]. The number of iterations required

for each channel to reach the minimum value of the loss
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Fig. 6. Proposed three channels convolutional neural network model for action recognition.

function differs from one channel to another depending on

the data input type and the dataset size. The network in Fig.

6 is designed, trained and tested using caffe deep learning

framework [27].

C. Score Fusion

The output of softmax layer is a vector of length equal

to the number of actions (equation(5)), where each element

represents the probability of the input image to be a specific

action. In most cases, the maximum value corresponds to the

correct action. However, for some test samples, the maximum

value doesn’t represent the correct action. The correct action

may correspond to a probability value lower than the max-

imum value. In order to improve the prediction accuracy of

the samples data that generate the wrong classification, the

softmax outputs of the three CNN channels are fused. In

the testing experiments, many fusion alternatives have been

tried, such as element-wise averaging, maximum, addition

and product, but the maximum and product operations which

we denote Max and Prod generate better results than other

operations. In most cases, the Prod operation performs better

than the Max operation as will be discussed in the results

section.

The classification accuracy not only depends on the op-

eration Max or Prod, but it depends also on the channels

involved in the computation. For example, the result of Max

operation between softmax output Sfm1 of channel Ch1
and Sfm2 of channel Ch2 is different when it is performed

between Sfm2 of channel Ch2 and Sfm3 of channel Ch3
or between the three channels together Sfm1, Sfm2 and

Sfm3. While the accuracy varies according to the operation

type and the channel type, different fusion operations are

proposed and summarized in Table I. In total we have twelve

possible predictions of the proposed methods, three from the

CNN channels (Sfm1,Sfm2,Sfm3) and nine from the fused

channels (Fus1,Fus2,...,Fus9). The final classification result

is the maximum values of the twelve outputs as cited in

equation(6).

The motivation behind the model fusion architecture de-

scribed in Fig. 6, is that the channel Ch1 provides features

related to the overall action appearance, which is useful to

recognize the action even when it is performed slightly in a

different way. While the channel Ch3 features are sensitive to

the joints movement, it is rarely when we find two actions

have similar features even when they represent the same

action. The channel Ch2 provide features that balance between

the two representations, which reflects its good results over

channels Ch1 and Ch2 (Results Section). Additionally, the

fusion operations try to generate the correct action class throw

combining the three channels predictions.

Sfm1 = {p11, ..., p1n}

Sfm2 = {p21, ..., p2n}

Sfm3 = {p31, ..., p3n}

(5)

where Sfmi : is the softmax layer output of channel Chi

and pi j : represents the probability of an action j to be the

correct class in channel Chi .

Where Max calculates element wise maximum value be-

tween the softmax’s vectors output from the three CNN chan-

nels, Whilst Prod calculates the dot product value between
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TABLE I
SCORE FUSION OPERATIONS ON THE THREE CNN CHANNELS.

Fusion Operation

Fus1 Max(Sfm1, Sfm3)

Fus2 Prod(Sfm1, Sfm3)

Fus3 Max(Sfm1, Sfm2)

Fus4 Prod(Sfm1, Sfm2)

Fus5 Max(Sfm2, Sfm3)

Fus6 Prod(Sfm2, Sfm3)

Fus7 Max(Sfm1, Sfm2, Sfm3)

Fus8 Prod(Sfm1, Sfm2, Sfm3)

Fus9 Prod(Prod(Sfm1, Sfm2, Sfm3),Max(Sfm1, Sfm3))

the softmax’s vectors.

Action = Max(Sfm1, Sfm2, Sfm3, Fus1, ..., Fus9) (6)

Where Action represents the action of the highest score which

represent the final class prediction.

V. RESULTS

Referring to [28] which provides a survey of most com-

monly used RGB-D human action recognition datasets, three

datasets have been chosen in order to evaluate the performance

of the proposed method: MSRAction3D (Microsoft Action 3D

dataset) [9], UTD-MHAD (University of Texas at Dallas -

Multimodal Human Action Dataset) [29] and MAD (Multi-

modal Action Dataset) [30]. Each of those datasets provides

depth map data and posture data that are suitable to construct

the DMI and MJD descriptors. Each dataset has a common

testing settings that are used by the state of the art methods.

We follow the same testing settings to compare the proposed

method with the previous ones.

A set of testing experiments were conducted on the three

CNN channels, including the evaluation of each channel

separately and the combinations of channels scores together

based on the fusion operations. Nonetheless the results of

the fused channels vary from a dataset to another, generally,

the classification results of using MJD in channel Ch1 are

better than using DMI in channel Ch3 on the three datasets,

which reflects the performance of using posture representation

over depth representation. However, the classification results

of channel Ch2 using both representations DMI and MJD

are better than both Ch1 and Ch3. On the other hand, the

Prod operation generally generates better results than the

Max operation. Furthermore, the fusion results between the

three channels are better than fusing just two channels. The

comparison with existing methods is based on taking the

maximum accuracy obtained from different fusion operations

and the three channels outputs. Table II shows recapitulation

of the classification accuracy of each CNN channel and the

fusion operations on the three datasets.

A. MSRAction3D

MSRAction3D dataset is captured by Microsoft Kinect v1

depth camera, the dataset contains twenty actions, ”high arm

Fig. 9. Confusion matrix of the proposed method for the MSRAction3D
dataset.

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH EXISTING

DEPTH-BASED METHODS ON MSRACTION3D DATASET.

Method Accuracy

HON4D [5] 88.89%

SNV [6] 93.09%

Range-Sample Feature [31] 95.62%

Random Occupacy Pattern [11] 86.50%

Bag-of-3D-Points [9] 74.70%

STOP [10] 84.80%

DSTIP [32] 89.30%

Proposed 94.50%

TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH EXISTING
SKELETON-BASED METHODS ON MSRACTION3D DATASET.

Method Accuracy

EigenJoints [14] 81.40%

Actionlet Ensemble [13] 88.20%

DL-GSGC [15] 96.70%

HOJ3D [16] 78.97%

SSS Feature [17] 81.70%

MP Descriptor [18] 91.70%

High-level Skeleton Feature [19] 82.00%

Pose Set [20] 90.00%

Proposed 94.50%

wave, horizontal arm wave, hammer, hand catch, forward

punch, high throw, draw x, draw tick, draw circle, hand clap,

two hand wave, side-boxing, bend, forward kick, side kick,

jogging, tennis swing, tennis serve, golf swing, pick up and

throw” performed by ten subjects, each subject repeated the

action two or three times. In order to have a fair comparison,

the testing settings used by [13] are followed to evaluate

the proposed method on the MSRAction3D dataset. Precisely,

the cross-subject protocol, odd subjects are used for training

(1,3,5,7 and 9) and even subjects (2,4,6,8 and 10) are used for

testing.
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TABLE II
TESTING RESULTS OF THE THREE CNN OUTPUTS AND THE FUSION OPERATIONS ON THE THREE DATASETS.

Channels
MSRAction3D UTD-MHAD MAD (Cross-validation : 5-fold)

(Cross-subject) (Cross-subject) fold-1 fold-2 fold-3 fold-4 fold-5 Average

Sfm1 82.42% 50,00% 70.36% 65.71% 70,00% 68.21% 64.29% 67.71%

Sfm2 87.91% 82.79% 86.10% 86.79% 87.50% 86.10% 91.79% 87.66%

Sfm3 84.99% 82.09% 86.79% 85,00% 82.50% 87.14% 83.93% 85.07%

Fus1 90.48% 81.40% 88.21% 80.71% 82.86% 86.43% 88.21% 85.28%

Fus2 92.31% 85.17% 90.71% 87.14% 85.71% 88.57% 90.36% 88.50%

Fus3 87.91% 83.49% 83.21% 84.64% 88.21% 86.43% 90.36% 86.57%

Fus4 87.91% 85.12% 83.21% 85.71% 87.14% 88.50% 91.07% 87.13%

Fus5 91.21% 85.34% 90.36% 90,00% 91.07% 88.93% 95,00% 91.07%

Fus6 90.48% 84.42% 90.36% 88.57% 91.79% 88.93% 94.29% 90.79%

Fus7 90.84% 86.05% 88.93% 86.79% 91.43% 88.21% 93.57% 89.79%

Fus8 93.41% 88.14% 89.64% 88.57% 92.14% 89.64% 95.35% 91.07%

Fus9 94.51% 87.67% 91.10% 90,00% 92.14% 90.71% 95.36% 91.86%

Max 94.51% 88.14% 91.10% 90,00% 92.14% 90.71% 95.36% 91.86%

Table II(Row 2: MSRAction3D) shows the classification

accuracy results of each CNN channel and the fusion oper-

ations. The fusion score Fus9 achieved the best classification

accuracy on this dataset, followed by Fus8. The classification

result of the second channel Ch2 is better than both of Ch1
and Ch3. However, the fusion operations results are equal

or better than the three CNN channels results. The maximum

value of the results obtained from the fusion operations and the

three CNN channels is Fus9 by 94,51%, which we consider

for the comparison with existing methods.

Table III shows the comparison results with existing state of

the art methods that are based on using depth map data only.

The proposed method accuracy is better than most existing

depth-based approaches except [31]. In spite of the fact that

the experiments setting of [31] on MSRAction3D dataset are

not mentioned, we also compared our results with their results.

Table IV shows the comparison results with existing state of

the art methods that are based on using posture data only. the

proposed method accuracy is also better than existing skeleton-

based methods except [15] which is based on sparse coding

and temporal pyramid matching.

Generally, the proposed method performance over skeleton-

based and depth based methods is due to the incorporation

of depth features and posture features. Fig. 7 shows the

difference between the fusion operations accuracies for the

MSRAction3D dataset, and Fig. 11 shows the DMI and MJD

of three actions, high arm wave, horizontal arm wave and

hammer, associated with the classification accuracy shown in

the confusion matrix (Fig. 9). In spite of the fact that the DMI

appearance is mostly similar, the MJD is different features are

different which helps in recognizing the actions even when

they are performed in mostly similar ways.

B. UTD-MHAD

UTD-MHAD was captured using a fusion of depth and

inertial sensor data, it consists of 27 actions performed by

Fig. 10. The difference between the fusion operations accuracies of the
MSRAction3D dataset.

8 subjects. Each subject repeated each action 4 times. The

actions are represented in a form of depth and 3D poses

frame sequences. The actions represented in this dataset are,

”right arm swipe to the left, right arm swipe to the right,

right hand wave, two hand front clap, right arm throw, cross

arms in the chest, basketball shoot, right hand draw x, right

hand draw circle (clockwise), right hand draw circle (counter

clockwise), draw triangle, bowling (right hand), front boxing,

baseball swing from right, tennis right hand forehand swing,

arm curl (two arms), tennis serve, two hand push, right hand

knock on door, right hand catch an object, right hand pick

up and throw, jogging in place, walking in place, sit to stand,

stand to sit, forward lunge (left foot forward) and squat (two

arms stretch out)”. The evaluation settings used for this dataset

follow the cross-subject protocol, odd subjects for training and

even subjects for testing, same as settings of [29].

Table II(Row 3: UTD-MHAD) shows the classification

results of the three CNN channels and the fusion operations.

In this dataset, the Fus8 achieved the highest classification

accuracy by 88.16%. Similar to MSRAction3D dataset, the

classification result of the second channel Ch2 is better than

both classification results of Ch1 and Ch3. As the maximum



9

Fig. 11. Classification accuracy of three similar actions in appearance from
MSRAction3D dataset that shown in the confusion matrix (Fig. 9).

accuracy value generated from the fusion operation Fus8, it

is considered for the comparison with the results of existing

methods that have been tested on the UTD-MHAD dataset.

Table V shows the comparison results. Although there is no

many works have been tested on this dataset like MSRAc-

tion3D, the proposed method achieved better results than the

best recent method [12].

Fig. 13 shows the difference between the fusion operations

accuracies on the UTD-MHAD dataset and Fig. 14 presents

three very similar actions, clap, arms cross, and boxing. As it is

shown in the confusion matrix (Fig. 12), the clap action is 13%

recognized as arm cross and 6% as boxing due to its similar

appearance to the two other actions. However the recognition

accuracy still 81%, it proves the performance of the proposed

method to classify actions even in cases where there is a very

small difference between in the motion. However, the arms

cross action is fully recognized because it is relatively different

from clap and boxing actions.

Fig. 12. Confusion matrix of the proposed method for the UTD-MHAD
dataset.

Fig. 13. The difference between the fusion operations accuracies of the UTD-
MHAD dataset.

Fig. 14. Classification accuracy of three similar actions in appearance from
UTD-MHAD dataset that shown in the confusion matrix (Fig. 12).

TABLE V
COMPARISON OF THE PROPOSED METHOD WITH EXISTING

METHODS ON UTD-MHAD DATASET

Method Accuracy

Kinect and Inertial [29] 79.10%

SOS [22] 86.97%

Joint Trajectory Maps [12] 87.90%

Proposed 88.14%

C. MAD

The MAD dataset is one of largest RGB-D action recogni-

tion datasets in term of actions number. It contains 35 actions

performed by 20 subjects, each subject performs the action

twice. The actions are, ”running, crouching, jumping, walking,

jump and side-kick, left arm swipe to the left, left arm swipe

to the right, left arm wave, left arm punch, left arm dribble,

left arm pointing to the ceiling, left arm throw, swing from

left (baseball swing),left arm receive, left arm back receive,

left leg kick to the front, left leg kick to the left, right arm

swipe to the left, right arm swipe to the right, right arm wave,

right arm punch, right arm dribble, right arm, pointing to the

ceiling, right arm throw, swing from right (baseball swing),

right arm receive, right arm back receive, right leg kick to

the front, right leg kick to the right, cross arms in the chest,
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basketball shooting, both arms pointing to the screen, both

arms pointing to both sides, both arms pointing to right side,

both arms pointing to left side”.

Unlike the two previous datasets, MAD dataset requires

background removing to construct the DMI descriptor. Since

the subjects were standing far from the background, we re-

moved the background based on a threshold depth. The testing

evaluation protocol used for this dataset is 5-folds cross-

validation, the same as protocol described in [33]. Namely,

using 4/5 of subjects for training and 1/5 for testing. Then,

another new 4/5 of subjects are chosen for training (including

1/5 that previously used for testing) and the rest 1/5 are

used for testing. This process should be performed five times

involve all the data in training and testing process. The final

accuracy precision is the average of the five testing results.

Table II(Rows 4-9: MAD) represents detailed classification

results of the three CNN outputs and the fusion operations

from each fold of 5-fold cross-validation test and the average

of the five tests. The maximum accuracy value of the results

is generated from the fusion operation Fus9 by 91.86%.

The proposed method achieved better results than the only

existing method that jointly analyses video events with precise

temporal localization and classification by modeling arbitrary

transition patterns between events [33].Table VI shows the

comparison results and Fig. 13 shows the difference between

the fusion operations accuracies for MAD dataset.

Fig. 15 shows the confusion matrix of the proposed method

on the MAD dataset, and Fig. 17 shows four mostly similar

actions in appearance, left arm wave, left arm pointing to

the ceiling, left arm punch and left arm throw. While the

four actions performed with left hand to the top, the DMI

descriptors look relatively similar. However, the Moving Joint

Descriptors (MJD) carries different features which support the

feature similarity of the depth appearance. The classification

results of the four actions vary from 85% to 95% as presented

in the confusion matrix (Fig. 15), which reflects the efficiency

of combining depth and posture data for action recognition.

Fig. 16. The difference between the fusion operations accuracies of the MAD
dataset.

D. Computation Complexity

1) Preprocessing Time: The preprocessing time includes

the computation of DMI and MJD descriptors. The input

of DMI descriptor is a grey image of size 112x112 pixels

and the input of MJD descriptor is a matrix of size 15x3 of

TABLE VI
COMPARISON OF THE PROPOSED METHOD WITH EXISTING

METHODS ON MAD DATASET

Method Accuracy

Event Transition [33] 85.02%

Proposed 91.86%

Fig. 17. Classification accuracy of four similar actions in appearance from
MAD dataset that shown in the confusion matrix (Fig. 15).

joints coordinates. The difference in the input size influences

widely on the computation time as clearly shown in Fig. 19.

For example, an action of 65 frames needs 0.835 seconds

for calculating the DMI descriptor and 0.029 seconds for

calculating the MJD descriptor. More frames involved in the

action means more computation time required. The computa-

tion time of DMI and MJD with 73 frames are 0.985 and 0.032

respectively, however, with 80 frames, the duration is 1.084

and 0.041 respectively. It is also noticed that the changing

rate of the DMI descriptor is larger than the MJD descriptor.

If an action includes more 15 frames (from 65 to 80 frames)

the computation increases with 0.249 for the DMI and 0.012

for the MJD. The results are shown in Fig. 19 is calculated

on CPU with a machine of Intel(R) Core(TM) i7-6700 @

3.40GHZ 3.40GHZ, 8 GB of RAM and 64 operating system.

2) Training and testing Time: The training time differs

from a dataset to another, depending on the number of the

descriptors that are used for training. While MSRAction3D

dataset has the lowest number of training data, the training

time is also smaller compared to the two other datasets that

have more training data. From Table VII we notice that the

training time and the number of iterations required for the

model to converge are subject to the number of training data.

The case of the MAD dataset is a little different from the

other two datasets. As the evaluation protocol of this dataset

demands five training steps to calculate the accuracy average,

the computation training time for this dataset is the sum of

the five training durations. After training the model with the

two descriptors, the trained weights are used to predict the

action of a new data which is unseen in the training. While
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Fig. 15. Confusion matrix of the proposed method for the MAD dataset.

TABLE VII
TRAINING AND TESTING TIME OF THE THREE DATASETS.

Datasets
Number of

Training Data

Number of

Testing Data

Number of

Iterations
Train(mnt)

Test (sec):

One input

MSRAction3D 284 273 441 7.35 0.07

UTD-MHAD 431 430 720 12 0.07

- fold-1 2260 37.67

- fold-2 1750 29.17

MAD - fold-3 1120 280 1950 32.5 0.35

- fold-4 4370 72.83

- fold-5 1470 24.5

the structure of the model used for training is the same for the

three dataset as well as the type of training data, the processing

time of action prediction of an input pair from any dataset is

the same (0.07 seconds), but for MAD dataset, the testing for

one input require averaging the prediction accuracies from the

five trained models of the 5-folds, which results in 0.07x5

seconds computation time. The hardware material used for

testing and training is different from the one used for the

preprocessing. A server with GPU and Intel(R) Xeon(R) CPU

E5-2630 v4 @ 2.20GHz 16 GB of RAM.

3) Discussion : Although the recognition accuracy of the

proposed work is better than most of existing state of the art

results, the computation time from the raw input data to the

final action prediction depends on the material performance

used for computation, which makes it difficult to compare the

proposed work with existing approaches in term of computa-

tion complexity. If we want to compare the computation time

of the proposed work with the existing works, we must take

two aspects into consideration, The descriptor computation

time and the classification algorithm complexity. Some ex-

isting methods such as [5] and [34] use only one type of input

data, either depth maps or posture data to create a descriptor.

However other methods such as [12] use three descriptors,

to cover the human from different views. In our case two

input descriptors are computed and one of them requires less

computation than the other, to this end we can classify the

proposed method as in the middle rank of the existing methods

in term of descriptors creation.

Most of the mentioned methods in the related work section

use SVM as a classifier, such as [5]. Generally, SVM compu-

tation time is less then Neural Networks, but it also depends

on how the Neural Networks model is deep. The methods

based on deep neural network for classification generally use

deep models to improve the accuracy. However, the approaches
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Fig. 18. Comparison of the fusion operations performances on the three
datasets.

based on using CNN like ours, require more computation then

using feed forward neural network due to the 2D processing.

Even the CNN approaches differs by the number of layers

for the processing. Additionally, one CNN channel is less

computationally demanding then three channels. In this case,

we can rank the processing time of the proposed method

in term of classification among the high computationally

demanding methods.

As previously highlighted in the introduction, the proposed

approach offers many possibilities on how to use the data and

the model with the fusion operations. For example, Using MJD

descriptor only with channel Ch3 is not the best choice to

produce accurate classification results, but it is still better than

some of the existing approaches. In this case, the proposed

method can be classified among the most efficient methods in

term of computation.

Fig. 19. The computation time of the DMI and MJD descriptors according
to the number of frames action.

VI. CONCLUSION

A method for human action recognition from depth map

and posture data using deep convolutional neural networks

has been proposed. Two action representations and three con-

volutional neural networks channels were used to maximize

feature extraction by fusing the results of the three CNN

channels together. The method has been evaluated on three

public benchmark datasets. The classification accuracy of the

three datasets are better than most existing state of the art

methods that are based on either depth data or posture data.

This work claims that different action representations provide

different cues. One representation carries action features that

are absent in the other representation. In spite of the fact that

CNN proved its power for feature extraction and classification

in many computer vision problems, even a good CNN model

can’t classify the action correctly when the input doesn’t

provide discriminative features, which is the motivation be-

hind the proposed framework. Fig. 18 shows the stability of

the proposed method on the three datasets. The recognition

behavior of the fusion operations is mostly the same. If a

fusion operation accuracy is good on one dataset, it is also

good on the two other datasets as well.
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