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Abstract

In this paper, we introduce a Bayesian approach for segmented Weibull
distributions which could be a good alternative to analyze medical survival
data in the presence of censored observations and covariates. With the ob-
tained Bayesian estimated change-points we could get an excellent fit of the
proposed model to any data sets. With the proposed methodology, it is
also possible to identify survival times intervals where a covariate could have
significantly different effects when compared to other lifetime intervals, an
important point under a clinical view. The obtained Bayesian estimates are
obtained using standard Markov Chain Monte Carlo methods. Some exam-
ples with real data sets illustrate the proposed methodology and its potential
clinical value.
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Resumen

En este artículo introducimos un nuevo modelo Bayesiano para distribu-
ciones Weibull segmentadas, que puede ser una buena alternativa en el análi-
sis de datos aplicados a la investigación en salud, con la presencia de cen-
suras y covariables. Con este método basado en la estimación de puntos
de cambio, hemos obtenido un excelente ajuste a los datos utilizados como
ejemplos. De acuerdo con el modelo propuesto, fue posible identificar rangos
de valores en las series temporales en que una variable independiente podría
tener diferentes efectos. Este es un resultado importante desde el punto de
vista clínico. Los estimados bayesianos fueron obtenidos usando métodos
de Monte Carlo en Cadenas de Markov. Ejemplos basados en conjuntos de
datos reales fueran usados para ilustrar el uso de los modelos propuestos y
sus potenciales aplicaciones en investigaciones clínicas.

Palabras clave: Covariables; Datos censurados; Distribución Weibull seg-
mentada; Métodos bayesianos; Puntos de cambio.

1. Introduction

In medical research, survival analysis techniques are often used to study time to
an event such as death or disease recurrence. A widely used model is based on the
Weibull probability distribution function with two parameters for a survival time
T . The Weibull distribution was first described in detail in 1951 by the Swedish
mathematician Waloddi Weibull (Weibull 1951). Among other advantages of the
Weibull distribution, we note that:

• It assumes different shapes due to the flexibility of its hazard rate func-
tion (increasing, decreasing or constant depending on the value of its shape
parameter);

• It can be seen as a family incorporating other different survival curve shapes,
such as the exponential and Rayleigh distributions;

• It can be easily be adjusted for covariates and applied to the regression
models;

• Their parameters can be easily estimated (see for example, Pak, Parham &
Saraj, 2013; or Kizilaslan & Nadar, 2015).

In clinical research studies it is usual to have the presence of one or more
changes in the failure rate (Desmond, Weiss, Arani, Soong, Wood, Fiddian, Gnann
& Whitley 2002, Sertkaya & Sözer 2003, Jandhyala, Fotopoulos & Evaggelopoulos
1999, Noura & Read 1990, Whiteley, Andrieu & Doucet 2011). These change-
points could be results of treatment effect. Chen and Baron (2014) point out
that change-points could occur in many medical applications as in zoster pain
resolution trials (Desmond et al. 2002), where the treatment lightens pain from
acute to subacute and then to chronic, resulting in three different failure rates; in
another application, Zucker & Lakatos (1990), describe the effect of beta-carotene
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on cancer incidence where new tumors need time to become detectable while the
treatment does not affect pre-existing tumors where there is an approximately
two-year waiting period before the effect of the treatment is noticeable. Survival
times in these examples have a higher initial failure rate and a lower failure rate
afterwards (see other applications in, Goodman, Li & Tiwari 2011; He, Kong &
Su 2013; Müller & Wang 1990).

In this case, the literature presents many papers with classical or Bayesian ap-
proaches to get inferences for a change-point assuming the exponential distribution
which is a special case of the Weibull distribution. In this direction, Matthews &
Farewell (1982) considered the problem of testing the hypothesis of the change-
point be equal to zero based on the likelihood ratio test statistics and used simu-
lations to find the distribution of the statistics of this model with application to
medical data related to the treatment of leukemia patients.

Assuming the special case of an exponential distribution, the hazard function
in presence of a change-point is given by,

λ (t) =

{
λ if t < ζ

λρ if t ≥ ζ
(1)

where T > 0 denotes the lifetime of an individual, λ and λρ denote the rates before
and after the change-point ζ and the parameter ρ > 0 denotes the change in the
hazard function (a discontinuous change-point).

The probability density function (pdf) for the lifetime T is given by,

f (t) =

{
λ exp (−λt) if t < ζ

λρ exp (−λt− λρ (t− ζ)) if t ≥ ζ
(2)

This model approch also could be generalized for situations in presence of a
covariate. As a special situation, let us consider a covariate X related to two
treatments, that is, each different treatment could lead to different change-points
(X = 0 for treatment 1 and X = 1 for treatment 2) with hazard function,

λ (t) =

{
λ if t < ζ

λρ exp (βx) if t ≥ ζ
(3)

where β is a regression parameter (Achcar & Bolfarine 1989, Achcar & Loibel
1998).

Similarly, assuming a Weibull distribution, the hazard function in presence of
a change-point is given by,

λ (t) =

{
λγtγ−1 if t < ζ

λργtργ−1 if t ≥ ζ
(4)

and the pdf is given by,

f (t) =

{
λγtγ−1 exp (−λtγ) if t < ζ

λργtργ−1 exp [−λ (ζγ + tργ − ζργ)] if t ≥ ζ
(5)
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Similarly, it is possible to generalize these expressions for the case of two or
more change-points (Achcar, Rodrigues & Tzintzun 2011a, Achcar, Rodrigues &
Tzintzun 2011b).

Also with a classical inference approach, Matthews, Farewell & Pyke (1985)
considered an asymptotic score statistic process to test for constant hazard against
a change-point alternative. In another paper, Nguyen, Rogers & Walker (1984)
obtained a consistent estimator for the change-point by examining the properties
of the density represented as a mixture. Yao (1986) proposed a maximum likeli-
hood estimator for the change-point subject to a natural constraint and Worsley
(1986) also used maximum likelihood methods to test for a change-point and found
the exact null and alternative distributions of the test statistics. Loader (1991)
discussed inference based on the likelihood ratio process for a hazard rate change-
point and derived approximate confidence regions for the change-point.

An approach derived from the Kaplan-Meier estimation of the survival func-
tion followed by the least-squares estimation for the change-point was introduced
by Chen & Baron (2014). Zhao, Wu & Zhou (2009) proposed a change-point
model for survival data accounting for long-term survivors with application to the
leukemia data analyzed by Matthews & Farewell (1982). Achcar & Bolfarine (1989)
presented a Bayesian analysis of the exponential model assuming a change-point
as either known or unknown. In another paper, Achcar & Loibel (1998) consid-
ered Bayesian inferences for the exponential model assuming change-point using
different prior densities. Karasoy & Kadilar (2007) introduced another Bayesian
approach for constant hazard functions applied to data of breast cancer patients
and some lymphoma data. Assuming a Weibull distribution in presence of a single
change-point, Jiwani (2005) introduced a single change-point parametric Weibull
model, considering the case where the survival function is subject to a change from
a given instant. Yiannoutsos (2009) used the model proposed by Jiwani (2005)
to estimate survival among HIV-infected patients who are initiating antiretroviral
therapy in sub-Saharan Africa.

In this paper, we introduce a Bayesian inference approach for the segmented
Weibull model assuming one or more unknown change-points. For the Bayesian
analysis of the model, we use standard existing Markov Chain Monte Carlo (MCMC)
methods to simulate samples of the joint posterior distribution of interest. Appli-
cations are considered using clinical data sets in presence of change-points with
continuous survival function.

2. Methods

Let T denoting a continuous non-negative random variable denoting a lifetime
with probability density function (pdf) f (t) and cumulative distribution function
(cdf) F (t) = P (T ≤ t) . Under the assumption of a Weibull distribution, the pdf
is given by,

f (t) =
α

µα
tα−1 exp

[
−
(
t

µ

)α]
, (6)
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where t > 0, µ > 0 and α > 0. The Weibull distribution is characterized by two
parameters µ and α, where µ is a scale parameter and α is a shape parameter.

The survival function is given by,

S (t) = 1− F (t) = exp

[
−
(
t

µ

)α]
. (7)

The hazard function or the instantaneous rate of occurrence is given by,

h (t) =
f (t)

S (t)
=

α

µα
tα−1. (8)

The hazard function h (t) is increasing if α > 1, decreasing if α < 1 and constant
if α = 1 (an exponential distribution).

The mean and variance of the Weibull distribution with density (6) are given
respectively by,

E (T ) = µΓ

(
1 +

1

α

)
(9)

and,

V ar (T ) = µ2

[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)]
. (10)

The cumulative hazard function is given by,

Λ (t) =

∫ t

0

h (x) dx =

(
t

µ

)α

, (11)

that is,
g (t) = ln [Λ (t)] = α ln (t)− α ln (µ), (12)

In this way the survival function is,

S (t) = P (T > t) = exp [−Λ (t)]. (13)

2.1. Presence of One Change-Point

In presence of a change-point a1, we define for the ith observation
(i = 1, 2, . . . , n),

g1 (ti) = ci [α1 ln (ti)− α1 ln (µ1)] + (1− ci) [α2 ln (ti)− α2 ln (µ2)], (14)

where, ci = 1 − step (ti − a1), and step (ti − a1) = 1 if ti > a1; step (ti − a1) = 0
if 0 < ti ≤ a1.

In this way we have five parameters to be estimated: a1, α1, α2, µ1 and µ2.
The cumulative hazard function in presence of the change-point a1, is given by,

Λ1 (ti) = exp [g1 (ti)], (15)
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and the hazard function is given by,

h1 (ti) =
dΛ1 (ti)

dti
=

dg1 (ti)

dti
exp [g1 (ti)], (16)

where, dg1(ti)
dti

= 1
ti
[ciα1 + (1− ci)α2], that is,

h1 (ti) =
1

ti
[ciα1 + (1− ci)α2] exp [g1 (ti)], (17)

and,
S1 (ti) = exp [−Λ1 (ti)] = exp {− exp [g1 (ti)]}. (18)

The density function is given, from f1 (ti) = h1 (ti)S1 (t1), by,

f1 (ti) =
1

ti
[ciα1 + (1− ci)α2] exp {g1 (ti)− exp [g1 (ti)]}. (19)

2.2. Likelihood Function in Presence of Censored
Observations

Let T1, T2, . . . , Tn be a random sample of size n of lifetimes in presence of
censored observations, where the observed times are given by ti = min (Ti, Ci)
(type I censoring) where Ci are the censoring times and i = 1, 2, . . . , n; thus we
can define the indicator variable,

δi =

{
1 (complete observation)
0 (censoring observation). (20)

For the ith individual, the contribution for the likelihood function is given by,

Li = [h1 (ti)]
δi exp [−Λ1 (ti)]. (21)

The log-likelihood function assuming only one change-point is given by,

l (θ) =

n∑
i=1

δi ln [h1 (ti)]−
n∑

i=1

exp [g1 (ti)] (22)

where, θ = (a1, α1, α2, µ1, µ2), h1 (ti) is given in (17) and g1 (ti) is given in (14),
that is,

l (θ) =

n∑
i=1

δi ln (ti) +

n∑
i=1

δi ln [ciα1 + (1− ci)α2]

+

n∑
i=1

δig1 (ti)−
n∑

i=1

exp [g1 (ti)] (23)
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Note 1. For the case of one change-point, when we have the continuity for the
survival function in the change-point t = a1, we have: α1 ln (a1) − α1 ln (µ1) =
α2 ln (a1)− α2 ln (µ2), that is,

α2 ln (µ2) = α2 ln (a1)− α1 ln (a1) + α1 ln (µ1), (24)

or,

µ2 = exp

[
(α2 − α1) ln (a1) + α1 ln (µ1)

α2

]
. (25)

2.3. A Bayesian Analysis of the Model Assuming One
Change-Point

For a Bayesian analysis of the Weibull distribution in presence of change-points,
we assume Gamma (b1, b2) prior distributions for the shape parameters α1 and α2

and for the scale parameter µ1, where Gamma (b1, b2) denotes a gamma distribu-
tion with mean b1

b2
and variance b1

b22
; the scale parameter µ2 was estimated using

(25). For the change-point a1, we assume a uniform prior distribution on the
interval (0, Tm), where Tm is the maximum value observed in the lifetime data.
Further let us assume prior independence among the parameters.

Combining the joint prior distribution for θ = (a1, α1, α2, µ1, µ2) with the like-
lihood function L (θ), the posterior distribution for θ is determined from the Bayes
formula (Box & Tiao 1973). The posterior summaries of interest are obtained us-
ing Markov Chain Monte Carlo (MCMC) methods (Gelfand & Smith 1990, Chib
& Greenberg 1995). A great simplification in the generation of samples from the
posterior distribution for θ is obtained by using the procedure MCMC (SAS In-
stitute Inc 2016) from the software SAS (University Edition), which only requires
the specification of the distribution for the data and a prior distribution for the
parameters of the model.

Under our proposed model approach, it is observed that it is not possible to get
explicit forms for the marginal posterior distributions for each parameter. In this
way, we could use some approximation method to solve integrals as the Laplace
method (Tierney, Kass & Kadane 1989) or some numerical method (Naylor &
Smith 1982). An alternative is to use simulation methods like the Markov Chain
Monte Carlo methodology (Gelfand & Smith 1990, Hastings 1970) or acceptation-
rejection algorithms such as the Adaptive Rejection Sampling (ARS) or the Adap-
tive Rejection Metropolis Sampling (ARMS) (Devroye 1986).

Monte Carlo Markov chains are becoming a standard way to simulate posterior
summaries of interest that allows us to solve a wide range of problems (Tierney
1994). To simulate samples of the joint posterior distribution of interest, we need
the full conditional posterior distribution for each parameter, from where it is used
the Gibbs sampling algorithm (see, for example, Gelfand and Smith, 1990) when
these conditional distribution are simple to simulate samples.

In this way, we follow the algorithm,

Step 1 Choose initial estimates a
(0)
1 , α(0)

1 , α(0)
2 , µ(0)

1 and µ
(0)
2 .
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Step 2 Given current estimates a
(i)
1 , α(i)

1 , α(i)
2 , µ(i)

1 and µ
(i)
2 simulate new values:

• a
(i+1)
1 from π

(
a1|α(i)

1 , α
(i)
2 , µ

(i)
1 , µ

(i)
2 , t, δ

)
.

• α
(i+1)
1 from π

(
α1|a(i+1)

1 , α
(i)
2 , µ

(i)
1 , µ

(i)
2 , t, δ

)
.

• α
(i+1)
2 from π

(
α2|a(i+1)

1 , α
(i+1)
1 , µ

(i)
1 , µ

(i)
2 , t, δ

)
.

• µ
(i+1)
1 from π

(
µ1|a(i+1)

1 , α
(i+1)
1 , α

(i+1)
2 , µ

(i)
2 , t, δ

)
.

• µ
(i+1)
2 from π

(
µ2|a(i+1)

1 , α
(i+1)
1 , α

(i+1)
2 , µ

(i+1)
1 , t, δ

)
.

Step 3 Return to step 2.

The sequence
(
a
(i)
1 , α

(i)
1 , α

(i)
2 , µ

(i)
1 , µ

(i)
2

)
i = 1, . . . , L is a realization of a Markov

chain which, under mild regular conditions, has an equilibrium distribution
π (a1, α1, α2, µ1, µ2 | t, δ), the joint posterior distribution of a1, α1, α2, µ1 and µ2.

However, in the case that the conditional posterior densities for the parame-
ters show that standard sampling schemes are not feasible since the conditional
distributions are not in a known form, Bayesian inference for the parameters can
be obtained using the Metropolis-Hastings algorithm (Chib & Greenberg 1995)
considering the conditional distributions as the target densities.

2.4. Presence of More Than One Change-Point

Once a first change-point a1 was estimated (denoted as stage 1), we could use
the Bayesian approach to search for a second change-point a2 based on the infor-
mation that the first change-point is a known quantity a1 (the Bayesian estimate
based on a square error loss function of the first change-point a1):

(1) In this way, we assume a uniform prior distribution U (a1, Tm) for the second
change-point where Tm is the maximum value observed in the lifetime data.
We also assume that for a1 < t < a2 the values of α1 and µ1 are assumed
to be known and equal to the Bayesian estimates for α2 and µ2 obtained in
the stage 1. This guarantee the continuity of the Weibull segmented survival
function.

(2) Once the second change-point is estimated (denoted as stage 2), we assume
a uniform U (a2, Tm) prior for the third change-point. We also assume that
for a2 < t < a3 the values of α1 and µ1 are assumed to be known and equal
to the Bayesian estimates for α2 and µ2 obtained in the stage 2. We continue
this procedure until it is not possible to estimate more change-points.

(3) Observe that the procedure described by (1) and (2) assumes that the first
change-point is smaller than the second change-point and the second change
point is smaller than the third change-point. It is important to point out
that the method also could be used in other situations. Assuming the second
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change-point smaller than the first change-point we could assume an uniform
U (0, a1) prior in place of an uniform prior U (a1, Tm) in (1).

3. Applications With Real Data

In this section we present two applications with real data sets. First we con-
sider a data set presented in Chapter 2 of the book of Hosmer, Lemeshow &
May (2008). The second data was obtained from a trial conducted by the Leeds
Teaching Hospitals NHS Trust, England.

3.1. BPD Data Set

As a first application, we consider a data set (BPD Data) introduced in Chapter
2 of the book of Hosmer et al. (2008). This data set have 78 observations and
we consider two variables; Days on Oxygen (time to event) and the Censoring
Indicator: 1 =Off Oxygen and 0 =Still on Oxygen. In Figure 1, we have the plot
of the (Kaplan & Meier 1958) nonparametric estimate of the survival function (use
of the R software). From this graph we observe the indication of a possible first
change-point close to time t = 100 and a possible second change-point close to
t = 500.

0 100 200 300 400 500 600 700

0.0
0.2

0.4
0.6

0.8
1.0

Days in Oxygen ( t )

S(
 t 

)

Figure 1: Kaplan Meier estimate for the survival function (BPD data).

For a Bayesian analysis of the model in a first stage, let us assume a Weibull dis-
tribution with density (6) in the presence of a change-point and assuming continu-
ity of the survival function at the change-point, see (25). Assuming Gamma(0.01,
0.01) prior distributions for the shape parameters α1 and α2 and for the scale
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parameter µ1; we consider an uniform U(0, 733) prior distribution for the change-
point a1 (first stage of the Bayesian analysis). We have used the procedure MCMC
(SAS Institute Inc 2016) from the software SAS (University Edition), a single
chain has been used in the simulation of samples for the parameters considering
a “burn-in-sample” of size 10, 000 to eliminate the possible effect of the initial
values. After this “burn-in” period, we simulated other 500, 000 Gibbs samples
taking every 200th sample, to get approximated uncorrelated values which result
in a final chain of size 2, 500. Convergence of the algorithm was verified from trace
plots of the simulated samples for each parameter and usual existing convergence
diagnostics available in the literature for a single chain using the SAS/MCMC pro-
cedure indicated convergence for all parameters. In Table 1, we have the posterior
summaries of interest (first segment of the Weibull distribution).

Table 1: Posterior summaries (Weibull with a change-point).
Parameter Mean Standard Deviation 95% Credible Interval

a1 84.60 17.816 (68.40; 125.0)

α1 1.846 0.3669 (1.219; 2.643)

α2 0.739 0.1035 (0.542; 0.941)

µ1 111.2 17.407 (85.65; 151.1)

µ2 166.8 30.332 (111.2; 230.6)

For a second change-point a2 (second stage of the analysis) we assume a uniform
U (84.6, 733) prior for a2, α1 = 0.739, µ1 = 166.8 obtained from the first stage,
and the same prior distributions for the other parameters α2 and µ2 considered
in the first stage. Using the same simulation steps used in the estimation of the
parameters in the first stage (results in Table 1), we have in Table 2, the posterior
summaries of interest (second segment of the Weibull distribution).

Table 2: Posterior summaries (Weibull second change-point).
Parameter Mean Standard Deviation 95% Credible Interval

a2 534.5 75.812 (364.8; 715.0)

α2 2.302 1.1970 (0.743; 5.432)

µ2 348.2 89.793 (166.9; 572.6)

Since the second change-point (a2 = 534.5) is a large value close to the lifetime
t = 733 (maximum observed lifetime), we stop the search method looking for
new change-points. In this way, the survival function could be splited in three
segmented Weibull pieces:

S (t) =



exp
[
−
(

t
111.2

)1.846] if 0 < t < 84.6

exp
[
−
(

t
166.8

)0.739] if 84.6 ≤ t < 534.5

exp
[
−
(

t
348.2

)2.302] if t ≥ 534.5

(26)

In Figure 2, we have the plots of the Kaplan-Meier survival curve; the estimated
survival curve assuming a Weibull distribution in the presence of two change-
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points, and also assuming a Weibull distribution not considering the presence of
change-points. We clearly observe better fit of the Weibull distribution in the
presence of two change-point for the BPD data set.

0 100 200 300 400 500 600 700

0.0
0.2

0.4
0.6

0.8
1.0

Days in Oxygen ( t )

S(
 t 

)

Weibull

Figure 2: Bayesian estimates for the survival function (BPD data).

3.2. Leeds Gastric Cancer Series

In second application, we evalue a data set with 906 patients who were diag-
nosed with gastric cancer and underwent surgery between 1968 and 2009 at the
Leeds Teaching Hospitals NHS Trust, Leeds, UK. The overall survival time of 861
patients is available as time to death or censoring time (in years). Lymph node
metastasis status in gastric cancer (pN category) was measured for each patient,
were pN = 0, no lymph node metastases; pN = 1, otherwise. The pN category
is a very well established prognostic factor of gastric cancer (Deng & Liang 2014)
and one might be interested to analyze pN category in terms of survival time
of patients.

In this data set there are 861 patients where 222 lifetimes are right censored
data. The median follow-up time was 1.67 years, ranging from 0.01 to 20.56 years.

First of all, we assume a lifetime regression model (Weibull regression model)
for the response (overall survival) in the presence of covariate gender (1: male; 0:
female) and pN (pN = 0, no lymph node metastases; pN = 1, otherwise) given by,

ln (ti) = β0 + β1genderi + β2pNi + εi, (27)

where, ti denote the overall survival for the ith patient, i = 1, . . . , 861; β0, β1 and
β2 are the regression parameters. Assume the error term εi in (27) is a random

Revista Colombiana de Estadstica 42 (2019) 225–243



236 Coelho-Barros et al.

quantity with an extreme value distribution (Lawless 2003) with density,

f (ε) = exp [ε− exp (ε)] , −∞ < ε < ∞, (28)

then we have a Weibull regression model. Other distributions also could be as-
sumed for the error. If the error term εi in (27) has a standard normal distribution,
we have a log-normal distribution for the lifetime T .

Using the procedure MCMC from the software SAS (University Edition), we
have in Table 3, the Bayesian estimates of the regression parameters assuming a
Weibull distribution with n = 861 observations (639 complete lifetimes and 222
censored lifetimes). We consider normal priors with mean µ = 0 and variance
σ2 = 10000 for the regression parameters β0, β1 and β2 and a Gamma (0.01, 0.01)
prior for the Weibull shape parameter α. We consider a single chain in the simu-
lation of samples for the parameters considering a “burn-in-sample” of size 10, 000
to eliminate the possible effect of the initial values. After this “burn-in” period, we
simulated other 500, 000 Gibbs samples taking every 200th sample, to get approxi-
mated uncorrelated values which result in a final chain of size 2, 500. Convergence
of the algorithm was verified from trace plots of the simulated samples for each
parameter and usual existing convergence diagnostics available in the literature
for a single chain using the SAS/MCMC procedure indicated convergence for all
parameters.

From the results of Table 3, we observe that the covariate gender has not
significant effect in the overall survival times (zero is included in 95% credible
interval), but the covariate pN presents significative effect on the overall lifetimes
of the patients. In Figure 3, we have the plots of the Kaplan-Meier nonparametric
estimate of the survival functions.

Table 3: Posterior summaries for parameters (Weibull regression model with covariates
gender and pN).

Parameter Mean Standard Deviation 95% Credible Interval
β0 2.4404 0.1375 (2.1793; 2.7100)

β1 0.0651 0.1364 (−0.217; 0.3300)

β2 −1.462 0.1523 (−1.767;−1.168)

α 0.6063 0.0197 (0.5659; 0.6438)
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Figure 3: Kaplan-Meier estimate for the survival functions (gender and pN).

From the plots of Kaplan-Meier presented in Figure 3, we observe that is an
indication of a change-point close to the survival time t = 2. In this way, we
will assume a segmented Weibull distribution with a change-point considering all
data set.

3.2.1. Change-Point for the Survival Function Not Considering
the Presence of Covariates

In Figure 4, we have the plot of the Kaplan-Meier nonparametric estimate of
the survival functions not considering the presence of covariates. From the graph
of Figure 4, we observe a possible change-point close to time t = 2. In this case,
we have an indication of only one change-point. For a Bayesian analysis of the
model, let us assume a Weibull distribution with density (6) in the presence of a
change-point assuming continuity of the survival function at the change-point. Let
us assume Gamma (0.01, 0.01) prior distributions for the shape parameters α1 and
α2 and for the scale parameter µ1 and an uniform U (0, 20.56) prior distribution
for the change-point a1 (first stage of the Bayesian analysis). Using the same
simulation steps used in the estimation of the parameters in the Weibull regression
model (results in Table 3), we have in Table 4, the posterior summaries of interest
(a segmented Weibull distribution).
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Figure 4: Kaplan Meier estimate for the survival function (not considering covariates)

Table 4: Posterior summaries (a change-point segmented Weibull).
Parameter Mean Standard Deviation 95% Credible Interval

a1 2.2609 0.0866 (2.0975; 2.4622)

α1 0.7265 0.0314 (0.6678; 0.7881)

α2 0.3938 0.0267 (0.3422; 0.4467)

µ1 3.0203 0.2096 (2.6443; 3.4693)

µ2 3.8504 0.4119 (3.0841; 4.6985)

In this way, the survival function could be splited in two segmented Weibull
pieces:

S (t) =


exp

[
−
(

t
3.0203

)0.7265] if 0 < t < 2.2609

exp
[
−
(

t
3.8504

)0.3938] if t ≥ 2.2609

(29)

In Figure 5, we have the plots of the Kaplan-Meier survival curve; the esti-
mated survival curve assuming a Weibull distribution in the presence of a change-
point, and also assuming a Weibull distribution not considering the presence of
change-points. We observe an excellent fit of the segmented Weibull distribution
considering a change-point for the data.

3.2.2. Effect of the Covariate pN On the Survival Probabilities
Considering the Segmented Weibull Distribution

In the presence of a change-point, let us assume a Weibull segmented distribu-
tion with change-point equals to 2.2609 in presence of only the covariate pN. In
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Figure 5: Bayesian estimates for the survival function (NHS data).

Tables 5 and 6, it is presented the Bayesian estimates of the regression parameters
assuming a Weibull distribution in presence of the covariate pN and the change-
point a1 = 2.2609. We consider the same priors and simulation steps used in the
estimation of the parameters in the Weibull regression model (results in Table 3).

Table 5: Posterior summaries for parameters (segmented Weibull regression model with
covariate pN and survival < 2.2609).

Parameter Mean Standard Deviation 95% Credible Interval
β0 −0.052 0.1071 (−0.254; 0.1624)

βt<2.2609 −0.119 0.1188 (−0.353; 0.1039)

α 0.9898 0.0383 (0.9173; 1.0664)

Table 6: Posterior summaries for parameters (segmented Weibull regression model with
covariate pN and survival ≥ 2.2609).

Parameter Mean Standard Deviation 95% Credible Interval
β0 2.7931 0.0836 (2.6384; 2.9630)

βt≥2.2609 −0.287 0.1072 (−0.499;−0.078)

α 1.4816 0.0962 (1.2978; 1.6791)

From Tables 5 and 6, we observe that for survival times less than 2.2609 years
there was no statistical difference between survival of patients with lymph node
metastases and patients with no lymph node metastases (zero is included in 95%
credible interval). After 2.2609 years, there was a statistical difference between
survival of patients with lymph node metastases and patients with no lymph node
metastases (zero is not included in 95% credible interval) where it is observed that
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patients with lymph node metastases are 1.53 (HR = exp (0.287× 1.4816)) times
more in the risk of death than patients with no lymph node metastases.

We can also observe the effect of the covariate pN for survival times < 2.2609
and survival times ≥ 2.2609 considering the uncensored observations by observing
the sample means in each case (see Table 7).

Table 7: Sample means for uncensored lifetimes considering the covariate pN assuming
a change-point 2.2609.

pN = 0

(no lymph node metastases)
pN = 1

(lymph node metastases)
% gain

in survival
t < 2.2609 0.85772 0.78979 8.6%

t ≥ 2.2609 6.50545 5.51191 18.02%

4. Concluding Remarks

The use of segmented Weibull distributions could be a good alternative to an-
alyze survival times, since with this methodology, we could fit different survival
functions and correspondent hazard functions for lifetimes with any hazard func-
tion shape. The Bayesian approach introduced in this paper does not require
sophisticated computational expertize specially using MCMC simulation methods
and the free available software SAS (University Edition).

From the results of this study, we also could get useful interpretations for
clinical medical survival data assuming segmented Weibull distributions. Some
important points:

• With the use of standard Kaplan-Meier estimation for survival curves it is
only possible to compare the survival times together; similarly, if we as-
sume Weibull or other parametric lifetime distributions not considering the
presence of change-points;

• The use of a segmented Weibull distributions in presence of change-points
gives better estimates for the survival curves than using a Weibull distribu-
tion without considering the presence of change-points;

• By estimating the change-points, we can compare the survival curves in
different intervals which might tell us that the survivals are different in one
time interval and not different in another interval, as we have observed in
the second application with real data set (Leeds Gastric Cancer Series).

These results can be of great interest in medical applications.
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