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Shear flow effects on phase separation of entangled polymer blends

N. Clarke and T. C. B. McLeish
Department of Physics and Astronomy & Interdisciplinary Research Centre in Polymer Science and Technology, University of Leeds,
Leeds LS2 9JT, United Kingdom
(Received 1 December 1997

We introduce an entanglement model mixing rule for stress relaxation in a polymer blend to a modified
Cahn-Hilliard equation of motion for concentration fluctuations in the presence of shear flow. Such an ap-
proach predicts both shear-induced mixing and demixing, depending on the relative relaxation times and
plateau moduli of the two componenf§1063-651X%98)51404-3

PACS numbegps): 83.80.Es, 64.75:g, 83.10.Nn

Although the effects of shear flow on polymeric systemsents become an extra driving force for the dynamics of con-
have been studied experimentalli,2] and theoretically, a centration fluctuations. The force balance equations for the
consistent overall picture has yet to emerge. It is believedwo components are written §6]
that hydrodynamic effects in simple binary liquid lead to ¢
shear-induced mixing, whereas viscoelasticity in polymer so- > > Vi Tn— A g, M=
lutions may lead to shear-induced phase separfdi@h Doi {OA7ve) T EaV AT £AVP {at s Ve 0 (1)
and Onuki[6] established a useful theoretical framework
from which to study entangled polymer blends under shear {8 V.oM=§
flow. However, they did not explore the important difference iatls = ’
between a solution and a blend. In an entangled polymer .
solution it is reasonable to assume that all of the stress iwherev; is the velocity of componerit {;= ¢;(N;/Ng;){o is
carried by the polymer chain, and that, for well entangledthe corresponding frictional drag, whelkg andN; are the
polymers[7], the stress relaxes with a single characteristicdegree of polymerization of a chain and an entanglement
time 7. In an entangled blend each component has its owsegment, respectively; is its volume fraction;{, is the
characteristic relaxation time and plateau modulus. Refermonomeric friction coefficient, which for simplicity we shall
ence[6] included only a single relaxation time. assume to be equal for both specigs;{als/({a+ {g). The

A number of unusual effects on polymer blend miscibil- first term of Eq.(1) represents the drag force between the
ity, not observed in polymer solutions, such as flow-inducedwo componentsy; is the chemical potential, so that the
demixing at low shear rates, but demixing at higher sheagecond term represents the force due to the osmotic pressure;
rates, were reported in Rdfl]. It was also noted that the P is the isotropic pressure that ensures incompressibility; and
greater the difference in viscosity between the blend compos'" is the network stress due to the shear flow effects. If we
nents, the larger the effect of shear on the miscibility of theeliminate the pressure from El), then
system. Finally, there was evidence of miscibility gaps at L. - -
temperatures lower than the quiescent spinodal curve. An {(Ua—Vg)=dadbpl —~ V(ua—pp)+aV-g'"], (2
understanding of such phenomena is the motivation behind
this work. where

Physically, we may anticipate that unusual behavior in _ _
shear flow should be associated uniquely with polymer a=[({al dn) =L/ bp)1I({nt LB)-
blends. It is known that, in a blend of long and short poly- gy inserting Eq.(2) into the continuity equation
mers, long polymers relax more quickly in the presence of
short polymers than in a monodisperse melt, and that short Al ot = _6.(5A¢A),
polymers also relax more quickly in the presence of other
short polymers than in a blend. This has been modeled ithe key result of Ref[6] is obtained:
polydisperse homogeneous blends by “double reptation”

-

{(Vg—va)+ ¢B€MB+ ¢B€p_

[8], as described below. In this Rapid Communication, weL#SA_ g - > 2,2 > S
show that, for heterogeneous blends, coupled effects in stressit V- (en) + V(e DLV (1a~pp)—aV g,
relaxation result in an effective dynamic competition be- 3

tween the components, both of which prefer to be in the R . . )

presence of short polymers in order to reduce stress in th&herev=gva+ ¢pup is the volume average velocity.

presence of shear flow. It is now obvious that before proceeding, we must con-
The two key assumptions of RdB] are that there exists sider the forn_1 that the network stress should_ takg._ For a

a “tube velocity,” which arises from the difference in diffu- Polymer solution or melt, the network stress is minimally

sion coefficients between the two compondats idea origi-  Modeled by the Maxwell mod¢(L0]

nally introduced by Brocharf®]), and that the stress arising U aG(t—t)

from the shear flow enters the dynamic equations at the same aM(t)= f cY(t,t")dt’, @)

level as the chemical potential. In other words, stress gradi- i =
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where g™ is only determined to within an isotropic con- N ol TATE )
stant,G(t—t') is the stress relaxation function, a@ ' is  Txy= Y| $PaGaTaT 4ads(GaGE) P + ¢gGr7a|,

the Finger tensor, which for simple shear flow takes the form

PAGATA+ Bdads(GaGp)?

: : Ny= 0y — oy =297
1+72(t_t/)2 Y(t—t') 0 1= Oxx— Oyy Y

citt)=| ¥t-t) 1 0. (5
0 0 1

2
TATB
+¢§GB7%

. (8

TA+’TB

Since we can only determine the stress to within an isotropic
In Eq. (5), and for the remainder of this Rapid Communica-constant, we may rewrite the diagonal components of the
tion, we use the usual directional conventions for flowy,(  stress tensor in terms of the first normal force,
shear gradienty), and vorticity ). In order to elucidate the _ _ _
features of shear flow, which are of the greatest interest when Tx=2Ni/3,  oyy=—Ni/3,  05,=—N,/3,

considering the coupling of stress to concentration fluctuz_at—s0 that Tor=0.

tions, we assume that for a single polymeric component, it is Now we Fourier transform and linearize H8), using the

sufficient to consider the stress relaxation as dominated by R4iabatic approximatiofs], in which it is assumed that the

single time scaler, so that, stress relaxes instantaneously to a value consistent with the
magnitude of the concentration fluctuation; in other words,
G(t—t")=Gpexp[— (t—t")/7}, we neglect the equation of motion for the stress. This is a
good approximation for most experimental systefhs?],
) which possess such a separation of time scales. It should be
whereGy, is the plateau modulus. In the steady state, (. noted that, while we have assumed small concentration fluc-
gives rise to the following expressions for the shear stresg,ations and, hence, small stress fluctuations, we have not

and first normal stress difference: placed any restriction on the magnitude of the stress. The
result is
Tay=Go¥7, Ni=0y—0yy=Go(y7)2 6) ISpn . I6Pa 2 2
=_ + —Xt
o Yx 7, M| 9°(xc—x+«q°)

For polymer blends it is essential to understand how the
rheological behavior of a mixture is related to the component
rheology. It is well establishefil1,12 that a simple linear
mixing rule, which results from the reptation model in its
original form [7], is inappropriate for describing the rheo- where M = ¢4 #3ksT/{ is the mobility. We have used the
logical behavior of polydisperse systems. A more realisticusual expression for the chemical-potential difference in
mixing rule, known as double reptatidB], was derived by terms ofy, the Flory-Huggins interaction parametgy,, its
extending the reptation concept to allow for the simultaneousalue on the quiescent spinodal, anidhe interfacial energy.
relaxation of network constraints on a given chain by reptaWe may define an effective diffusion coefficieDty by

tion of its neighbors. This is the simplest way to treat con-

straint release in polymer blendd3]. By generalizing I8pl 9t = —DegQ*Ocpa. (10
double reptation to blends, and again assuming single expo-

nential stress relaxation for each Component' we have The addition of stress gradients to the driVing force for the
dynamics of concentration fluctuations leads to a modified

N , 12 diffusion coefficient. Since the phase boundary is given by
G(t—t")=(pa{Gaexd — (t—t")/7a]} D—0, in the limit of q—0, we have the possibility of
+ palGgexd — (t—t')/ 75]}+/2)2. (7)  shear-induced shifts in the phase boundary. However, con-
centration fluctuations in the, direction, even those that in
quiescent conditions would grow after a jump into the two-
Such a mixing rule is highly successful in predicting stressphase region, will be convected to larggrand eventually
relaxation in polymer blendgl4]. The key features captured decay. Consequently, shifts in the phase boundary can only
by this theory are that the relaxation behavior of the twobe defined in the,=0 plane. If we consider the contribution
components is coupled, with the degree of coupling beingo the stress gradient arising from the first normal stress dif-
dependent on the relative concentrations of the two compderence, then significant effects on the static “equilibrium”
nents, and that the dependence of the various stresses on preperties arise. The main result of E§) for polymer so-
component volume fractions is given explicitly. We expectlutions[4,5] is that shear-induces phase separation ingthe
the validity of Eq.(7) to extend into the weakly nonlinear direction and suppresses it in the direction.
flow regime whereN; is important, because the stress relax- Here we focus on the consequences for polymer blends.
ation is still controlled by reptation, rather than by nonlinearFirst, we consider the, direction for whichg,=q,=0. We
processes such as retractiof], for which cooperative mo- need an expression for the variation of the veloGitysheay
tion becomes more subtlel5]. Use of Eq.(7) gives the field in theq, direction. If we eliminate the relative veloci-
steady-state stresses as ties from Eq.(1), then

Spa, 9

a 0
_ . — ()
kgT IE]: i dpa il
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Vst bV et VD—V. M=, 11 The difference betweeg,=q,=0 and theq,=q,=0 di-
PaVint $Vust VP g (D rection is that no shear rate perturbation is requifgfdto
from which we find satisfy Eq.(12); vy is constant. Hence, in thg, direction, the
shift in the spinodal is given by
VXVQ'(n):G, (12 > 2a . 2 2 1/2 T\
) Axe(02) = 35 Y"CaTal datT4H1=2¢4)C " 7
the result of which is that the shear stresg is constant in B
the velocity gradient direction, and as a consequé¢dte L
_ ~(1-¢nG'r (15
% &ny) / (ﬁoxy) 13
A B _ ' : In the case of5’' <1, we see from Eq(15) that the spinodal
da - NS Yy q15) p

in the g, direction will always be suppressed, independently
7, even though the spinodal in tlg, direction may be
hanced or suppressed. Eat>1 it is possible to induce
phase separation for a range ©f This is illustrated in the
inset of Fig. 1. For polymer solutions, i.&€,’ — 0, the spin-

We now assume that the steady-state stress is given k@;
Eq. (8). By substituting Eq(13) into Eq. (9), and defining "
G'=Gg/Gy and 7' =15/ 75, We have

D(dGy)=2M[x.—x+ Kq§+ Axc(dy)], (l\)/lc:;a\r:etr)?g]omes suppressed in this direction, as predicted by
4 o The rich behavior described above is entirely due to the
=2M(x.—x+ Kq§)+ 3 M T coupling of the stress relaxation of the two components. The
B

underlying physics, which gives rise to Eq$4) and(15), is

that each component can relax stress more effectively when
surrounded by polymers with the faster relaxation time

and/or the lower plateau modulus. This gives rise to an ef-
fective competition between the two components, the result

’ 2

¢A+4<1—2¢A>G'“2(T—

22 2
><’)/(3A7-A 1+ 7'

—(1—pp)G' 72— 2{pp>+8pa(1— pp) of which depends sensitively upon the relative relaxation
times and the relative plateau moduli. These factors, com-
1o T2 o 2 bined with the variation of the normal force with concentra-
xXG 1+ 7 t(1-¢p°G' 77} tion and the constraints imposed by the force baldbs.

(11) and(12)], all determine whether the shift in the phase

- boundary is positive or negative.
dat 2(1—2¢A)G’1’2( 57| (1= ¢nG' 7 It is well established that polymers exhibit shear thinning
> T flow behavior at relatively small shear rates, due to the long
7 relaxation times of many polymers, and we expect shear

2 _ r1/2 _ 201 1
PatAda(l=dn)G ( )+(1 $a)°G'r thinning to have a strong effect on the demixing behavior. In

order to extend the above work to this regime of strong flow,
(14)  a constitutive equation is required. Doi and Edwards were

1+7

which definesﬁ)(c(ﬁy), the y-dependent shift in the spinodal

in the g, direction. The convective term is absent due to the
condition ongy . Although the shift in the spinodal is given

by a somewhat cumbersome term, there are some important
general comments that can be made. It should be noted that
whenN,>Ng we havea>0; to ensure positivity we assume,
without loss of generality, that componehthas the greater
relaxation time, i.e.;p> 75 .

An examination of Eq(14) reveals that the shift in the
spinodal A x.) can be either positive or negative, depending
on the relative values 0o6,, Gg, 74, and 7. In other
words, it is possible to suppress phase separation imhe
direction by the mechanism of shear, a phenomenon that is
not predicted for polymer solutions. In Fig. 1 we show the

logio(T’) é

|
[ng
=)

h i . -4.0
curve corresponding to zero shift in the spinodal for a range 0.0 02 04 0.6 08 , 10
of G’ and 7 <0. The complex behavior fo6' <1 is par- !
ticularly remarkable. The range @f, for which phase sepa- FIG. 1. Contour plots of zero shift in the spinodal for fluctuations in the

ration is suppressed is reduced@5 decreases from unity, 9y direction for a range 06’ as a function ofr’ and ¢, . In the region to
whereas, folG’>1, the corresponding range is increased adhe right ofeach curve, §hear-|nduced dem|X|ng(g<’0) oc?urs, ar’1d to the
G' increases from unity. In the limit o’ —0, the predic- 'eﬂ’G?rle;g_'nduceg,T'I'g_ga(’“g,9)2%?CurS'GT:IfO_|O‘1‘ T Gm0s
- ) ! -+ G'=0.9,—,G’'=1.0; ---,G' =2.0; -—,G' =10.0. Inset: same as main
tions of Refs.[4,5] are recovered with a quadratic depen- e, but for fluctuations in they, direction. In the region above each
dence of the shear modulus on concentration, and a rela¥urve, shear-induced demixing f.<0) occurs, and below, shear-induced

ation time that is independent of concentration. mixing (Ax.>0) occurs. ———G'=2.0; ---,G'=5.0; ...,G'=10.0.
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By using a differential approximatiofl?7] to the Doi-

" K Edwards model, we find that the behavior of the shift in the
e ", spinodal, in theg, direction, is altered from that of weakly
) nonlinear flow. In Fig. 2 we illustrate the regions of positive

; e Are<0 1 and negative shifts in the spinodal in thgdirection; asy is
gm0l e increased and shear thinning becomes important, the misci-

ANy ool p|I|ty bghawor changes. V\/_|thou.t shear thinning thg effect of
/ v o o1 | increasing the shear rate is to mcrease_the magnlltud.e of the
I B pie03 shift in the phase boundary; however, if shear thinning ef-
/ R =07 fects are included, the sign of the shift can also change. For

7=0.01 and 7=0.1, the behavior, for a range ab,,
L changes from shear-induced demixing to shear-induced mix-
00 02 04 06 08 o 1.0 ing. Such qualitative behavior has been seen in experiments
in polystyrene-polyvinylmethylether blend]. However,

FIG. 2. A map of the regions of shear-induced mixingjy>0) and  for 7=0.3 andr’ =0.7, shear-induced demixing becomes fa-
shear-induced demixingA(y,<0) as a function of shear rate, in thg, vorable as shear thinning of both components occurs. Such
direction, for a range of’. In all casesz’=1.0. _Thg diagram illus_trates the complex behavior arises from the variation of the normal
ﬁ)haz(ge;r)‘ihe(;“éscli:t:)i':tz’/;:l‘jzz"gzzas SrZi?;rtTLTr:ni:esizgﬁts I?rr?i(t)rt;lﬁr: foforce with the relative concentration of each component; the
cc?risti}t/ut?ve equation produces pﬁmyAsigally unrealistic solutionz. ’ nglerlylng physical reasons will be explored further in Ref.

[

o logi(yta) o
I
i

<>
T

the first to derive such an equation based on the tube model In summary, we have shown that a simple mixing rule for
[7]. The physical picture of their model is that after defor- stress relaxation, coupled with a phenomenological equation
mation a polymer retracts quicklwithin its tube, to its equi-  of motion for concentration fluctuations in the presence of
librium length, followed by slow orientational relaxation. shear flow, leads to rich, but quantifiable, changes in the
Such behavior leads to the prediction of shear thinning, wittphase diagrams of polymer blends, which are qualitatively
a shear viscosity and first normal stress, which both decreas#fferent from that of polymer solutions. Our results may
for y==1. An important feature of the model is that the stresshelp to explain some of the phenomena reported in Refs.
relaxation function is identical to that used before; hence, th¢l,2], particularly with regard to the shear rate dependence of
strain-dependent nonlinearities can be factored, in agreemetite shift of the phase boundary when shear thinning effects
with experiments on polymer melts and solutidii$. Con-  are considered, and the strong dependence on the viscosity
sequently, we can apply18] the mixing rule of des difference between components. In the form presented in this
Cloiseaux to the shear thinning regime. Again, there is n@aper, the theory is not, on its own, capable of explaining
dependence of the relaxation times and plateau moduli on thdisconnected miscibility gagdd]. However, we remark that
volume fraction within this approximation. Before proceed-a temperature dependence ©f comparable to that of,
ing, it is important to note that a significant problem, which could account in a simple way for apparently disconnected
is the subject of considerable ongoing resedddh1§ with  regions of immiscibility. Such temperature sensitivity would
this model, is that, above a critical shear rate, the shear stressise naturally from a difference in the glass transition tem-
decreases with shear rate, which is physically unrealisticperature of the two components. In a future publication, we
Hence, we shall restrict our attention to the valuegofor  will explore this possibility and other important conse-
which da,/3y>0. This regime is nonetheless interesting, quences of the theory. We look forward to a series of care-
since shear thinning still occurs. fully designed experiments with which to test the theory.
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