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Abstract 

Solvent selection and design are imperative in the CO2 capture process. The efficiency and the overall 

cost of the process are directly affected by the solvent as a consequence of the effect of solvent on 

factors such as CO2 absorption capacity, size of equipment, and solvent regeneration energy. This 

review paper aims to review the most important solvents and mixtures of solvents, absorbing CO2 via 

chemisorption, physisorption and chemi-physisoprtion. Characteristic and structure of different 

solvents are presented with the advantages and disadvantages of each being highlighted. Mixtures of 

solvents include chemical or physical solvents only, and combinations of physical and chemical 

solvents are categorised. In addition to common solvents, phase change solvents are also described. 

Once a comprehensive list of solvents is presented, different methods of solvent selection and design 

are illustrated, namely methods involving experiments, process and equilibrium models, predictive 

models, and computer-aided molecular design (CAMD). The importance of integrated solvent and 

process selection and design is also discussed. The most recent and selected progress studies in each 

section are reviewed in detail. 

Keywords: CO2 capture, physical solvents, chemical solvents, mixture solvents, solvent selection and 

design, integrated solvent and process design, CAMD. 
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1 Introduction 

CO2 capture, utilization and storage have been attractive and practical methods to decrease the amount 

of CO2 emitted into the atmosphere. All these three methods are important in the aspect of CO2 emission 

control. CO2 capture methods are utilized to remove the CO2 from different gas streams [1-3]. In 

utilization processes, the researchers tried to convert CO2 into more valuable components such as 

methane and in storage processes, the captured CO2 is stored by different methods [4, 5]. Anthropogenic 

sources of CO2 can be classified into different sectors with electricity and heat generation sector 

contributing most of it at 42% as shown in Figure 1. Anthropogenic CO2 from electricity and heat 

sector emanate from fossil fuel (i.e. coal, oil, and natural gas) combustion during the energy generation 

process. To put this in perspective, coal combustion in a 500 MWe coal-fi red power plant produces 

8000-10000 tons of CO2 per day while a similar capacity natural gas combined cycle power plant 

produces about 4000 tons of CO2 per day. As these fuels are predicted to remain the main source of 
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electricity and heat in the foreseeable future (EIA, 2016), the sector will, therefore, remain a significant 

source of anthropogenic CO2 emission.  

Figure 1: Sources of CO2 (IEA, 2016). 

Technologies to capture CO2 are categorised to three approaches in literature as Pre-Combustion, Oxy-

Combustion, and Post-combustion [3, 6]. There are different separation methods that can be used in the 

above-mentioned approaches. Absorption, adsorption, membrane, chemical looping, hydrate based 

separation, and cryogenic [7-9]. The hybrid process attracts attention in recent years to overcome the 

disadvantages of the standalone method [10]. The choice of CO2 capture method considerably related 

to the type of the plant which is producing CO2 and the type of fuel utilized. 

1.1 Motivation of the study 

Solvent-based absorption methods are the most well-known and applicable techniques between 

different methods of CO2 capture [11, 12]. The available solvents that utilized for CO2 capture processes 

possess a number of weaknesses such as solvent degradation, solvent loss, high corrosiveness, and high 

regeneration energy. Therefore, there are four activities to decrease the operating and capital cost of 

solvent-based CO2 capture processes [13]:  

i. utilization of alternative solvents 

ii. utilization of alternative process configurations 

iii.  optimization of process flowsheet 

iv. Integration of energy with other sections of the power plant 

The first activity is the main subject of the current study. In order to make the CO2 absorption process 

more effective and commercially viable, it is necessary to recognise and design more energy efficient 

and environmentally friendly solvents that are specialized for the solvent-based CO2 capture processes. 

Continues literature reviews indicate the sparsity of academicals literature related to the current subject 

of study. Mumford et al. [14] reviewed solvent based CO2 capture technologies. They revised a number 

of common physical and chemical solvents and briefly had a discussion about mixed solvents and their 

applications. Budzianowski [15] discussed and reviewed the different type of available solvents and the 

criteria for their selection. The authors introduced eight important criteria for solvent selection and 

illustrated that the future studies in this area should be conducted to presenting novel single and blend 

solvents. PZ, ammonia and amino acids were recommended by the author as promising solvents. 

Papadopoulos et al. [16] discussed the design and identification of amine-based solvents of CO2 capture 

using CAMD. The authors demonstrated the importance and effectiveness of CAMD method as a 

powerful tool for solvent screening and selection for CO2 capture. Available studies are devoted to a 

few numbers of solvents and there is not an exhaustive study which covers all the solvents in a classified 

manner. In addition, in this review paper, the authors tried to cover methods of solvent selection and 
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design with proper organization. It will be a helpful document for all the researchers working in this 

area.  

This review paper reviewed most of the available solvents and listed the advantages and disadvantages 

of each solvent. The characteristics of each solvent are also presented which provides a framework to 

compare the solvents for CO2 absorption. The criteria to select the chemical and physical solvents are 

illustrated in a systematic manner. This classification will help the reader to recognise different type of 

selection methods and use them in future studies. 

1.2 Objectives of the study 

The aims and objectives of the current review paper can be summarized as follow: 

1. To review most of the available chemical, physical, chemical-physical, and mixture solvents. 

2. To list the advantages and disadvantages of each solvent. 

3. To present the characteristics of each solvent. 

4. To illustrate the criteria to select the chemical and physical solvents. 

5. To review the selection and design of solvents using experiments. 

6. To review the selection and design of solvents using process and equilibrium models. 

7. To review the selection and design of solvents using predictive models. 

8. To review the selection and design of solvents using CAMD problems. 

1.3 Outline of the paper 

After the current section, in Section 2 available solvents are reviewed. Details about solvents and their 

characteristics are provided. The solvents are classified into three class namely chemical, physical, and 

the mixture of solvents. The main criteria that must be considered to select the chemical and physical 

solvents are presented in Section 3. Section 4 is devoted to solvent selection or design using 

experiments. In Section 5, the solvent selection or design using process and equilibrium models are 

discussed. Section 6, is related to solvent selection or design using predictive models (such as quantum 

mechanical based models). In Section 7 the systematic method of solvent selection and design is 

described. In addition to single and mixture solvent design, the integrated solvent and process design 

also considered in this section. In Section 8, the prospects of the study is illustrated. In Section 9, the 

conclusions and summary of the study are emphasized. 

2 Available solvents 

The most important part of the absorption process is solvent and its selection. In general, solvents can 

be classified based on properties [17] but in studies related to CO2 absorption, solvents are usually 

classified based on their type of reactivity in solution [18, 19]. Different families of solvents are 

chemical, physical, and mixture solvents. ILs are another family of solvents which can be used as both 

physical and chemical solvents. In addition to usual solvents, phase change solvents (biphasic solvents) 

are also reviewed in related sub-sections. 
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2.1 Chemical solvents 

Due to chemical reactions between solvents and carbon dioxide, these solvents are well-known as 

“chemical solvents”. Amines, salt solutions, ammonia are some examples of this type of solvents. There 

are two reasons that chemical reaction increases the CO2 absorption rate [20]: 

i. The chemical reaction between CO2 and solvent during the liquid phase reduces the equilibrium 

partial pressure and thereby increases the mass transfer driving force. 

ii. The chemical reaction causes the CO2 to be consumed at the interface and hence increase the 

CO2 concentration gradient at the interface. 

The main advantages of chemical solvents are relative insensitivity to acid gases partial pressure, 

capture level of acid gases up to ppm, and high absorption and desorption mass transfer coefficients. 

The main disadvantages of these solvents are high energy requirement for solvent regeneration, poor 

selectivity between acid gases, the high price of materials, high heat of absorption, high corrosion, 

existence of side reactions, environmental damages, and occasionally due to using aqueous solution the 

treated gas will be saturated with water [21]. The energy requirement for solvent regeneration is a 

critical issue in using the absorption-desorption system which required around 20-30% of the power 

produced by a power plant [13]. The majority of energy consumption is related to the regeneration unit 

[22, 23]. Therefore, the design and operation of the regeneration unit have high importance in the 

chemical absorption process. Several researchers focused on reducing the energy consumption of the 

stripper using by doing new design [24], optimization [25, 26] and by considering different 

configurations for strippers [27, 28]. 

The most important chemical solvents are reviewed and discussed in the following sections. At the end 

of Section 2.1, the characteristics of the most important chemical solvents are summarized in Table 1. 

In Table 2, the advantages and disadvantages of different type of chemical solvents are summarized. 

2.1.1 Amines 

Alkanolamines are the most well-known solvents used for CO2 absorption over the years [29]. There 

are numerous studies on different aspects of them from chemistry and kinetic reactions to 

thermodynamic analysis and process modelling in the different type of unit operations [8, 18, 30, 31]. 

Amines contain hydroxyl (-OH) and amino (-NH2, -NHR, and -NR2) functional groups on an alkane 

group.  

2.1.1.1 Primary and secondary amines 

In this type of amines, one of the three hydrogen atoms in ammonia is substituted by an alkyl or 

aromatic. Secondary amines have two organic substituents (alkyl, aryl or both) bound to the nitrogen 

together with one hydrogen. 

https://en.wikipedia.org/wiki/Hydroxyl
https://en.wikipedia.org/wiki/Amino
https://en.wikipedia.org/wiki/Functional_group
https://en.wikipedia.org/wiki/Alkane
https://en.wikipedia.org/wiki/Alkyl
https://en.wikipedia.org/wiki/Aromatic
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2.1.1.2 Tertiary amines 

In the structure of tertiary amines, nitrogen has three organic substituents [32]. The reaction mechanism 

for Tertiary amines is different from primary and secondary amines and no carbamate is formed when 

dealing with Tertiary amines. Tertiary amines are thought to catalyse the absorption of CO2 by water 

through the production of hydroxyl radicals and hence does not have a direct reaction with CO2 [33]. 

Therefore, water must be present for the reaction to proceed. 

2.1.1.3 Hindered amines 

A sterically hindered amine is defined structurally as a primary amine in which the amino group is 

attached to a tertiary carbon atom or a secondary amine in which the amino group is attached to a 

secondary or a tertiary carbon atom [34].  

2.1.1.4 Cyclic amines 

Piperazine (PZ) is a very well-known cyclic secondary amine [35, 36]. The 8 m solution of this amine 

showed volatility similar to MEA but the advantage of faster kinetics (more than twice) and higher 

capacity (double) than MEA [37]. It is also more resistant to oxidative and thermal degradation and can 

be used to high temperatures (up to 150 oC) [38]. This amine used as an additive to many other amines. 

Morpholine (MOR) is another famous cyclic amine that has been used as a solvent in commercial 

process well-known as Morphysorb®. This solvent can remove the acid gases from raw natural gas or 

syngas, selectively.  

2.1.1.5 New amines 

New amines are primary, secondary, tertiary, and hindered ones and more and more of them introducing 

in recent years. The structural modification of a solvent has a great effect on the effectiveness of new 

amines in CO2 capture processes. 2-((2-aminoethyl)amino)ethanol (AEEA), 1-diethylamino-2-propanol 

(1DEA2P), 2-(diethylamino)ethanol (DEEA), and 4-diethylamino-2-butanol (DEAB) are some 

examples of new amines [39]. Benzylamine (BZA) is a medium-strong base consisting of a primary 

amine functional group attached to a benzyl group [40]. More information about new amines and other 

types of amines can be found elsewhere [41, 42]. 

2.1.2 Ammonia 

The use of Ammonia as an absorber to capture CO2 and H2S from gas streams is the subject of research 

for many years [43-45]. Depending on the temperature the CO2 capture by using ammonia can be 

classified into two types. 

2.1.2.1 Conventional ammonia system 

The first type is the absorption of CO2 at ambient temperature (25–40 oC) and does not allow 

precipitation [46]. The kinetics of CO2 absorption in unloaded aqueous ammonia solution with 0.9–5.4 
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M concentration and temperatures ranging 25–49 oC were measured using a string of discs contactor 

[47]. A rigorous rate-based model for CO2 absorption using aqueous ammonia in a packed column has 

been developed and validated using pilot plant data [48]. Absorption and desorption of CO2 in aqueous 

ammonia solution is simulated using a rate-based model in Aspen Plus and validated utilizing pilot plant 

data [49]. The VLE behaviour of absorption of CO2 in aqueous ammonia solution is modelled using the 

species-group Pizter activity coefficient model and compared with E-NRTL, extended UNIQUAC and 

original Pitzer model [50]. The equilibrium behaviour of CO2 in aqueous ammonia at low temperatures 

was studied using experiments and modelling [51]. A novel process for ammonia based CO2 capture 

was suggested to reduce the energy requirement. The authors integrated CO2 absorption, CO2 

regeneration, product purification, SO2 absorption, NH3 abatement and recovery [52]. The effect of SO2 

loading (0.1–0.3 mol SO2/mol NH3) on VLE of CO2 was measured in 2.5–7.5 wt.% aqueous ammonia 

at 20, 40, 60 oC using a Fourier transform infrared (FT-IR) gas analysis method with a pressure 

determination stirred tank apparatus [53]. The double film theory was utilized to investigate the mass 

transfer coefficient to evaluate the ammonia escape (which is a serious problem in this system) utilizing 

in CO2 capture [54]. An organic solvent (acetone, dimethoxymethane, or acetaldehyde) added to a CO2 

rich, aqueous ammonia/CO2 solution under room temperature and pressure conditions. The organic 

solvent and CO2 absorbing solution are then regenerated using low-temperature heat [55]. A promising 

process modification of the ammonia (NH3) based CO2 capture process is proposed that involves an 

advanced flash stripper with a cold rich split [56]. 

2.1.2.2 Chilled (precipitating) ammonia system 

The second process is CO2 absorption at low temperature (about 2–10 °C) and desorption of CO2-rich 

stream at a temperature range of 100−150 °C and pressures of γ0−β000 psi. This process is called the 

chilled ammonia process and precipitation of some ammonium carbonate compounds is occurred in the 

absorber. Therefore, in this process phase change happen. The low-temperature process helps to reduce 

the ammonia slip in the absorber and the flue gas volume [46]. 

The chilled ammonia system also attracted a lot of attention in recent years. A selected number of recent 

progress in this process are reviewed. In order to evaluate the mass, energy, and entropy flows of the 

chilled ammonia process, an approximate model of the CO2-H2O-NH3 system is coupled with a 

proposed process [57]. An aqueous ammonia process is modelled using a rate-based approach. The 

model is validated using experimental data and modified to a chilled ammonia process model. The 

model was then scaled up to process flue gas from a 580 MW supercritical coal-fired power plant [58]. 

A process for CO2 capture from flue gas by using ammonia is developed. In order to increase the CO2 

concentration in the regeneration section of the process, solid ammonium bicarbonate is generated in 

the process. Precipitation, separation, and dissolution of the solid phase are considered in a separate 

section, hence the packed columns remain free of solids [59]. 

2.1.3 Salt solutions 
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Salt solutions are another family of chemical solvents which are salt in nature and can produce 

electrolyte solution when dissolving in water. The main feature of this family is the low price of them.  

2.1.3.1 Carbonate/Bicarbonate 

Carbonate solutions (potassium and sodium) are chemical solvents and have considerable positive 

characterisations such as low cost, low toxicity, ease of regeneration, slow corrosiveness, low 

degradation, high stability, and CO2 absorption capacity. The carbonate system has been applied in 

more than 700 plants worldwide for CO2 and hydrogen sulphide removal from streams like ammonia 

synthesis gas, crude hydrogen, natural gas, and town gas [60]. Similar to CO2 capture using ammonia 

the CO2 capture by using carbonate solutions can be done in two main categories. 

2.1.3.1.1 Conventional carbonate/bicarbonate system 

The reaction of CO2 with potassium carbonate solution is an exothermic reaction. The hot potassium 

carbonate process is useful for gas mixtures containing a high amount of CO2. The CO2 absorption by 

using potassium carbonate solution is a slow rate reaction. Consequently, promoters (activators) have 

been used in different studies to improve process efficiency [34]. The promoters for potassium 

carbonate solution can be classified as organic and inorganic [60]. Characteristics and behaviour of 

sodium carbonate are very similar to potassium carbonate because both of them produce considerable 

carbonate in solution [61, 62]. 

2.1.3.1.2 Precipitating carbonate solvent system 

The precipitating carbonate/bicarbonate system is proposed by Shell which this process utilizes K2CO3 

with a crystallization and concentration step and then CO2 absorption step [63, 64]. The authors named 

the process as Shell carbonate slurry process and reported that a high amount of energy can be reduced 

in regeneration and the lower amount of nitrosamine emitted in compare with the amine process. 

Sodium carbonate/bicarbonate solution also used as precipitating solvent. In a study, the researchers 

allowed to form the solid bicarbonate is and hence forming slurry increased the capacity of the solvent 

[65]. The authors reported that the energy requirement for solvent regeneration that is used to capture 

CO2 is about 3.22 MJ/kg of captured CO2. 

2.1.3.2 Hydroxides 

Different types of hydroxides such as potassium, calcium, and sodium hydroxides are utilized to remove 

CO2 from different gas streams [66-68]. As NaOH is a strong alkaline Naା and OHି are almost 

completely ionized in pure water. Then, the gaseous CO2 is absorbed physically in the NaOH solution 

and change to aqueous CO2. After that, aqueous CO2 reacts with OHି to generate HCOଷି  and COଷଶି. 
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2.1.3.3 Amino acid salts solutions 

Amino acids are organic components, which include amine (-NH2) and carboxyl (-COOH) groups and 

an amino acid-specific side chain (R group). Amino acid salts (AAS) which are produced commonly 

by reacting amino acids with an inorganic base (e.g. KOH [69] and NH3 [70]) utilized in a different 

study to perform the CO2 capture [71]. They can be considered as a subset of amines. Potassium Salt of 

Taurine, Potassium Salt of Glycine, Potassium salt of Sarcosine are prominent examples of amino acid 

salts [72-75]. Amino acid salt solutions similar to the carbonate solution can be used in two different 

approaches. In addition to amino acid salts, if amino acids are neutralized using an organic base the 

product name is amine amino acid salt (AAAS). AAAS showed better behaviour in compare with AAS 

[76, 77]. 

2.1.3.3.1 Conventional amino acid salt system 

Reaction kinetic between CO2 and potassium salt of sarcosine solution and also the VLE for both 

unloaded and CO2 loaded aqueous potassium salt of sarcosine at different temperatures are investigated 

in the literature [73, 78]. Kumar et al. [72] measured the reaction kinetic between CO2 and aqueous 

potassium salts of taurine and glycine at 22 oC. They also experimentally examined the effect of 

temperature on reaction kinetics at the range of 12-32 oC. Aronu et al. [73] worked on reaction kinetic 

between CO2 and potassium salt of sarcosine solution. Aronu et al. [78] measured the VLE for both 

unloaded (concentration 1-5 M and the total pressure of 4.08-97.8 kPa) and CO2 loaded (concentration 

3.5 M and the total pressure of 0.03-971 kPa) aqueous potassium salt of sarcosine at different 

temperatures. The authors also used the Extended UNIQUAC thermodynamic model to express the 

data. Aldenkamp et al. [75] measured the VLE of CO2 in potassium salt of taurine and glycine at two 

concentrations namely 1 and 1.8 mol/kg and four different temperatures. These AAASs are utilized in 

a pilot plant rig and it was realized that it required around half of the stripping steam of the MEA system 

[79]. 

2.1.3.3.2 Precipitating amino acid salts systems 

Amino acids could be presented in solutions in different forms. This happens because of the presence 

of both an amine group (cause protonation), and a carboxyl group (cause deprotonation) [80]. Kumar 

et al. [81] observed crystallization in the reaction between CO2 and aqueous potassium taurate solutions 

at 25 oC. Majchrowicz et al. [82] investigated the tendency of alkaline (sodium, potassium, and lithium) 

salts of taurine, ȕ-alanine, sarcosine and L-proline to form solid phase by changing the operating 

conditions of the CO2 capture process. They reported that higher temperatures and lower CO2 partial 

pressures lead to higher solubility limits and at higher amino acid salt concentration precipitation starts 

at lower CO2 partial pressures. In addition, the effect of the counterion on the solubility limit appears 

to be: potassium > sodium > lithium. Finally, the precipitates formed can be the amino acid itself (as in 

the case of taurate), or more complex (CO2-containing) species (as for proline, sarcosine, and b-alanine). 
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The precipitation characteristics of fourteen aqueous amino acid salt systems are investigated 

experimentally [83]. The authors reported that at 40 oC, high concentrated amino acid salt systems 

precipitate in the presence of CO2 and form two or three solid-liquid phases.  

Table 1: Physical Characteristics, the molecular structure of selected chemical solvents.  

Table 2: Advantage and disadvantage of selected chemical solvents. 

2.2 Physical solvents 

In physical absorption processes, Henry's law is applied and the gas absorption is achieved at high-

pressure conditions. In this type of processes, the solvent regeneration may be done by reduction of 

pressure and in contrast to the chemical absorption addition of heat is not necessary [14]. In comparison 

with chemical absorption, physical solvents have greater absorption capacity and hence resulted in 

lower solvent recirculation rates. Another advantage of the physical solvent is their selectivity between 

acid gases. The disadvantages of physical solvents are their sensitivity to acid gas partial pressures (it 

must be high), necessity to have a low concentration of inert gases, and difficulty in meeting H2S 

specification [21]. The physical characteristics, molecular structure, and applications of well-known 

physical solvents are presented in Table 3. In Table 4, the advantages and disadvantages of a selected 

number of physical solvents are listed. 

2.2.1 Dimethyl Ether of Polyethylene Glycols (DEPG or DMEPEG) 

The Selexol® is the commercial process which uses DEPG. This solvent is a mixture of Dimethyl Ether 

of Polyethylene Glycols. The solvent can be utilized to absorb H2S and CO2, physically. Selexol has 

the low vapour  pressure, high operating temperature, high CO2 solubility, non-corrosiveness, relatively 

non-toxic, and well-characterized performance as compared with the other physical solvents [84]. The 

favorable operating temperature for the absorbers that use this solvent fall in the range of -20 to 40°C.  

The Selexol process is utilized in pre-combustion integrated gasification combined cycle (IGCC) 

systems to capture CO2 [85]. Kapetaki et al. [86] simulated a common two-stage Selexol process to 

absorb the CO2 and H2S from a synthesis gas system, simultaneously. They found that in order to 

capture 95% of CO2 the required energy is 65% more than the energy necessary for 90% CO2 capture. 

Gatti et al. [87] performed multi-objective optimization of a Selexol® process for the selective removal 

of CO2 and H2S from coal gasification-derived syngas. Im et al. [88] added dimethyl carbonate (DMC), 

diethylcarbonate (DEC), and triacetin (TAT) to DEPG solution to improve the economics of the 

Selexol® process. The process used TAT additive is revealed to be competitive with the Selexol® 

process without additive in the aspect of both operating and equipment costs. In contrast, DMC and 

DEC exhibited a serious solvent loss. CO2 absorption performance of DMEPEG solvent by considering 

a rate based mass transfer model is studied in ProTreat® simulator [89]. Dual-stage Selexol® process in 

the IGCC system for removing CO2 as well as H2S from the syngas is simulated [90]. The authors 
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reported that by changing the operating conditions, 95% CO2 capture can be obtained by the 

conventional, integrated dual-stage Selexol unit. 

2.2.2 Methanol 

Methanol used as the physical solvent in two well-known processes: Rectisol® and Ifpexol®. Rectisol® 

process is the first process that used an organic component (Methanol) as the solvent. The abilities of 

the Rectisol process to separate impurities that are produced in the gasification of coal or heavy oil, 

including hydrogen cyanide, aromatics, organic sulfur compounds, and gum-forming hydrocarbons has 

been confirmed already. Dehydration and formation of ice and hydrate at the low temperatures of the 

process can be prevented by using Methanol. The operating temperature of Rectisol® process is low as 

-59.5 to -73.3 °C and the solvent's capture capacity for both CO2 and H2S becomes very high (higher 

than that of other physical solvents). This characteristic cause to attain a very high amount of capture. 

The process is presented in a very different arrangement to meet specific requirements and feed 

conditions but there are two important configurations which are the nonselective standard process and 

the selective version [18]. 

Sun and Smith [91] simulated and analyzed a single-stage and a two-stage Rectisol® wash 

configurations in aspects of the acid gas removal ability, heat recovery, equipment requirement, power 

consumptions, and environmental emission and costs. They utilized revised PC-SAFT in the process 

simulation. Gatti et al. [92] reviewed Rectisol process configurations and applications. They also 

calibrated the PC-SAFT equation of state (EOS) for the Rectisol® process. The authors gave the details 

of process simulation and optimized heat integration, and utility design and optimized alternative 

Rectisol® configurations for CO2 Capture. Gao et al. [93] predicted the thermodynamic behaviour of 

the Rectisol® process by using SAFT EOS. They used a method of equation oriented strategy. Sharma 

et al. [94] optimized the energy penalty and CO2 capture rate simultaneously in standalone Rectisol® 

process to get the best-operating conditions for various CO2 capture rates. 

Ifpexol® process uses methanol as the agent for treating natural gas to perform dehydration, natural gas 

liquids recovery, and acid gas removal in one overall process. Selective removal of H2S or removal of 

essentially all the acid gas can be obtained by using this process [18].  

2.2.3 Polyethylene glycol methyl isopropyl ethers (MPE) 

The commercial name of the process that used a mixture of polyethylene glycol dialkyl ethers (MPE) 

is Sepasolv-MPE® process. The process resembles the Selexol in the aspect of utilized solvent and the 

mode of operation. Initially, the process is designed for selective removal of H2S from natural gas and 

thereafter the same process was applied for CO2 capture from synthesis gases [95]. Following the 

extensive literature review, our findings suggest that there are no studies on this process. 

2.2.4 Propylene carbonate 



13 
 

The commercial name of the process that used propylene carbonate (PC) is Fluor® process. Fluor® 

process is suitable for gas streams comprising of CO2 partial pressures higher than 60 psig. The 

operating temperature for this solvent is between -17 oC to 65 oC. The process provides high solubility 

of CO2 in the solvent. This process can be used to perform sweetening and dehydration simultaneously. 

In addition, it is useful to remove very low amounts of H2S (e.g. 20 ppmv) and also can operate at lower 

temperatures by good mass transfer without increasing its viscosity considerably [96]. 

2.2.5 N-Methyl 2Pyrrolidone (NMP) 

The commercial name of the process that used NMP as the solvent is Purisol® process. The process can 

be operated at ambient and very low temperatures (about -15°C). The solvent has a higher vapour  

pressure in comparison to DEPG or propylene carbonate and hence it required to be washed by water. 

It must be mentioned that, due to the high selectivity for H2S, the process is mainly suitable to purify 

the high pressure, high CO2 contains synthesis gas from gas turbine IGCC systems. 

2.2.6 Glycerol 

Glycerol which also well-known as glycerine or glycerin is a simple polyol compound. This component 

is a colorless, odorless, sweet-tasting, non-toxic and viscous liquid. Nunes et al. [97] only used glycerol 

solution and measured the CO2 solubility in glycerol at three different temperatures i.e. 80, 120, and 

150 oC and pressures up to 32 MPa. They reported that the CO2 solubility increased by the pressure 

increase and by the temperature decrease. They also compared the performance of glycerol with some 

components having the same chain length. Medina-Gonzalez et al. [98] used in situ FT-IR methods to 

measure the CO2 solubility in glycerol solution at a wide temperature range (40-200 oC) and pressures 

up to 35 MPa.  

2.2.7 Sulfolane  

Sulfolane (also well-known as tetramethylene sulfone (TMS) and 2,3,4,5-tetrahydrothiophene-1,1-

dioxide) is an organosulfur colorless liquid with the chemical formula (CH2)4SO2. The solubility of 

gases including CO2 is determined in sulfolane solution at temperatures in the range of 25-130 oC at 

pressures up to 7.6 MPa [99]. Solubilities and diffusivities of N2O and CO2 in aqueous and pure 

sulfolane solution were measured and correlated for a range of temperature of 20-85 oC [100]. In order 

to find a microscopic picture of the utilization of sulfolane as the solvent for CO2 and H2 capture, the 

properties of this solvent as the physical solvent is studied using density functional theory (DFT) and 

molecular dynamics (MD) computational chemistry methods [101]. 

Table 3: Characteristics and molecular structure of selected physical solvents. 

Table 4: Advantage and disadvantage of selected physical solvents. 

https://en.wikipedia.org/wiki/Polyol
https://en.wikipedia.org/wiki/Viscous
https://en.wikipedia.org/wiki/Liquid
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2.3 Physical-Chemical solvents  

ILs are solvents that showed both physical and chemical behaviour [102] and hence we considered them 

in a separate section in the title of physical-chemical solvents. These solvents are composed of cations 

and anions and have wide application in different areas due to their unique properties namely low 

vapour  pressure, low melting point, modifiable solvation behaviour, staying liquid over a wide range 

of temperature, inflammability, and thermal stability [103, 104]. A lot of combination of anions and 

cations are possible, giving flexibility to the solvent design. Therefore, desired characteristics can be 

obtained by design of different ILs [105]. However, it must be mentioned that some of the ILs showed 

detrimental properties such as toxicity and corrosiveness [106]. Conversely, as the number of possible 

designed ILs is too high, it is challenging, time-consuming, and expensive to explore synthesis by a 

trial-and-error approach.  

In physical absorption, the solubility of CO2 in ILs is determined by free volume, IL size, cation and 

anion, while the structure of the amino function group attaching IL dominates the solubility of CO2 in 

chemical absorption. This kind of IL is well-known as task-specific ionic liquid (TSIL) because IL is 

produced with the favorite properties [107]. Boot-Handford et al. [108] classified a different type of ILs 

and described the applicability of each group properly. According to literature, different classified type 

of ILs is Room Temperature ILs (RTILs); Task-Specific ILs (TSILs); Reversible ILs (RILs). These 

different type of ILs can be used with the support of membranes and this process name is supported 

ionic liquid membranes (SILMs) [109-111]. There is a considerable number of review papers on the 

utilization of ILs for CO2 capture [112-118]. Lei et al. [116] described the applications of different 

thermodynamic models for ILs and also reviewed the solubility of CO2 and some more gases in the ILs. 

Zeng et al. [118] reviewed all the important review papers related to ILs utilized for CO2 capture. They 

recognized four main aspects that covered by review papers namely design of new ILs particularly task-

specific ones, mixing of ILs with other components, determination of physicochemical properties, and 

determination of transport properties, kinetics and etc. They also covered structures effects, microscopic 

integration, transport behaviours, and scale up and process design for IL-based CO2 separation from the 

viewpoint of industrialization.  

It is noteworthy that ILs are utilized in non-aqueous (pure), aqueous (mixed with water), and mixed 

with amine for CO2 capture. Recently a new idea is proposed to use a blend of ILs [119]. By this method, 

the undesired property can be overcome and a balanced and optimum characteristic in aspect of 

economic, environmental, and performance can be obtained. General advantage and disadvantage of 

ILs is listed in Table 5.  

Table 5: Advantage and disadvantage of ILs. 

2.3.1 Room Temperature ILs (RTILs) 
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RTILs are also well-known as conventional ILs in the literature. These ILs are very common which act 

as physical solvents in the absorption of CO2 and most of them have imidazolium-based cations. The 

cations in these ILs are organic and anions can be organic or inorganic [120]. CO2 is sufficiently soluble 

in RTILs. Prominent examples of RTILs that utilized in CO2 capture are [bmim][PF6], [bmim][BF4], 

[bmim][Tf 2N], [emim][Tf2N], [emim][MDEGSO4], [bmpy][Tf2N], and [hmim][BF4]. 

2.3.2 Task Specific ILs (TSILs) 

Functionalization of ILs by a proper component like amines can improve the ILs performance in CO2 

capture [121]. These type of ILs act as chemical solvents in absorption of CO2. Different examples of 

TSILs that utilized in CO2 capture are [pabim][BF4], [Ambim][BF4], [Ambim][DCA], [3Amim][BF 4], 

[bmim][acetate], [AHA][tbp], and [thtdp][2-CNpyr]. 

2.3.3 Reversible ILs (RILs) 

A new class of ILs, well-known as reversible ionic liquids (RILs) [122]. These ILs are obtained by 

reaction between CO2 and a special type of amines or alcohols (such as silylamines). Then, the generated 

ILs could be used as a solvent for the physical absorption of CO2. Therefore, RILs enabling a dual CO2 

capture mechanism [123]. These solvents eliminate the energy penalty necessary in common amine 

solutions, increase the selectivity of CO2 over N2, and increase the CO2 loading.  

2.3.4 Deep Eutectic Solvents (DESs) 

This type of ILs is easy to prepare and no further purification steps are required which resulted in low 

cost, and hence this ILs is more economical than the other ILs [124]. Using DESs as CO2 absorbents 

were firstly reported by Li et al. [125]. Between the synthesized DESs, choline chloride/urea 

(ChCl/Urea) is considered as one of the promising solvents to attain large-scale applications [124]. 

ChCl/Urea (1:2 on a molar basis) consists of natural compounds, i.e. choline chloride and urea, and 

hence it is easily biodegradable and with low toxicity. The viscosity of ChCl/Urea (1:2) is much higher 

than the conventional organic solvents. Therefore, the addition of water as a co-solvent can decline the 

viscosity significantly but still can maintain the high CO2 capacity, making aqueous ChCl/Urea (1:2) a 

promising CO2 absorption solvent [126]. 

2.4 Mixture of solvents 

Each solvent has some favorable characteristics, hence the researchers find out that by combining them 

they could use the positive features of each solvent. For example, by combining primary/secondary with 

tertiary/hindered amines the benefit of fast reaction kinetics with high absorption capacity and low 

energy requirement for regeneration will be achieved. The mixture of solvents can be classified as two 

main categories namely mixture of chemical solvents and mixture of physical and chemical solvents. 

In addition to the usual mixture of solvents, some solvent mixtures showed phase change behaviour.  

2.4.1 Mixture of chemical solvents 
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2.4.1.1 Promoted carbonate 

As mentioned before, carbonate solutions have disadvantages of the slow rate of reaction with CO2. 

Addition of promoters to carbonate solutions can enhance the rate of reactions [127]. Different type of 

chemicals utilized as promoters of carbonate solution but the most important family of promoter 

components are amines [60]. Amine-promoted potassium carbonate solution has industrial applications 

and reported in several studies [128]. In addition to amines, amino acids also exploited as a promoter 

and added to carbonate solutions [129, 130].  

The phase change behaviour also reported for promoted potassium carbonate solutions. Similar to the 

precipitating of the ammonia system, precipitating of promoted carbonate solution can improve the 

system in the aspect of energy utilization [129, 130]. There are a number of studies and research on 

promoted potassium carbonate system at the University of Melbourne. The researchers named the 

process as UNO MK3 which is commercialized by UNO Technology Pty Ltd [131]. In this precipitating 

system, the potassium bicarbonate precipitates from a promoted potassium carbonate solvent following 

CO2 absorption and subsequent cooling. The precipitate is then separated from the liquid phase. It has 

been demonstrated that potassium glycine as a promoter can improve the CO2 recovery rate of 

potassium carbonate solution by up to 6 times [103]. 

2.4.1.2 Promoted Ammonia 

PZ due to its fast reaction rate is one of the best chemicals that can be used as an additive to ammonia 

solution. This component considerably improves the CO2 absorption rate. Liu et al. [132] performed 

experiments on CO2 absorption into a mixture of ammonia and PZ at 10–40 oC in a wetted wall column 

under the driving force of 8–25 kPa. Yu et al. [133] studied the CO2 absorption process using NH3-PZ 

blended solutions in a packed column, and developed and validated a rate-based model for the NH3–

PZ–CO2–H2O system. In addition to PZ, other components also utilized as a promoter for the ammonia 

solution [134]. 

2.4.1.3 Mixture of amines 

Mixtures of amines show acceptable performance in plenty of studies and substantial number of various 

combinations of amines have been examined in recent years. 

2.4.1.3.1 Common mixtures of amines 

The tertiary amines which are proper for selective absorption of CO2 in presence of H2S and has high 

absorption capacity and low cost of regeneration have the weakness of slow reaction rate with CO2 due 

to lack of formation of Carbamate. Therefore, primary and secondary amines, that has fast kinetic, are 

added to them as additives in many studies. Chang and Shih utilized an aqueous mixture of DGA and 

MDEA to model the CO2 absorption in an absorber-stripper system [135]. Rayer et al. [136] compared 

the experimental data from the literature to find the effect of different amines on MDEA as a ternary 
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amine at a constant temperature (40 oC). They reported that adding a hindered amine to MDEA could 

have the highest amount of CO2 loading and increase the reaction rate with CO2.  

PZ which is polyamine-based solvents has more than one active site to react with CO2 and hence can 

potentially have a high absorption rate, high absorption capacity, and low volatility. Therefore, there 

are a number of studies on the application of PZ as an activator to ternary amines [137, 138] and also 

to hindered amines [139, 140] to perform CO2 capture studies. Rayer et al. [136] compared the 

experimental data at a constant temperature (40 oC) from literature to illustrate the effect of adding PZ 

as a promoter to other amines. The authors reported that the mixture of PZ with hindered amines shows 

high absorption capacity and absorption rate for CO2.  

In addition to PZ, the other polyamine which showed an effective application in combination with 

common amines (ternary and hindered) is N-(2-aminoethyl) ethanolamine (AEEA) [141, 142]. AEEA 

shows proper absorption rate among amines that are added as an activator to the tertiary amines. Further, 

as it is a Diamine compound, one mole of it is able to absorb 2 moles of CO2, thus has a high absorption 

capacity for CO2 but it increases the regeneration cost [143]. Zoghi [144] considered five additives and 

reported that AEEA-MDEA aqueous solution has the highest absorption rate of CO2. In general, it can 

be said that considerable improvement can be obtained by using blends of amines in the aspect of 

reaction kinetics, solubility, mass transfer, and regeneration energy requirement [42].  

2.4.1.3.2 Phase change mixtures of amines 

In addition to mentioned amine mixtures, some amine mixtures act as phase change solvents. Arshad et 

al. [145, 146] measured heat of absorption of CO2 and equilibrium total pressures in a mixture of 2-

(diethylamino)-ethanol (DEEA) and 3-(methylamino) propylamine (MAPA) solution as a function of 

CO2 loading at different temperatures. Pinto et al. [147] also worked on DEEA-MAPA solution. They 

found that MAPA is first loaded in the heavy phase with a subsequent reaction between DEEA and 

CO2. They also mentioned that the system has the potential for a significant reduction in the required 

heat for regeneration. Xu et al. [148] reported that 1,4-butanediamine (BDA) blended with DEEA 

resulted in phase change solvent. There is a non-aqueous amine solvent process which is well-known 

as Self-Concentrating Absorbent CO2 Capture Process and presented by 3H Company [149]. 

Thermomorphic biphasic solvent (TBS) systems are another phase changing mixtures of amines which 

resulted by blending lipophilic amines to release CO2 in the regeneration in lower temperatures (about 

80 oC) in comparison with usual amines (about 120 oC) [150].  

2.4.1.4 Hydroxides-Carbonate 

A small fraction of research focused on a mixture of hydroxides and carbonates. Gondal et al. [151] 

studied the solubility of N2O in aqueous solutions of hydroxides (containing lithium, sodium and 

potassium ions) and the hydroxide blends with carbonates in temperatures (25–80 oC) and 

concentrations (0.08–3 M). Gondal et al. [152] measured the CO2 absorption rate in the hydroxide-
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carbonate mixture in the temperature range of 25-64 oC. They also presented a kinetic model for the 

system that can predict the kinetic by 12% AARD. 

2.4.1.5 Amino acids-Amine 

The mixture of amino acids and amines also attracted the researcher's attention. The speciation is 

determined for several amino acids including L-Proline (PRO), L-Alanine (ALA), L-Serine (SER), 

Taurine (TAU), Glycine (GLY) and Sarcosine (SAR), mixed with MEA and with different CO2 contents 

[153]. The solubility of CO2 in a blend of the aqueous solution of potassium prolinate (KPr) with PZ 

and AMP studied experimentally and theoretically [154]. 

2.4.2 Mixture of physical and chemical solvents 

In this type of processes, the physical solvent captures the acid gas bulk and the chemical solvent 

purifies the gas stream to rigorous levels, simultaneously [18].  

2.4.2.1 Sulfolane-Amine 

Tetrahydrothiophene dioxide is an organic component well-known as Sulfolane. The commercial name 

of the process that used the mixture of amine and sulfolane as the solvent is Sulfinol process. One of 

the main benefits of sulfolane–amine solution to capture acid gases is the ability to simultaneously 

remove mercaptans and COS, which cannot be absorbed by using pure chemical solvents [155]. The 

Sulfinol process can strip CO2 down to 50 ppm at LNG plants. The physical features of  the aqueous 

solution of sulfolane-amine allow the relative quantities of water and sulfolane to vary and the energy 

of regeneration to be reduced [156].  

2.4.2.1.1 Common mixtures of Sulfolane-Amine 

In this type of solvents, there is not any solid precipitating. Zong and Chen [156] utilized ENRTL for 

the liquid phase and PC-SAFT for the gas phase to model CO2 and H2S solubilities in sulfolane-DIPA 

and sulfolane-MDEA solution. Ghanbarabadi and Khoshandam [157] compared the applicability of 

sulfolane-MDEA-water, DGA, MDEA-AMP, and MDEA in the capture of CO2, H2S and more 

components in process simulation. Their results show that more than 30-40% of mercaptans along with 

sour gas is absorbed with a sulfolane-MDEA-water solution of lower flow rate, boasting 10-25% 

reduction in energy consumption associated with solvent regeneration. In addition, very little waste of 

solvent is observed in comparison with amine solvents (MDEA-AMP, DGA, and MDEA). Dash and 

Bandyopadhyay [158] worked on a mixture of MDEA-PZ-sulfolane and measured the VLE data and 

modelled them by using ENRTL thermodynamic model. 

2.4.2.1.2 Phase change mixtures of Sulfolane-Amine 

A mixture of DETA, sulfolane and water exhibited phase change behaviour at different temperatures 

and CO2 partial pressures [159]. The results showed that DETA and CO2 were placed mainly in the 
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upper stage and sulfolane mainly remained in the lower stage. During the reaction of DETA with CO2 

in sulfolane, the carbamate, dicarbamate, and tricarbamate will be produced that all of them have low 

solubility in the solution and hence cause biphasic separation.  

2.4.2.2 Amine-alcohol 

Primary amine-methanol. The commercial name of the process that used this mixture as the solvent is 

Amisol process. Yu et al. [160] proposed a non-aqueous mixture of PZ and diethylene glycol (DEG) in 

RPB. It was reported that the 40.8 wt% PZ could be dissolved in DEG at 20 oC without precipitation. 

The regeneration energy could be reduced because the heat capacity of DEG is lower than water. A 

study focused on the solubility of CO2 in the mixture of MEA and glycerol [161]. The authors found 

that at lower pressures the solubility of CO2 in glycerol solution is higher. In another study, the solubility 

of CO2 was measured at atmospheric pressure and different temperatures in the mixture of MEA and 

Glycerol [162]. In order to decrease the vapour ization of methanol its mixture with MEA, TEA and 

Glycerol are investigated namely MEA-TEA-Methanol, MEA-Glycerol-Methanol. By increasing the 

concentration of TEA and decreasing the concentration of MEA, the absorption rate, CO2 capture 

efficiency, and absorption capacity all decreased [163].  

Some non-aqueous mixtures of amines and alcohols show phase change behaviour, e.g. a mixture of 

AMP and Ethylene Glycol (EG) [164]. The authors reported that in comparison with AMP-DEG or 

AMP-triethylene glycol (TEG) solutions, the loading of CO2 in AMP−EG solution is higher especially 

at a lower partial pressure of CO2. In addition, the viscosity of the AMP−EG solution is also lower. 

2.4.2.3 Amines-ILs 

The main reason for blending amines with ILs is related to the reduction of high viscosity of ILs which 

cause problems for the CO2 capture process, improvement of CO2 capacity and selectivity [165]. 

2.4.2.3.1 Common mixtures of amines-ILs 

In the case of mixing amines with ILs, it was reported that the increase of amine concentration leads to 

an increase in the solubility of CO2 in the mixed solvent. The solubility of CO2 in this mixture is more 

than standalone IL solutions [166]. However, it must be mentioned that this mixture has a high viscosity 

[167]. 

Zhao et al. [167] measured viscosities, CO2 capture rate and the capacity of 16 various absorbents. They 

reported that one gram of MDEA-[MDEA][Cl]-H2O-PZ could capture 0.158 gram of CO2. Feng et al. 
[166] added different amounts of tetramethylammonium glycine ([N1111][Gly]) in MDEA aqueous 

solutions of higher concentration. An aqueous solution of 15 wt% [N1111][Gly] and 15 wt% MDEA 

has significant regeneration efficiency. Yang et al. [168] proposed 30 wt % MEA-40 wt % 

[bmim][BF4]-30 wt % H2O solution for CO2 capture. They illustrated that the energy consumption of 

the proposed solution for regeneration and MEA loss per ton of captured CO2 was lower than that of 

aqueous MEA solution. Bernard et al. [169] reported corrosion and CO2 absorption behaviour of the 
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mixed IL−amine solutions. The authors performed the absorption tests at 45 oC and at a pressure of 

0.1−β.7 MPa. The corrosion tests were carried out at 45 oC under 2.7 MPa. They found that addition of 

[bmim][BF4] in aqueous alkanolamine solutions reduces corrosion rate for MEA by up to 72%. Yang 

et al. [170] reported that addition of IL to MEA aqueous solution reduced the losses of MEA and water. 

In addition, the thermal energy at stripper of IL mixed absorbent is 33.8% lower than that of aqueous 

MEA solution.  

2.4.2.3.2 Phase change mixtures of amine-ILs 

In addition to the usual mixtures of amines and ILs, there are some mixtures that operate as phase 

change solvents. Hasib-ur-Rahman et al. [171] mixed DEA with ILs. The result was a proper solvent 

that can capture CO2 by producing DEA-carbamate crystals without any equilibrium limitations. This 

enabled easy separation by having a reasonably smaller solid carbamate volume and promising cost-

effective regeneration. 

2.4.3 Mixture of physical solvents 

Mixture of different alcohols as a solvent for carbon capture is reported in literature [172-174]. Carrera 

et al. [172] blended glycerol with three alcohol namely ethanol, propanol, and butanol in the temperature 

range of 40-60 oC and pressure up to 12 MPa. The authors used the PR equation of state to correlate the 

results of CO2-glycerol-ethanol and showed good agreement between predicted and experimental 

values. Pinto et al. [173] mixed glycerol with methanol in the temperature range of 30-70 oC and 

pressure up to 22 MPa. They presented phase equilibrium data for the system. They considered three 

different methanol to glycerol ratios. Araújo et al. [174] considered glycerol with ethanol in 30-70 oC 

and pressures up to 26 MPa. They worked by three different glycerol to ethanol molar ratios. 

The mixture of Sulfolane and alcohols also attracted attention. Xu et al. [175] correlated density, 

viscosity and the dissociation constant and solubility of N2O in the mixture of Sulfolane, 2-

piperidineethanol (2-PE), and water. The authors illustrated that in addition to the tertiary system their 

correlations are useful for binary solvents like 2-PE-Water and Sulfolane-Water systems. Li and Mather 

[176] correlated the solubility of CO2 and H2S in a mixture of 2-PE, Sulfolane, and water by using 

Clegg-Pitzer equations at different temperatures. Li et al. [177] combined ionic liquid and polyethylene 

glycol (PEG) to absorb and desorb the CO2. The authors reported that both chemical and physical 

absorption exists in the system and IL enhances the kinetics of the absorption and desorption of CO2 

significantly. Recently, Aghaie et al. [178] evaluated the solubility of ILs at various operating 

conditions and the influence of impurities/additives such as water and toluene. 
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3 Criteria to select and design of solvents 

3.1 Chemical solvents 

Tennyson and Schaaf [179] illustrated that the criteria to choose the best solvent for CO2 capture 

depends on the composition, temperature, and pressure of the feed gas and the desired specification on 

the treated gas. They presented a logarithmic diagram and located partial pressure of CO2 in the product 

in the horizontal axes and partial pressure of CO2 in feed in the vertical axes. Veawab et al. [180] 

illustrated that the essential elements of solvent selection criterion are feed gas characteristics 

(composition, pressure, temperature, etc.) and the treated gas specifications (i.e. the process 

requirements). Hoff et al. [181] discussed fourteen different criteria that must be considered when 

selecting and screening solvents for CO2 capture. The authors divided these criteria into two main 

families: criteria based on kinetics, thermodynamics, and mass transfer properties and criteria based on 

health and safety executive (HSE) and operability. Liang et al. [42] addressed by details three important 

aspects that must be considered during evaluating reactive solvents and selecting optimum operating 

conditions namely solubility, reactive kinetics and chemical species analysis for CO2 capture. Liang et 

al. [182] reviewed ten of these criteria with considerable details. Mota-Martinez et al. [183] indicated 

the importance of accounting transport and kinetic properties of solvents that have a significant effect 

on the size of equipment and capital cost. They mentioned that within the research community, the 

focus was more on equilibrium properties that are related to operating cost of CCS units. 

3.2 Physical solvents 

Different parameters must be considered during physical solvent selection: capital cost, purity of treated 

gas, the concentration of CO2, and hydrocarbon loss. Experience and inventiveness of the designer in 

adjusting the process to the case at hand, and method of dealing with impurities that may be present 

(such as COS, NH, aromatic hydrocarbons) also play important role in selecting physical solvents. 

Other different parameters such as corrosion, foaming, or other operating problems which cause to 

replace the initial solvent, vapour  pressure of the solvent, solvent stability, energy loss, stripping gas 

necessities, and the cost of process royalty should be considered as well [18]. When the process is 

operating in high pressure the physical solvents are more suitable because they can be regenerated by 

reducing the pressure. The physical solvents are also more efficient for concentrated CO2 streams.  

4 Selection and design of solvents using experiments 

4.1 Description of method 

The experimental VLE data has high importance on the selection of the best solvent for CO2 capture 

process [136]. High-pressure conditions are suitable for the reaction between CO2 and chemical 

solvents, hence the challenge is finding an effective solvent at low partial pressure conditions. They 

demonstrated that the best choice of solvent depends on the partial pressure of CO2. In the selection of 
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solvents using experiments, the authors compared the effectiveness of two or more solvents or their 

mixtures together, experimentally. Different type of apertures are utilized with the method such as 

wetted wall columns, pilot plant packed columns or any other type of unit operations to contact the 

phases. This method is used to compare and select chemical, physical, and ILs.  

4.2 Advantages and disadvantages of the method  

The advantages of the method are related to its ease of application. The main weakness of the method 

is that a few numbers of solvents are utilized in the study. Experiments are always time consuming and 

expensive. Therefore, it cannot be said that the selected solvent is the best option.  

4.3 Review of related studies 

Ma’mun et al. [184] compared seven amines experimentally. They also considered some mixtures as 

well. The authors reported that AEEA is a potentially good absorbent for capturing CO2 from low-

pressure gases. Singh et al. [185] compared different alkanolamines in the aspect of the effect of 

structure on and capacity for CO2 absorption. They found that decrease of the rate of absorption and 

increase of capacity of absorption will be obtained by increasing the chain length between the amine 

and various functional groups. Aschenbrenner and Styring [186] conducted experiments that 

investigated several non-toxic and low-cost solvents for CO2 capture. They compared the mentioned 

solvents in the aspect of thermal stability, CO2 solubility, and selectivity over N2. They reported that 

poly (ethylene glycol) is the best solvent in comparison with the other ones due to high stability, low 

solvent loss and low stripping energy. Chowdhury et al. [187] selected AMP and MDEA as the base 

case for comparison and synthesized nine new amines. They reported three high-performance amines 

with the high rate of absorption and low heats of reactions in comparison to AMP and MDEA. Freeman 

and Rochelle [35] calculated Maximum Estimated Stripper Temperature (MEST) parameter based on 

experimental data from the literature for comparison of 46 pure amines and 11 mixtures of amines in 

the aspect of thermal stability. The authors reported morpholine, piperidine, and piperazine as the most 

thermally stable amines. On the other hand, alkyl chain or alkanolamines with changing combinations 

of methyl substitution, hydroxyl substitution, and amino functions were found as unstable amines. 

Chowdhury et al. [188] compared twenty-four different tertiary amines by considering MDEA as the 

base case in terms of absorption rate, the amount of CO2 absorbed, cyclic CO2 capacity and heat of 

reaction for each solvent. Three of these amines were synthesized by authors. Barzagli et al. [189] 

experimentally compared the usefulness of several solvent-free amines. The authors stated that is not 

necessary to use any organic or aqueous diluent for these types of amines as they are in the liquid state 

prior to the experiment and after the CO2 uptake. Zhang et al. [190] collected seventy-six conventional 

ILs and screened them for energy consumption to identify potential ILs for CO2 capture. They selected 

seven ILs and calculated the energy consumptions of them. The amount of required energy and 

characteristics of seven screened ILs were compared with those of 30 wt% MEA, MDEA and DEPG. 



23 
 

They reported that the energy consumption of all seven ILs is less than three mentioned solvents. 

Muchan et al. [191] tested and compared amines in the aspect of the rate of absorption and desorption, 

pKa, the partial pressure of CO2, the heat of regeneration, and heat of absorption. They reported that 

due to the negative electron withdrawing effect of the hydroxyl groups, amines with more hydroxyl 

groups showed lower performance in all the CO2 capturing activities. They also selected amines with 

only one hydroxyl group and blended them as binary and ternary mixtures and illustrated better 

performance in the initial rate of desorption and energy efficiency compared to 5 M MEA solution. 

5 Selection and design of solvents using process and equilibrium models 

5.1 Description of method 

In this type of studies, the authors developed a process model [192] and evaluated the effect of a few 

numbers of solvents on the carbon capture level of the system, heat of absorption, and CO2 capture 

capacity. Therefore, this type of studies also could be considered comparison studies. Different types 

of assumptions can be considered in the modelling and the models are from simple to rigorous. 

According to our literature review, this method is used for both chemical and physical solvents. 

5.2 Advantages and disadvantages of the method  

The advantages of the method are that it is economical and after developing model they can be used for 

different conditions and operations. However, it must be mentioned that the models must be validated 

using appropriate experimental data. Similar to selection and comparison of solvents using experiments 

a limited number of components can be used in these type of studies. 

5.3 Review of related studies 

MEA solution (30 wt%) is compared with mixtures of MEA-PZ and MDEA-PZ by using the 

equilibrium-based model of stripper [13]. The authors also considered four types of configurations for 

the stripper in their study. They showed that matrix configuration and MDEA-PZ offers 22% energy 

saving compared to MEA solution. In an interesting study Burr et al. [193] the four physical solvents 

(DEPG, Methanol, NMP, and propylene carbonate) are compared with each other in terms of acid gas 

removal ability, equipment required and power requirements by using the process simulator ProMax. 

Kothandaraman et al. [194] compared MEA with potassium carbonate solution using simulation in 

ASPEN PLUS®. Urech [195] compared three CO2 capture processes by using process simulation. They 

considered Selexol, UNO (participating potassium carbonate solution), and MEA (or MDEA). Borhani 

et al. [128] worked on the industrial absorption of CO2 into DEA-potassium carbonate solution in a 

packed column in ASPEN PLUS®. They changed DEA with other amines and compared the 

effectiveness of them as a promoter on carbonate solution. The authors reported that MEA shows 

promising performance as a promoter for CO2 removal. Sharifzadeh and Shah [196], compared amine-

promoted buffer salt solution with MEA solution in a rate-based model in gSAFT toolboxes. In another 
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study [197], they compared a new developed solvent GCCmax with MEA and reported that GCCmax 

has features superior performances compared to MEA. In addition, the authors introduced a new 

methodology to assess the performance of CO2 capture solvents [197]. They faced the problem as 

retrofitting an existing pulverized coal power plant with post-combustion carbon capture using two 

solvents namely CDRMax (an amine-promoted buffer salt (APBS)) and MEA. They reported that the 

CDRMax offers high CO2 loading capacity and thus reduces the circulation rate significantly as 

compared to MEA. 

Chen et al. [198] compared the performance of Selexol, Rectisol, and water by using a theoretical 

method. This method was established to evaluate the mass transfer of CO2 in a stationary single droplet. 

Rectisol had the highest absorption rate and capacity to capture CO2 among the three solvents. 

Koytsoumpa et al. [199] compared Rectisol, Selexol, potassium carbonate and MDEA in the aspect of 

efficiency and feasibility. The study presents a comparison among the conceptual designs and mass and 

energy analyses of the four processes integrated with the coal-to-SNG system, based on ASPEN 

PLUS®. A comprehensive comparison between ammonia and amines as CO2 absorption solvents 

performed [200]. The authors used information such as energy consumption in regeneration and CO2 

capture efficiency to compare solutions. The solubility of CO2 and carbamate concentration in DEA, 

MDEA, and DEA-MDEA mixture is modelled using equilibrium models based on Deshmukh-Mather 

thermodynamic models by [201]. The performance of DEA, MDEA, and DEA-MDEA solutions in CO2 

absorption is evaluated and compared using the electrolyte-UNIQUAC thermodynamic model in a 

rigorous equilibrium model [202]. 

6 Selection and design of solvents using predictive models 

6.1 Description of method 

In this approach, the predictive models act as screening tools. There is a different type of predictive 

models that can be used to perform screening and selection of solvents. Group contribution models 

(SAFT, UNIFAC,…), Quantitative Structure-Property Relationship (QSPR) models, computational 

chemistry methods (quantum mechanical based models and molecular dynamic) are some examples of 

predictive models that used to predict different properties for different components and purposes. These 

methods are used to select the ILs in the majority of studies.  

6.2 Advantages and disadvantages of the method  

The advantages of using predictive models as a screening tool are their ease of application for a large 

number of components. In general, it can be said that these models are "forward problems" namely a 

desired property for a list of components can be calculated using a different type of properties related 

to chemical structure and other properties of components. Therefore, they must be applied for all the 

generated or collected components as solvents which cause sometimes extensive calculations. 
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6.3 Review of related studies 

6.3.1 Group contribution models applications 

The Statistical Associating Fluid Theory for potentials of variable range (SAFT-VR) is utilized as an 

EOS to model and evaluate the behaviour of alkanolamines, water, and CO2 system [203]. A more 

predictive approach is the development of group parameters for these mixtures to use with the group 

contribution (GC) SAFT-Ȗ SW (square well) approach [204]. UNIFAC model is utilized for the first 

time by Lei et al. [205] to predict the CO2 solubility in 22 pure ILs and in the binary mixture of ILs at 

high and low temperatures. Therefore, their study showed that UNIFAC can be used as a proper 

predictive model for screening the ILs.  

6.3.2 Computational chemistry models applications 

Between quantum mechanical based models CSOMO-based models utilized widely in thermodynamic 

studies especially in CO2 capture studies [206, 207]. These predictive thermodynamic models are 

utilized to predict some key properties that can help to select the best candidates between solvents. 

COSMO-based methods do not have adjustable parameters and therefore, experimental data are not 

required for them. They are particularly appropriate for the screening of potential ILs for CO2 capture 

[103]. 

Zhang et al. [208] used the COSMO-RS model to predict Henry's constant of ILs. They had a pool of 

24 cations and 17 anions and hence 408 ILs. As higher Henry's constant means the lower solubility, the 

authors used Henry's constant as a criterion for ILs selection. Finally, they selected three ILs which are 

not solid at room temperature and obtained them from Merck KGaA. They measured the solubility of 

CO2 in [hmim][FEP], [bmpyrr][FEP], and [ETT][FEP] at three temperatures namely 283.5 K, 298.6 K, 

and 323.3 K and different pressures up to 1.8 MPa. Palomar et al. [206] illustrated that the van der 

Waals forces accompanying with the solute in the liquid phase control the CO2 absorption capacity in 

ILs, which is measured in terms of Henry’s Law constants. They screened over 170 ILs with COSMO-

RS to design new ILs that increase physical absorption of CO2. Liu et al. [209] proposed a screening 

method to select the best ILs between 90 classes of ILs, based on COSMO-RS model, an absorption 

mechanism, and experimental data. The author considered CO2 solubility, CO2-CH4 selectivity and 

toxicity and viscosity of ILs as selection criteria. Retief [210] utilized the Hansen solubility parameters 

(HSPs) as the only parameter to screen a large number of amines and ILs solutions. 

6.3.3 Chemometric model applications 

The chemometric methods are based on molecular structure and use chemical structure-based 

parameters to predict any type of properties [211, 212]. The QSAR/QSPR method has been used in 

several solvent designs and selection studies, the majority of which are related to ILs design [213-215]. 

The first attempt in this area was the work of Matsuda et al. [213]. They used QSPR methods coupled 

with descriptors of group contribution to design new ILs for applications other than CO2 capture. 
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Furthermore, to predict the property of viscosity and ionic conductivity of ILs, some models are 

developed. In order to predict the pseudo acidity constant and the absorption isotherms for amines, a 

statistical neural network model is presented by Porcheron et al. [216]. Venkatraman et al. [214] used 

evolutionary de novo design to obtained imidazole-based solvents for CO2 capture. The authors used 

QSPR methods to compute the density, viscosity, biodegradability, and acid dissociation constant (pKa) 

which is a proper criterion for solvent reactivity.   

7 Selection and design of solvents using CAMD problem 

7.1 Description of method 

Due to the existence of non-ideal interactions between solvents, CO2, and water, the selection of the 

best solvent for such a system is very challenging. In order to select the most proper solvent, several 

properties such as thermodynamic, kinetic, and sustainability must be considered as criteria 

simultaneously [181, 217] but the mentioned methods in sections 3-5 only consider a few number or in 

some cases only one criterion to select the solvents. On the other hand, the three described methods in 

sections 3-5 expect some predictive models are screening methods, not design methods.  

Therefore, a systematic method is proposed and developed in recent years to select or design of the best 

single and mixture solvents for CO2 capture and also for selection and design of solvent integrated with 

the process. In a systematic selection of solvents, there is a large pool of candidates and a predictive 

model that is described in Section 5 must be used to identify useful solvent candidates. This approach 

is well-known as computer-aided molecular design (CAMD) and tries to select the best and optimum 

components for a special purpose from a pool of molecules and structures. The CAMD problem is 

known as “Reverse Problem” in which the component structure is design by giving the desired 

properties. There are three main approaches to dealing with CAMD problems [218, 219]. 

7.1.1 Generate and search (test) approach 

In this approach, the molecular groups and target properties are identified first. After that, a feasible set 

of compound structures are generated. Then the properties of generated structures are predicted. The 

desired solvents can be selected from the identified components with predicted target properties [220]. 

This method can often result in finding optimum solvents or products over a pool of molecules without 

solving a potentially complex optimization problem [221].  

7.1.2 Algebraic modelling approach 

In this approach, a set of algebraic equations representing the property and structural constraints are 

solvent at the same time to generate the target molecules [222]. 

7.1.3 Mathematical optimization approach 

In addition to two mentioned approaches, the CAMD problems can be expressed as optimization 

problems. The solvent selection and design optimization problem is a mixed integer nonlinear problem 



27 
 

(MINLP) in most of the cases [218]. Most of the studies on CO2 capture are performed by using this 

method and it is described by the detail in Section 6.3.   

7.2 Advantages and disadvantages of the method  

The numerous number of molecules and components can be evaluated systematically using this method. 

The challenges of CAMD method are related to the availability of predictive models for all properties, 

numerical issues related to generated components, the high degree of nonlinearity of the problem, and 

generation of a large number of components [223]. 

7.3 Review of related studies 

7.3.1 Single and mixture solvent selection and design 

In this problem, the structure of the solvent is the only design objective. The schematic diagram of 

single and mixture solvent and selection design is shown in Figure 2. 

Figure 2: Single and mixture solvents selection and design problem framework. 

The single solvent selection and design can be formulated as follow: min݊ ሺ݊ǡܥ ሻ
  ൌ ݂ሺ݊ሻ       ݈ܵ݁݀݉ ݁ݒ݅ݐܿ݅݀݁ݎ ݐ݊݁ݒ݈ ݄ଵሺǡ ݊ሻ  Ͳ ݄ଶሺǡ ݊ሻ ൌ Ͳ ݏଵሺ݊ሻ  Ͳ ݏଶሺ݊ሻ ൌ Ͳ     ௫ ݊  ݊  ݊௫ 

(1) 

where ܥ is objective or cost function which depends on two set of variables namely vector ݊ and vector . Vector ݊  demonstrates relevant structural information of the designed molecules and vector  is the 

vector of properties. The constraints ݄ଵ and ݄ ଶ are related to property values and desired structural 

features. ݏଵ and ݏଶ ensure structural feasibility. The similar formulation can be considered for mixture 

selection and design: min݊ǡ ݔ ሺ݊ǡܥ ǡ ሻݍ
ݍ  ൌ ݂ሺݔǡ ݊ǡ ǡݐ݊݁ݒ݈ܵ       ሻ ǡݕݐݎ݁ݎ  ݈݁݀݉ ݊݅ݐ݈ܽ݁ݎ ݊݅ݐܿܽݎ݂ ݈݁݉ ݀݊ܽ ݔ ൌ ͳ ݄ଵሺǡ ǡݍ ݊ሻ  Ͳ ݄ଶሺǡ ǡݍ ݊ሻ ൌ Ͳ ݏଵሺ݊ሻ  Ͳ ݏଶሺ݊ሻ ൌ Ͳ     ௫ ݊  ݊  ݊௫ ݍ  ݍ   ௫ݍ

(2) 
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where here ܥ is a function of ݊  is the mixture property variables. The main elements ݍ which ݍ and , ,

of the single and mixture solvents selection/design optimization problem are: 

(i) Design space: This space contains different molecules and mixtures and a wide range of 

operations.  

(ii)  The solution of the problem: Different type of algorithms can be utilized to solve CAMD 

problems such as deterministic algorithms and stochastic (heuristics) ones. In addition, 

large optimization problems can be solved as a series of optimization sub-problems by 

using decomposition methods. 

(iii)  Predictive property models: These models relate molecular structure to physical 

properties and estimate property. In general, the predictive models must predict phase 

equilibria, caloric values, transport properties, kinetic properties, and the impact on product 

morphology or toxicity.   

Papadopoulos et al. [217] considered several criteria and developed a systematic screening method. 

They selected the best solvent candidates based on the criteria from 126 commercially available amine-

based solvents which had enough data required for GC or other methods to calculate properties. The 

authors used the SAFT-VR and SAFT-Ȗ equation of states to predict the vapour -liquid equilibrium 

behaviour of solvent-CO2-H2O for the selected solvents. Chong et al. [106] developed a systematic 

approach to design an optimal IL to capture CO2. The significant contribution of the presented approach 

in their work is the introduction of disjunctive programming to identify optimal operating conditions of 

the process involved while solving the IL synthesis problem. Chong et al. [224] presented a simple yet 

systematic visual approach to design IL solvents for carbon capture. A systematic two-stage approach 

has been proposed to discover the proper CO2 capture solvents [225]. This approach initiates with a fast 

screening stage in which the solvent structures are evaluated based on the simultaneous consideration 

of important pure component properties reflecting thermodynamics, kinetics, and sustainability. In the 

second step of the approach, the solvents are further selected and evaluated using SAFT-Ȗ SW to predict 

the non-ideal chemical and phase equilibrium of the solvent-water-carbon dioxide mixtures. 

Zarogiannis et al. [226] repeated their methodology [217] with a few changes to select the binary 

mixture of amines and reported that a mixture of DEAB and 2A1H was promising among the other 

options.  

7.3.2 Integrated solvent and process selection and design 

Design and selection of a representative set of solvents without attention to the CO2 capture processes 

is not a proper strategy due to the strong interaction between solvent properties and the process [227, 

228]. Therefore, the best goal can be an integration of solvent and process design. Establishment of a 

direct connection between solvents and process is challenging. The method is based on combining 

CAMD with process synthesis methods in the form of an optimization framework which is MINLP 
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[223] and is well-known as computer-aided molecular and process design (CAMPD) [229]. Such a 

framework has been shown in Figure 3.  

Figure 3: Integrated solvent and process selection/design problem framework. 

It can be seen that the framework presented in Figure 3 is more complex than the framework of Figure 

2. Integrated solvent and process selection/design (for single solvent) can be formulated as follow [221]: min݊ǡ ߤ ሺ݊ǡܥ ǡ ሻߤ
  ൌ ݂ሺ݊ሻ       ݈ܵ݁݀݉ ݁ݒ݅ݐܿ݅݀݁ݎ ݐ݊݁ݒ݈ ݄ଵሺǡ ǡߤ ݊ሻ  Ͳ ݄ଶሺǡ ǡߤ ݊ሻ ൌ Ͳ ݏଵሺ݊ሻ  Ͳ ݏଶሺ݊ሻ ൌ Ͳ     ௫ ݊  ݊  ݊௫ ߤ  ߤ   ௫ߤ

(3) 

where here ܥ is a function of ݊ ݄ is the process variables. ݄ଵ and ߤ which ߤ and , , ଶ here representing 

process model. The main elements of the integrated solvent and process selection/design optimization 

problem are:  

(iv) Design space: Same as Section 7.3.1. 

(v) The solution to the problem: Same as Section 7.3.1. 

(vi) Predictive property models: Same as Section 7.3.1. 

(vii)  Predictive process models: These models are used to relate physical properties to process 

performance. This model can be equilibrium-based or rate-based models with different type 

of assumptions and complexity [60].  

Eden et al. [230] presented a systematic framework for the simultaneous solution of process/product 

design problems related to separation. By using this method, the properties of the desired product that 

offer optimum process performance are identified. Lots of studies on the integrated design of solvent 

and process were performed using SAFT family EOS as a predictive model. Mac Dowell et al. [231] 

find out the optimal composition for the mixture of AMP and Ammonia integrated with optimal 

operating conditions for the CO2 absorption process. They calculated VLE using SAFT-VR and also 

utilized a rate-based model as the process predictive model. Pereira et al. [232] applied SAFT-VR to 

separate CO2 from the methane-utilizing physical solvent. They considered n-alkane blends as a proper 

solvent for CO2 capture and used a simple flowsheet to maximize the purity and net present value. They 

reported the best sizes of equipment, operating conditions, and the average chain length of the solvent 

(n-alkane). The results suggest that n-alkane solvents are promising alternatives. Bardow et al. [233] 

utilized PCP-SAFT and proposed a two-step procedure for the integration of solvent and process design. 

In the first step, they considered a hypothetical target molecule and reported that this continues-

molecular-targeting (CoMT) approach attains the direct coupling between solvent and process 
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properties. In the second step, they mapped the hypothetical target molecule to the real solvent 

molecules. This method is applied by the same research group for CO2 capture processes by [234] and 

[218] which in both studies the selection of physical solvents are integrated with the process. 

Salazar et al. [235] proposed a method to select the novel solvents between 50 primary amines and 

solvent stripping for CO2 capture from flue gas of fossil-fired power plants. The method is based on 

CAMD for solvent selection and integrating with solvent stripping process design to achieve better CO2 

capture and reduce energy consumption. Qadir et al. [236] presented an optimization method that 

simultaneously targets an optimal solvent and optimal process conditions for pre-combustion carbon 

capture processes (by physical solvents). The authors' utilized PPC-SAFT equation of state is used to 

determine solvent properties and made a connection between MATLAB (for MINLP problem) and 

ASPEN PLUS® (for process model). 

Burger et al. [229] proposed a novel two-step method to solve CAMPD problems that are used for 

physical CO2 capture. In the first step, is to have a set of initial guesses for the MINLP problem, they 

derived reduced models for the unit operations of the process. In the case that is not possible to calculate 

the original objective function from the reduced model, some surrogate objectives are defined which 

represent different contributions to the original objective. The Pareto-optimal set of best compromises 

between these objectives is determined using multi-objective optimization step (MOO). In the second 

step, the original MINLP problem is solved. The Pareto-optimal solutions are then used as initial 

guesses for the solution of the full MINLP. In order to predict the required physical properties, they 

used SAFT-Ȗ Mie. Papadokonstantakis et al. [237] combined CAMD, GC method, superstructure based 

process synthesis, and multicriteria sustainability assessment to screen a big number of chemical 

solvents and process configurations for post-combustion CO2 capture. Zhou et al. [238] demonstrated 

that the majority of the earlier studies utilized decomposition solution strategies to solve the CAMD 

problems. They proposed a hybrid stochastic-deterministic algorithm to solve the integrated design 

problem of absorption/desorption. They also used their method to show its effectiveness and strength 

on a gas absorption process. In the absorption process solvent, molecular structures and process 

operating conditions are optimized simultaneously to maximize the overall economic performance of 

the process. The authors utilized high-level GC predictive models to predict the required properties. 

Recently, Papadopoulos et al. [239] added an assessment of controllability to the integrated solvent and 

process design. Therefore, their proposed framework contains three main stages: solvent-process 

screening stage (contains CAMD and analysis of obtained solvent set), solvent-process design (contains 

rigorous models and operating targets), and solvent-process control (integrates the controllability and 

economic performance).  
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8 Prospective 

In this review paper, we illustrated the importance and role of different solvents in capturing CO2. There 

are many attempts to find methods to screen and select the best solvents. By all the available studies 

still, there are some demands that must be addressed in future studies. 

8.1 Evaluation of technical and economic performance of solvents 

So far, no detailed and systematic and comparison studies were presented on the technical and economic 

performance of different solvents and the studies are devoted to one solvent [240]. In addition, the 

economic criteria should be considered more in studies to reduce the capital and operation cost of carbon 

capture processes for all type of solvents. 

8.2 Life cycle assessment of different solvents 

There are eleven studies focused on LCA of CCS [241]. Most of these studies are focused on the method 

of separation and compared these methods using LCA. A few LCA studies have been done to compare 

the solvents [242, 243]. Thereby there is a gap in the literature that requires further research to be 

conducted in comparing solvents using LCA. 

8.3 Solvent selection using experiments 

Future efforts should be directed towards performing more experimental comparison between solvents 

especially using the newly designed solvents. By this method, the newly designed solvents can be 

validated in the aspect of energy consumption, degradation and corrosion problems. In addition, in order 

to predict the physical property of new solvents, more experimental data are required. 

8.4 Solvent selection using process and thermodynamic models 

Majority of process and thermodynamic modelling and simulation studies are performed using well-

known solvents in literature. More studies are required by using more diverse solvents such as new 

amines, new ILs, and comparison of physical and chemical solvents. This will help to find out the 

applicability and effectiveness of new solvents. 

8.5 Solvent selection using predictive models 

Development of more applicable, accurate, and effective predictive models which are integrated with 

the CAMD and CAMPD problems can be helpful in the initial screening of the solvents. In addition, 

the predictive and molecular-based methods such as quantum chemistry, molecular dynamic, Monte 

Carlo, SAFT, and UNIFAC showed high potential to perform microscopic characterization of CO2 

capture using solvents [101, 244].  

8.6 Solvent selection and design using CAMD 

More studies on integrated solvent and process design are required as these activities are still in the 

infant stage. As ILs attracted a lot of attention in recent years and showed desirable characteristics they 
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should be used in CAMPD problems by considering the different type of unit operations such as packed 

columns, rotating packet bed columns, wetted wall columns and etc. After screening and design of 

proper ILs candidates, they should be the synthesis in laboratory scales and test in the mentioned above 

unit operations. In addition, the mixed solvents could be considered a serious alternative for single 

solvent systems and more studies are necessary for them, especially in the aspect of CAMD problems.  

9 Conclusions  

Available solvents for CO2 absorption are reviewed and classified. The paper classified available 

solvents as chemical, physical, and chemical-physical solvents. The mixture of solvents also reviewed 

in this paper based on three groups which are a mixture of chemical solvents, a mixture of physical 

solvents, and a mixture of chemical and physical solvents. The recent progress and researches in each 

group are reviewed and mentioned in the study. In addition to the review of available solvents, different 

methods for solvent selection and design are reviewed. Four groups of methods are categorized in this 

study which is solvent selection and design using experiments, using process and equilibrium models, 

using prediction models, and using optimization problems. For each method, a number of selected 

studies and recent progress are reviewed. 
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