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Abstract—In cloud computing application scenarios involving
computationally weak clients, the natural need for applied
cryptography solutions requires the delegation of the most
expensive cryptography algorithms to a computationally stronger
cloud server. Group exponentiation is an important operation
used in many public-key cryptosystems and, more generally,
cryptographic protocols. Solving the problem of delegating group
exponentiation in the case of a single, possibly malicious, server,
was left open since early papers in the area. Only recently,
we have solved this problem for a large class of cyclic groups,
including those commonly used in cryptosystems proved secure
under the intractability of the discrete logarithm problem.

In this paper we solve this problem for an important class
of non-cyclic groups, which includes RSA groups when the
modulus is the product of two safe primes, a common setting
in applications using RSA-based cryptosystems. We show a
delegation protocol for fixed-exponent exponentiation in such
groups, satisfying natural correctness, security, privacy and
efficiency requirements, where security holds with exponentially
small probability. In our protocol, with very limited offline
computation and server computation, a client can delegate an
exponentiation to an exponent of the same length as a group
element by only performing two exponentiations to an exponent
of much shorter length (i.e., the length of a statistical parameter).
We obtain our protocol by a non-trivial adaptation to the RSA
group of our previous protocol for cyclic groups.

Index Terms—Secure Outsourcing, Secure Delegation, Modu-
lar Exponentiations, RSA, Cryptography, Group Theory

I. INTRODUCTION

As cloud computing is effectively becoming the reference

computation paradigm for large-scale data processing, new

solutions for privately and securely sharing the processing of

client data are needed. This is especially the case in application

scenarios involving computationally weak clients (e.g., RFID

networks, Internet-of-Things, LPWA sensor networks, etc.).

In such scenarios, the natural need for applied cryptogra-

phy solutions requires the delegation of the most expensive

cryptography algorithms to a computationally stronger cloud

server. Research on similar types of problems has been ob-

served in cryptography sub-areas, like server-aided cryptog-

raphy, commodity-based cryptography, etc. In particular, in

server-aided cryptography, researchers have posed and studied

the problem of clients delegating cryptographic computations

to servers. Ideas related to this area have circulated in the

literature already many years ago (see, e.g., [10], which

introduced ‘wallets with observers’ where a third party, such

as a bank, installs hardware on a user’s computer to facilitate

its future computations).

The first formal model for delegation of cryptographic

operations was introduced in [24], where the authors especially

studied the delegation of modular exponentiation, as this

operation is a cornerstone of so many cryptographic protocols,

secure under the most typically used assumptions (e.g., the

hardness of discrete logarithm, of inverting the RSA function,

etc.). In [24], the authors considered secure delegation of

exponentiation to 2 servers, assumed to be physically sepa-

rated, of which at most one can be malicious, and to 1 server,

who is assumed to behave honestly on almost all inputs. Since

then, the problem of delegating exponentiation to a single,

arbitrarily malicious server, has remained unsolved. Here, the

challenge is to simultaneously satisfy, in addition to efficiency,

correctness and privacy requirements, a security requirement,

where it is demanded that no efficient malicious server can

convince the client of an incorrect computation result, except

with very small probability. This open problem has also been

reiterated in [29].

A. Previous results

As also mentioned in [24], a number of solutions had been

proposed, even before their paper introduced a security model,

and then broken in follow-up papers. The single-server solu-

tion from [24] assumes that the server is honest on almost all

inputs. Other solutions were proposed in more recent papers,

but these solution either only consider a semi-honest server

[12], or two non-colluding servers [11], or do not target input

privacy [18], or only achieve constant security probability (of

detecting a cheating server) [9], [29]. The schemes proposed in

[8], [27] do not satisfy our privacy requirement and the scheme

proposed in [31] does not satisfy our security requirement.

The closest result to what we present in this paper is our

previous protocol in [15] that solves the above open problem

for the delegation of fixed-base exponentiation in a large

class of cyclic groups (including groups commonly used in

cryptographic protocols secure under the discrete logarithm

assumption). Also of some interest is our delegation protocol

in [17] for arbitrary (including non-abelian) groups where an

efficient protocol with constant security probability is trans-

formed into one with exponentially small security probability,

where the transformation is more efficient than direct parallel
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repetition (but has non-constant client and offline work for

each delegated exponentiation).

In the literature there are also a few general-purpose delega-

tion protocols in different, not applicable, models. In [23] the

authors studied the problem of interactive and zero-knowledge

proofs with low-complexity verifiers. Later, [19] proposed

a protocol for securely delegating arbitrary polynomial-time

functions using garbled circuits [30] and fully homomorphic

encryption [21]. This protocol delegates functions in settings

where the client is powerful enough to run encryption and

decryption algorithms of a fully homomorphic encryption

scheme, but not enough to homomorphically evaluate a circuit

that computes decryption steps in the garbling scheme for the

function. Different protocols, not using garbled circuits, were

later proposed in [13]. These protocols delegate functions in

settings where the client is assumed to be powerful enough to

run encryption and decryption algorithms of a fully homomor-

phic encryption scheme, but not enough to homomorphically

evaluate the delegated function.

B. Our Results

We reconsider the open problem from [24] of delegating

exponentiation beyond the case of cyclic groups solved in

[15]. A natural candidate is the (non-cyclic) Z
∗
n group used

in RSA-based cryptosystems (starting with [28]). A natural

question is whether our previous solution in [15] can be used

or adapted to use also for non-cyclic group. We answer this

in the affirmative, in that we (1) uncover the technical gaps

in making our previous protocol for cyclic groups work for

non-cyclic groups; (2) modify the protocol to solve these

technical gaps for a class of non-cyclic groups, which include

the Z
∗
n group used in RSA-based cryptosystems, where n is

the product of two, same-length, safe primes (which is the

typically recommended setting for n).

Our main result is a protocol for the delegation to a single

server of fixed-exponent exponentiation in such Z
∗
n groups,

which satisfies the desired correctness, privacy, security and

efficiency (on client runtime, especially) requirements. This

solves the open problem of [24] for (non-cyclic) RSA groups.

In our protocol, security is satisfied with probability ex-

ponentially small in a statistical security parameter λ (which

can be set equal to, for instance, 128). The privacy and

security properties do not rely on any additional complexity

assumptions, in that they hold even if the adversary corrupting

the server is not limited to run in polynomial time. The client

delegates an exponentiation with an exponent as long as a

group element (e.g., of σ = 2048 bits), while only performing

2 exponentiations with a much smaller exponent (e.g., of

λ = 128 bits). Both the offline phase and the server in

the online phase only require 2 exponentiations with σ-bit

exponents. As in all previous work in the area, we consider a

model with an offline phase, where a client can precompute

exponentiations to random exponents, or another party can

precompute them and store them on the client’s device.

As a direct application of our result, RSA encryption (with

large exponents) can be delegated by reducing the client’s

computation by about 1 order of magnitude.

II. NOTATIONS AND DEFINITIONS

In this section we formally define delegation protocols, and

their correctness, security, privacy and efficiency requirements,

mainly building on the definitional approach from [15], in turn

based on those in [19] and [24]. We also introduce group

notations and definitions that will be used in the rest of the

paper. We start with some basic notations.

A. Basic notations

The expression y ← T denotes the probabilistic process

of randomly and independently choosing y from set T . The

expression y ← A(x1, x2, . . .) denotes the (possibly proba-

bilistic) process of running algorithm A on input x1, x2, . . .
and any necessary random coins, and obtaining y as output.

The expression (zA, zB) ← (A(x1, x2, . . .), B(y1, y2, . . .))
denotes the (possibly probabilistic) process of running an

interactive protocol between A, taking as input x1, x2, . . . and

any necessary random coins, and B, taking as input y1, y2, . . .
and any necessary random coins, where zA, zB are A and

B’s final outputs, respectively, at the end of this protocol’s

execution.

B. System scenario, entities, and protocol

We consider a system with two types of parties: clients

and servers, where a client’s computational resources are

expected to be more limited than a server’s ones, and therefore

clients are interested in delegating the computation of specific

functions to servers. In all our solutions, we consider a single

client, denoted as C, and a single server, denoted as S. We

assume that the communication link between each client and

S is private or not subject to confidentiality, integrity, or

replay attacks, and note that such attacks can be separately

addressed using known communication security techniques.

As in all previous work in the area, we consider a model

with an offline phase, where computations of the delegated

function on random inputs can be precomputed and made

somehow available to the client. This model has been jus-

tified in several ways, all appealing to different application

settings. In the presence of a trusted party (say, setting up

the client’s device), the trusted party can simply perform the

precomputed exponentiations and store them on the client’s

device. If no trusted party is available, in the presence of

a pre-processing phase where the client’s device does not

have significant computation constraints, the client can itself

perform the precomputed exponentiations and store them on

its own device.

Let σ denote the computational security parameter (i.e.,

the parameter derived from hardness considerations on the

underlying computational problem), and let λ denote the

statistical security parameter (i.e., a parameter such that events

with probability 2−λ are extremely rare). Both parameters are
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expressed in unary notation (i.e., 1σ, 1λ) and implicitly as-

sumed as inputs to all algorithms. When performing numerical

performance analysis, we use σ = 2048 and λ = 128, as these

are currently the most often recommended parameter settings

in cryptographic protocols and applications.

Let F : Dom(F ) → CoDom(F ) be a function, where

Dom(F ) denotes F ’s domain, CoDom(F ) denotes F ’s co-

domain, and desc(F ) denotes F ’s description. Assuming

desc(F ) is known to both C and S, and input x is known only

to C, we define a client-server protocol for the outsourced

computation of F in the presence of an offline phase as a

2-party, 2-phase, communication protocol between C and S,

denoted as (C(desc(F ), x), S(desc(F ))), and consisting of

the following steps:

1) pp← Offline(desc(F )),
2) (yC , yS)← (C(desc(F ), pp, x), S(desc(F ))).

As discussed above, Step 1 is executed in an offline phase,

when the input x to the function F is not yet available. Step

2 is executed in the online phase, when the input x to the

function F is available to C. At the end of both phases, C
learns yC (intended to be = F (x)) and S learns yS (usually

an empty string in this paper). In addition to parameters

1σ, 1λ, we will often omit desc(F ) for brevity of description.

Executions of outsourced computation protocols can happen

sequentially (each execution starting after the previous one

is finished), or concurrently (S runs at the same time one

execution with each one of many clients).

C. Correctness Requirement

Informally, the (natural) correctness requirement states that

if both parties follow the protocol, C obtains some output

at the end of the protocol, and this output is, with high

probability, equal to the value obtained by evaluating function

F on C’s input. A formal definition follows.

Definition 1: Let σ, λ be the security parameters, let F be

a function, and let (C, S) be a client-server protocol for the

outsourced computation of F . We say that (C, S) satisfies δc-

correctness if for any x in F ’s domain, it holds that

Prob
[

out← CorrExpF(1
σ, 1λ) : out = 1

]

≥ δc,

for some δc close to 1, where experiment CorrExp is detailed

below:

CorrExpF(1
σ, 1λ)

1. pp← Offline(desc(F ))
2. (yC , yS)← (C(pp, x), S)
3. if yC = F (x) then return: 1

else return: 0

D. Security Requirement

Informally, the most basic security requirement would state

the following: if C follows the protocol, a malicious adversary

corrupting S cannot convince C to obtain, at the end of the

protocol, some output y′ different from the value y obtained

by evaluating function F on C’s input x. To define a stronger

and more realistic security requirement, we augment the adver-

sary’s power so that the adversary can even choose C’s input

x, before attempting to convince C of an incorrect output. We

also do not restrict the adversary to run in polynomial time.

A formal definition follows.

Definition 2: Let σ, λ be the security parameters, let F be

a function, and let (C, S) be a client-server protocol for the

outsourced computation of F . We say that (C, S) satisfies ǫs-

security against a malicious adversary if for any algorithm A,

it holds that

Prob
[

out← SecExpF,A(1
σ, 1λ) : out = 1

]

≤ ǫs,

for some ǫs close to 0, where experiment SecExp is detailed

below:

SecExpF,A(1
σ, 1λ)

1. pp← Offline(desc(F ))

2. (x, aux)← A(desc(F ))

3. (y′, aux)← (C(pp, x), A(aux))

4. if y′ =⊥ or y′ = F (x) then return: 0

else return: 1.

E. Privacy Requirement

Informally, the privacy requirement should guarantee the

following: if C follows the protocol, a malicious adversary

corrupting S cannot obtain any information about C’s input x
from a protocol execution. This is formalized by extending the

indistinguishability-based approach typically used in formal

definitions for encryption schemes. That is, the adversary can

pick two inputs x0, x1, then one of these two inputs is chosen

at random and used by C in the protocol with the adversary

acting as S, and then the adversary tries to guess which input

was used by C. As for security, we do not restrict the adversary

to run in polynomial time. A formal definition follows.

Definition 3: Let σ, λ be the security parameters, let F be a

function, and let (C, S) be a client-server protocol for the

outsourced computation of F . We say that (C, S) satisfies

ǫp-privacy (in the sense of indistinguishability) against a

malicious adversary if for any algorithm A, it holds that

Prob
[

out← PrivExpF,A(1
σ, 1λ) : out = 1

]

≤ ǫp,

for some ǫp close to 0, where experiment PrivExp is detailed

below:

PrivExpF,A(1
σ, 1λ)

1. pp← Offline(desc(F ))

2. (x0, x1, aux)← A(desc(F ))

3. b← {0, 1}

4. (y′, d)← (C(pp, xb), A(aux))

5. if b = d then return: 1

else return: 0.
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F. Efficiency Metrics and Requirements

Let (C, S) be a client-server protocol for the outsourced

computation of function F . We say that (C, S) has efficiency

parameters (tF , tP , tC , tS , cc,mc), if F can be computed

(without outsourcing) using tF (σ, λ) atomic operations, C can

be run in the offline phase using tP (σ, λ) atomic operations,

and in the online phase, C can be run using tC(σ, λ) atomic

operations, S can be run using tS(σ, λ) atomic operations, and

C and S exchange a total of at most mc messages, of total

length at most cc. We also define the round complexity of

(C, S) as mc, the communication complexity of (C, S) as cc,
C’s runtime complexity as tC(σ, λ), S’s runtime complexity

as tS(σ, λ) and the offline runtime complexity as tP (σ, λ).
In our runtime analysis, we only count the most expen-

sive group operations as atomic operations (e.g., group mul-

tiplications and/or exponentiation), and neglect lower-order

operations (e.g., equality testing, additions and subtractions

between group elements). While we naturally try to minimize

all these protocol efficiency metrics, our main goal is to design

protocols where

1) tC(σ, λ) << tF (σ, λ), and

2) tS(σ, λ) is not significantly larger than tF (σ, λ),

based on the underlying assumption, consistent with the state

of the art in cryptographic implementations at least for many

group types, that group multiplication requires significantly

less computing resources than group exponentiation.

G. Group notations

Let p1, p2 be primes of the same length. We say that p1, p2
are safe primes if they can be written as p1 = 2p′1 + 1 and

p2 = 2p′2 + 1, for some primes p′1, p
′
2. Let n = p1p2, and let

Z
∗
n denote the set of integer coprime with n. Note that the

order φ(n) of Z∗
n satisfies φ(n) = (p1 − 1)(p2 − 1) = 4p′1p

′
2.

We consider the group (Z∗
n, ·), where · denotes multiplication

modulo n, and a fixed exponent e such that gcd(e, φ(n)) = 1.

In this group, with parameter values n, e, we define the fixed-

exponent exponentiation function as

feExpn,e : x ∈ Z
∗
n → y ∈ Z

∗
n, such that y = xe mod n.

Note the notation difference with the fixed-base exponentiation

function in a cyclic multiplicative group G with generator g,

defined as

fbExpg : x ∈ G→ y ∈ G, such that y = gx.

By Lagrange’s theorem, the order of an element in Z
∗
n has

to divide φ(n). However, it turns out that no element in Z
∗
n

has order 4 (see, e.g., [16], for a detailed proof). Thus, we

have the following (a similar fact was also used in [20]):

Fact 2.1 For any x in Z
∗
n, the order of x is equal to 1 or 2,

or is greater than or equal to min(p′1, p
′
2).

Let σ be the computational security parameter associated

with group Z
∗
n, and let ℓ denote the length of the binary

representation of elements in Z
∗
n. Typically, in cryptographic

applications we generate parameter ℓ as about equal to σ.

The textbook algorithm to compute function feExpn,e is

the square-and-multiply algorithm, which requires up to 2ℓ
multiplications modulo n.

By desc(feExpn,e) we denote a conventional description

of the function feExpn,e that includes an encoding of the

function’s semantic meaning, and a binary encoding of values

n, e. By texp(ℓ) we denote a parameter denoting the number

of multiplications in Z
∗
n used to compute an exponentiation

(in Z
∗
n) of a group value to an arbitrary ℓ-bit exponent. We

will use values of ℓ from {σ, λ}.

III. DELEGATION OF EXPONENTIATION IN AN RSA-TYPE

GROUP

In this section we present a delegation protocol for ex-

ponentiation in an RSA-type group. First, in Section III-A

we formally state our result. Then, we provide an informal

discussion of the protocol design in Section III-B and a formal

description of the protocol in Section III-C. Finally, we detail

the proof of the protocol’s correctness, privacy, security and

efficiency properties in Section III-D and discuss a protocol

generalization in Section III-E.

A. Formal Statement of Main Result

We formally state our main result as the following

Theorem 1: Let n be an integer as defined in Section II,

let (Z∗
n, ·) be the associated multiplicative group, where · is

multiplication modulo n, and let σ be its computational secu-

rity parameter. Also, let λ be a statistical security parameter.

There exists (constructively) a client-server delegation protocol

(C, S) for function feExpn,e, which satisfies

1) δc-correctness, for δc = 1;

2) ǫs-security, for ǫs = 2−λ;

3) ǫp-privacy, for ǫp = 0;

4) efficiency with parameters (tF , tS , tP , tC , cc,mc), for

• tF = texp(σ)
• tS = 2 · texp(σ)
• tP = 2 · texp(σ) + one inversion in Z

∗
n

• tC = 2 · texp(λ) + 5 multiplications in Z
∗
n

• cc = 4 values from Z
∗
n

• mc = 2 messages.

In other words, protocol (C, S) for the delegation of expo-

nentiation to a fixed σ-bit exponent in Z
∗
n satisfies correctness

with no error probability, security with error probability 2−λ,

privacy with no error probability and requires the following

computation resources: 2 exponentiations with σ-bit exponents

from S, 2 exponentiations with λ-bit exponents plus 5 modular

multiplications from C, 2 exponentiations with σ-bit expo-

nents and one inversions in the offline phase. Furthermore,

the online phase of (C, S) only requires 2 messages and 4

group values to be exchanged.

We remark that with the currently recommended numeric

settings of parameters σ = 2048 and λ = 128, and realizing

for instance a modular exponentiation using the square-and-

multiply algorithm, in the protocol from Theorem 1, the

upper bound on modular multiplications in a non-delegated

computation is 4096. On the other hand, the upper bound
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on C’s modular multiplications in the protocol (C, S) from

Theorem 1 can be, for instance, 517, if we ask for a security

probability of 2−128.

Also remarkable are the online runtime of S and the offline

phase, whose work is only twice as much as a non-delegated

computation.

Finally, we note that the protocol’s message complexity of

2 is clearly minimal in this model.

B. Informal description of our protocol

The main challenge in coming up with delegation protocols

in our model consists of allowing a client to efficiently

verifying an exponentiation performed by a single, possibly

malicious, server. Since we work in a single-server model,

we cannot consider techniques in the multi-server model

(as in, e.g., [24]) where the client interacts with a server

to check another server’s computation. Also, note that the

efficiency constraint on the client prevents us to consider

general conversion techniques in the cryptography literature

to transform a protocol secure against a honest party into one

secure against a malicious one (e.g., [22]).

Our starting point is the protocol for efficient, private

and secure delegation of fixed-base exponentiation in cyclic

groups in [15], also reviewed in Appendix A. There, one

main idea consists of a probabilistic verification equation

which is verifiable using a much smaller number of modular

multiplications (i.e., about λ, instead of σ, multiplications).

Specifically, in that protocol, C injects an additional random

element in the inputs on which S is asked to computed the

value of the exponentiation function Fexp, so to satisfy the

following properties: (a) if S returns correct computations of

Fexp, then C can use these random values to correctly compute

y; (b) if S returns incorrect computations of Fexp, then S
either does not meet some deterministic verification equation

or can only meet C’s probabilistic verification equation for

at most one possible value of the random elements; (c) C’s

messages hide the values of the random element as well as

C’s input to the function. By choosing a large enough domain

(i.e., {1, . . . , 2λ}) from which this random value is chosen, the

protocol achieves a very small security probability (i.e., 2−λ).

As this domain is much smaller than the group, this results in

a considerable efficiency gain on C’s running time.

In the design of our protocol proving Theorem 1, we first

of all attempt to adapt the delegation protocol for fixed-base

exponentiation over cyclic groups in [15] to a delegation proto-

col for fixed-exponent exponentiation over an RSA group. The

conversion from a delegation protocol for fixed-base exponen-

tiation to one for fixed-exponent exponentiation is somewhat

standard, and is performed by notation changes. However, after

that, we note that the analysis of the probabilistic verification

test in [15] makes two assumptions that are not true or not

known to be true in our group: (1) there exists an efficient

protocol for the client to verify that a value sent by the

server actually belongs to the group; and (2) the group is

cyclic. Specifically, (1) is unknown to be true (note that, for

instance, verifying whether a value is coprime with n requires

computing a GCD which is not significantly more efficient

than an exponentiation in Z
∗
n); and (2) is not true since Z

∗
n is

not cyclic when n is the product of two primes.

To deal with (1), in our protocol the client can efficiently

test whether values sent by the server are in Zn, and then we

show that if the server sends values in Zn\Z
∗
n the probabilistic

test either cannot be satisfied or can only be satisfied for at

most one value of C’s random element.

To deal with (2), we further study the analysis in [15] of

the probabilistic test and observe that it can be adapted to

hold with respect to values in a non-cyclic subgroup of Z∗
n, as

long as elements of this subgroup have high (i.e., greater than

2λ) order. Although the textbook choice of n as the product

of two large, same-length, primes may not always satisfy this

condition, we observe that a very common choice of n in

cryptographic applications satisfies a very similar condition.

Specifically, by choosing n as the product of two safe primes,

the group Z
∗
n only contains elements of either order (much)

higher than 2λ, or of rather low order. Furthermore, the latter

case can be efficiently tested by C using a single multiplication

(i.e., testing whether the group element is a non-trivial root of

1). In the case C’s input is a value of low order, to preserve

the protocol’s correctness, C efficiently calculates the function

feExpn,e by himself and halts the protocol.

C. Formal description of our protocol

Input to C and S:

1) parameters 1σ and 1λ

2) desc(feExpn,e), including n, e

Private input to C: x ∈ Z
∗
n

Offline phase instructions:

1) Randomly choose ui ∈ Z
∗
n, for i = 0, 1

Set v0 = u−e
0 mod n, v1 = ue

1 mod n and store

(ui, vi) on C, for i = 0, 1

Online phase instructions:

1) C randomly chooses b ∈ {1, . . . , 2λ}
C sets z0 := x · u0 mod n, z1 := xb · u1 mod n
C sends z0, z1 to S

2) For i = 0, 1
S computes wi := zei mod n
S sends wi to C

3) if x2 = 1 mod n
C returns y = x and the protocol halts

C computes y := w0 · v0 mod n
if wi 6∈ Zn for some i ∈ {0, 1} then

C returns ⊥ and the protocol halts

If w1 6= yb · v1 mod n (the ‘probabilistic test’) then

C returns ⊥ and the protocol halts

C returns y

D. Proof of properties of our protocol

The efficiency properties are verified by protocol inspection:

• With respect to round complexity, the online phase of

the protocol only requires one round, consisting of one
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message from C to S, followed by one message from S
to C.

• With respect to communication complexity, the online

phase of the protocol requires the transfer of 2 elements

in Z
∗
n from S to C and 2 elements in Z

∗
n from C to S.

• The offline runtime complexity consists of 2 fixed-

exponent exponentiations with a random base. S’s run-

time complexity consists of 2 fixed-exponent exponen-

tiations. C’s runtime complexity consists of 5 multi-

plications and 2 exponentiations to a random exponent

≤ 2λ. In the typical setting λ = 128, and using the

the square-and-multiply algorithm for multiplication, C
only performs at most 517 (or an average of 389) group

multiplications in Z
∗
n.

The correctness property is demonstrated by observing that if

C and S follow the protocol then the following holds:

• if x2 = 1 then C returns y = x. Note that

– if the power of x is an even number (say, 2a) in Zn,

then x2a = (x2)a = 1a = 1 mod n
– if the power of x is an odd number (say, 2a+ 1) in

Zn, then x2a+1 = x2a · x = x mod n

Since gcd(e, φ(n)) = 1, we know that e is an odd positive

integer which implies that y = feExpn,e(x) = xe = x
mod n.

• Otherwise, C performs 2 more verifications and outputs

y such that y = xe. Both verifications always pass as

follows:

– the test checking membership of w0, w1 to Zn is

always passed since wi is computed by S as zei
mod n, for some zi ∈ Z

∗
n and all i = 0, 1 and thus

wi ∈ Z
∗
n ⊆ Zn for all i = 0, 1

– the probabilistic test is always passed since w1 =
ze1 = (xb · u1)

e = (xe)b · ue
1 = yb · v1 mod n

Thus, C never returns ⊥, but does return y. To see that

y is the correct output, note that

y = w0 · v0 = ze0 · u
−e
0 = (x · u0)

e · u−e
0 = xe mod n.

The privacy property of the protocol against a malicious S
follows by observing that C’s message to S does not leak any

information about x. This message is a pair (z0, z1) where

z0 = (x · u0) mod n, z1 = xb · u1 mod n. Note that as u0

and u1 are uniformly and independently distributed in Z
∗
n, so

are z0 and z1. For the same reason, it satisfies the following

two properties:

1) for any x, z0 and z1 are uniformly and independently

distributed in Z
∗
n;

2) the distribution of b, conditioned on x, z0 and z1, is

uniform over {1, . . . , 2λ}.

We will use both facts in the proof of the security property.

To prove the security property against a malicious S we need

to compute an upper bound ǫs on the security probability that

S convinces C to output a y such that y 6= feExpn,e(x). If

x2 = 1 mod n, C does not use any information from S; in

other words, C calculates feExpn,e(x) = xe without using w0,

w1 sent by S. Thus, ǫs = 0 in this case. Now, assume that

x2 6= 1 mod n. We obtain that ǫs = 2−λ+ ǫ, as consequence

of the following 4 claims:

1) for all i = 0, 1 if wi /∈ Zn then C always outputs ⊥
2) If exactly one between w0 and w1 is in Zn\Z

∗
n, then C

outputs ⊥ after running the probabilistic test;

3) if w0, w1 ∈ Zn\Z
∗
n or w0, w1 ∈ Z

∗
n, then C does

not output ⊥ after running the probabilistic step with

probability at most 2−λ;

4) if all of C’s verifications in the protocol are satisfied,

then, except with probability 2−λ it holds that y = xe

mod n.

Claim 1 directly follows by inspection of C’s instructions.

To prove Claim 2, we consider two cases, depending on

which among w0 and w1 is in Zn\Z
∗
n. First assume w1 ∈

Zn\Z
∗
n and w0 ∈ Z

∗
n. In this case both y and yb · v1 mod n

are in Z
∗
n and the probabilistic test cannot be satisfied as it

tests equality between two values in different subsets of Zn.

Now, assume w0 ∈ Zn\Z
∗
n and w1 ∈ Z

∗
n. In this case, we can

write, without loss of generality, w0 = p1w
′
0, for some integer

w0 < p2, and, by setting t as the quotient of the division yb/n
over the integers, we can further write the value yb, for any

integer b, as

yb = (w0v0)
b = (p1w

′
0v0)

b = pb1(w
′
0v0)

b − tn mod n

= p1(p
b−1
1 (w′

0v0)
b − tp2) mod n,

where the quantity (pb−1
1 (w0v0)

b− tq) is strictly less than p2.

This implies the following fact (also useful later):

Fact 3.D.1. For any y ∈ Zn \ Z
∗
n and integer b > 0, it holds

that yb mod n ∈ Zn \ Z
∗
n

Then we have that both y and yb mod n belong to Zn \ Z
∗
n

and thus the probabilistic test is not satisfied as it tests equality

between two values in different subsets of Zn.

To prove Claim 3, we start by defining the following events

with respect to a random execution of (C, S) where C uses x
as input:

• ey, 6=, defined as ‘C outputs y such that y 6= feExpn,e(x)’
• e⊥, defined as ‘C outputs ⊥’

By inspection of (C, S), we directly obtain the following fact.

Fact 3.D.2. If event ey, 6= happens then event (¬ e⊥) happens.

With respect to a random execution of (C, S) where C uses

x as input, we now define the following events:

• e1,b, defined as ‘∃ exactly one b such that S’s message

(w0, w1) satisfies w1 = (w0 · v0)
b · v1 mod n’

• e>1,b, defined as ‘∃ more than one b such that S’s

message (w0, w1) satisfies w1 = (w0 · v0)
b · v1 mod n’.

By definition, events e1,b, e>1,b are each other’s complement

event.
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In our proof of the privacy property of (C, S), we proved

that for any x, C’s message (z0, z1) does not leak any

information about b. This implies that all values in {1, . . . , 2λ}
are still equally likely even when conditioning over message

(z0, z1). Then, if event e1,b is true, the probability that S’s

message (w0, w1) satisfies the probabilistic test, is 1 divided

by the number 2λ of values of b that are still equally likely

even when conditioning over message (z0, z1). We obtain the

following

Fact 3.D.3. Prob [¬ e⊥|e1,b ] ≤ 1/2λ

We now show that if S is malicious then it cannot produce in

step 2 of the protocol values w0, w1 ∈ Zn \ Z
∗
n or values

w0, w1 ∈ Z
∗
n satisfying both of C’s verifications for two

distinct values b1, b2 ∈ {1, . . . , 2
λ}. To prove this statement

we assume, towards contradiction, that there exist two such

values b1 and b2 ∈ {1, 2, . . . , 2
λ}, and, without loss of

generality, assume that b1 > b2. Then b1−b2 ∈ {1, . . . , 2
λ−1}

and we have that

w1 = yb1 · v1 mod n and w1 = yb2 · v1 mod n

yb1 · v1 = yb2 · v1 mod n

yb1−b2 = 1 mod n.

We divide the rest of the proof into two cases, depending on

which set both of w0, w1 belong to.

Case (a): w0, w1 ∈ Zn \ Z
∗
n. In this case, recall that y =

w0 ·v0 mod n, and since v0 ∈ Z
∗
n, we have that y ∈ Zn \Z

∗
n.

Moreover, since b1−b2 > 0, by applying again Fact 3.D.1, we

obtain that yb1−b2 is also in Zn \Z
∗
n, and thus cannot ever be

equal to 1, which implies that the equality yb1−b2 = 1 mod n
cannot hold, which is the desired contradiction.

Case (b): w0, w1 ∈ Z
∗
n. In this case, since y = w0 ·v0 mod n

and v0 ∈ Z
∗
n, we have that y ∈ Z

∗
n. Recall that by Fact 2.1 the

elements of Z∗
n can only have order equal to 1 or 2, or greater

than or equal to min(p′1, p
′
2). Since C checks that y2 6= 1, then

y cannot have order 1 or 2, and thus must have order at least

min(p′1, p
′
2). Since by definition of b1, b2 we know that 0 <

b1 − b2 < min{p′1, p
′
2}, we have that the equality yb1−b2 = 1

mod n cannot hold, which is the desired contradiction.

We obtain the following fact.

Fact 3.D.4. Prob [ e>1,b ] = 0

The rest of the proof of Claim 3 consists of computing an

upper bound ǫs on the probability of event ey, 6=. We have the

following

Pr(ey, 6=) ≤ Pr(¬ e⊥)

= Pr(e1,b) · Pr(¬ e⊥|e1,b)

+Pr(e>1,b) · Pr((¬ e⊥|e>1,b)

= Pr(e1,b) · Pr(¬ e⊥|e1,b)

≤ Pr(e1,b) ·
1

2λ

≤
1

2λ
,

where the first inequality follows from Fact 3.D.2, the first

equality follows from the definition of events e1,b, e>1,b and

the conditioning rule, the second equality follows from Fact

3.D.4, and the second inequality follows from Fact 3.D.3. We

then obtain that ǫs = 2−λ, and the claim 3 follows.

Claim 4 follows by protocol inspection and combining

claims 1-3, which concludes the proof of the security property

for (C, S).

E. A generalization of our protocol

We considered the natural question of which groups does

our protocol (C, S) in Section III-C generalize to. We believe

our protocol generalizes to groups (Z∗
n, ·), where all elements

of Z∗
n satisfy one of these two properties:

1) have order larger than 2λ, for a statistical security

parameter λ; and

2) are efficiently detectable to have much smaller order

(say, a small constant independent of λ, σ).

Note that for these generalized Z
∗
n groups, the first test in step

3 of the protocol (currently checking whether x2 = 1 mod n)

is updated into a test to detect whether C’s input has low order

(which exists from above property 2), and the analysis related

to the probabilistic test in step 3 is still satisfied (thanks to

the above property 1). Examples of integers n for such groups

include products of a constant number of safe primes of the

same length, products of two safe primes of different lengths

> λ, and products of two same-length primes p1, p2 such that

each factor of product (p1−1)(p2−1) is either a small power

of 2 or > 2λ.

IV. PERFORMANCE ANALYSIS

In this section we describe parametric (as a function of

parameters σ, λ) and numeric performance evaluations of our

protocol in Section III. We also compare our protocol with the

non-delegated computation of the same function.

So far we have expressed the performance of our protocol

in terms of group multiplications and two parameter functions:

texp(ℓ), the number of multiplications in Z
∗
n to compute one

exponentiation to an arbitrary ℓ-bit exponent; and tinv(ℓ), the

number of multiplications in Z
∗
n to compute one inversion to

an arbitrary ℓ-bit value. A more concrete evaluation of the

performance of our protocol requires a (possibly optimized)

instantiation of these two functions. As there can be different

algorithms for the computation of exponentiation or inversion

for arbitrary ℓ-bit value, we optimize for the following two

representative settings for texp:

1) Basic setting for exponentiation runtime: using the text-

book square-and-multiply algorithm to evaluate group

exponentiation we can set

• texp(ℓ) = 2ℓ

2) Improved setting for exponentiation runtime: using the

closed-form estimate for the number of multiplications

in Brauer’s 1939 exponentiation algorithm, as described

in [5], we can set
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TABLE I
PERFORMANCE METRICS FOR PROTOCOL (C, S), IN TERMS OF NUMBER

OF MULTIPLICATIONS, FOR GENERAL σ, λ

Metric
Basic or

Improved

feExp
(no delegation)

feExp
(with delegation)

tF
B 2σ 2σ
I σ(1 + 1

log σ
) σ(1 + 1

log σ
)

tP
B 0 4σ + 3
I 0 2σ(1 + 1

log σ
) + 3

tC
B 2σ 4λ+ 5
I σ(1 + 1

log σ
) 2λ(1 + 1

log λ
) + 5

tS
B 0 4σ
I 0 2σ(1 + 1

log σ
)

ǫp B & I 0 0

ǫs B & I 0 2−λ + ǫ

TABLE II
PERFORMANCE METRICS FOR PROTOCOL (C, S), IN TERMS OF NUMBER

OF MULTIPLICATIONS, FOR σ = 2048 AND λ = 128

Metric
Basic or

Improved

feExp
(no delegation)

feExp
(with delegation)

tF
B 4096 4096
I 2235 2235

tP
B 0 4099
I 0 4472

tC
B 4096 517
I 2235 152

tS
B 0 4096
I 0 4469

• texp(ℓ) = ℓ(1 + 1
log ℓ

).

We also refer the reader to [6], [7], [14], [26] for other

algorithms claiming runtime improvements, although

note that these papers do not provide additional closed-

form evaluations.

In order to evaluate group inversion of ℓ-bits (i.e. tinv(ℓ)), we

can also use the protocol for delegation of inversion described

in [9], where the computationally weak device only needs to

calculate 3 ℓ-bits multiplications.

Tables I and II compare the performance of our delegation

protocol in Section III with a non-delegated computation of

the client under both basic (B) and improved (I) settings for

functions texp, tinv where in Table I, we give the formula in

general case for parameters σ and λ and in Table II we plug the

values for σ = 2048 and λ = 128. The Table I and II reports

expressions (as a function of σ, λ, for efficiency metrics tF (the

number of multiplications to compute function feExp), tP (the

number of multiplications used in the protocol’s offline phase),

tC (the number of multiplications by C in the protocol’s

online phase), tS (the number of multiplications by S in the

protocol’s online phase), ǫp (the probability parameter in the

privacy definition), and ǫs (the probability parameter in the

security definition).

The main takeaway from the tables is that by comparing

non delegated protocols with our protocol, we see that our

protocol in Section III reduces tC by a multiplicative factor

of about σ/λ with respect to non-delegated computation when

using both basic and improved settings

V. CONCLUSIONS

We considered the problem of a computationally weaker

client delegating group exponentiation to a single, possibly

malicious, server, originally left open in [24], in some class

of RSA-type groups. We solved this problem by showing

a protocol that provably satisfy formal correctness, privacy,

security and efficiency requirements, in the class of groups Z∗
n,

where n is the product of two safe primes. In the presented

protocol, the probability that a cheating server convinces the

client of an incorrect computation result can be proved to be

exponentially small.

Our techniques imply that expensive operations in RSA-based

cryptographic protocols (specifically, encryption with a large

exponent) can be delegated to a cloud server, with considerable

savings on client computation.
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APPENDIX

A. The delegation protocol from [15]

An efficiently verifiable membership protocol for group G is

a one-message protocol, denoted as the pair (mProve,mVerify)

of algorithms, satisfying

• completeness: for any w ∈ G, mVerify(w,mProve(w))=1;

• soundness: for any w 6∈ G, and any mProve′,

mVerify(w,mProve′(w))=0;

• efficient verifiability: the number of multiplications

tmVerify(σ) in G executed by mVerify is o(texp);
• efficient provability: the number of multiplications

tmProve(σ) in G executed by mProve is not significantly

larger than texp.

In [15] it is shown that (Z∗
p, · mod p), for a large prime p,

and (Gq, · mod p), for large primes p, q such that p = 2q+1,

where Gq is the q-order subgroup of Z
∗
p, are groups used

in cryptography with an efficiently verifiable membership

protocol.

Let (G, ∗) be a cyclic group with efficient operation, and let

(mProve, mVerify) denote its efficiently verifiable membership

protocol. The delegation protocol for the fixed-base exponen-

tiation function fbExpg,q in cyclic group G with generator g
and order q was formally defined in [15] as follows.

Input to S: 1σ, 1λ, desc(fbExpg,q)

Input to C: 1σ, 1λ, desc(fbExpg,q), x ∈ Zq

Offline phase instructions:

1) Randomly choose ui ∈ Zq , for i = 0, 1
2) Set vi = gui and store (ui, vi) on C, for i = 0, 1

Online phase instructions:

1) C randomly chooses b ∈ {1, . . . , 2λ}
C sets z0 := (x−u0) mod q, z1 := (b·x+u1) mod q
C sends z0, z1 to S

2) S computes wi := gzi and πi :=mProve(wi), for i =
0, 1
S sends w0, w1, π0, π1 to C

3) If x = 0
C returns: y = 1 and the protocol halts

if mVerify(wi, πi) = 0 for some i ∈ {0, 1}, then

C returns: ⊥ and the protocol halts

C computes y := w0 ∗ v0
C checks that

y 6= 1, also called the ‘distinctness test’

w1 = yb ∗ v1, also called the ‘probabilistic test’

mVerify(w0, π0) = mVerify(w1, π1) = 1,

also called the ‘membership test’

if any one of these tests is not satisfied then

C returns: ⊥ and the protocol halts

C returns: y
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