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Abstract. In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a 

foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available 

construction materials that totally change the relative stiffness of the footing structures–soil interactions such as waste material 

and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing 

and thus cannot be used for reduced foundation rigidity.  Therefore, this study investigates the effects of foundation relative 

stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings 

on surface of sand of different packing densities. Nine experimental tests using three footing materials (plastic (P), rubber (R) 

and aluminium (A)) that differ in relative stiffness with three soil densities were used. This study has separated the effects of 

relative stiffness of the foundation systems on bearing capacity and settlement by defining the failure mechanism using digital 

particle image velocimetry (DPIV). The bearing capacity decreases as the foundation system stiffness increases. This decrease, 

however, is also associated with a smaller ultimate settlement. It is also apparent that a clear trend can be observed in 

dimensions of the slip surface when comparing rigid and flexible foundation systems.  The soil particles in the failure zone 

under the footing have the highest vertical displacement for the increase in the rigidity of the footing system. A change in the 

relative stiffness of a foundation system affects the deformation of a granular media and particular analysis have been taken 

into the load-displacement behaviour, failure mechanisms and velocity fields. 

Keywords: Relative stiffness, sand, strip footing, bearing capacity, landfill 

INTRODUCTION 

Foundations system of building in reality comprises not only a footing structure, but also the supporting soil 

such as fine or granular soil. The behaviour of footing system in reality is complex due to footing design 

considerations such as space limitation, and soil types. When a different footing material rather than concrete is 

used on soil, the relative stiffness of the foundation system, which consists of both the footing and the underlying 

soil, changes the soil behaviour resulting in a significant effect in the bearing capacity of the foundation. The 

modern foundation construction uses the new available construction materials that totally change the relative 

stiffness of the footing structures–soil interactions such as waste material and landfill area of more residential 

purposes. The prediction and utilisation of this increase in bearing capacity allow more efficient foundation 

design. Geotechnical engineers, design footing to obtain maximum bearing capacity and minimum settlement [1]. 

In sand, settlement mostly dominant the design of the footing and could depend on their width for a given soil [2], 

but ultimate bearing capacity of sand is less dependent on footing width when its width less than 1 m [3]. Study 

of the bearing capacity of shallow foundations on granular soils has been historically complicated by effects such 

as due to scale of the foundation and footing’s roughness. Lemmen et al. [4] have predicted the contact stress 

distribution underneath an aluminium strip footings of different thickness and hence stiffness. They have stated 

that the stiffness of the footing should account during footing design, otherwise could lead to overestimate the 

footing dimension. Due to that complexity of the failure mechanism, several assumptions have been adapted to 
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design foundation system with limitations. A foundation system consists of different parts interaction with one 

another, though for a specific footing structure-soil condition needs to ensure the most economical design. The 

prediction and utilisation of relative stiffness gain in bearing capacity equation allow more efficient foundation 

design. 

The modern foundation construction uses the new available construction materials that totally change the 

relative stiffness of the footing structure–soil interaction such as geocell, and waste [5].   However, using footing–
soil system that is not stiff (rigid) enough, makes the foundation with a flexible soil interface. Therefore, it is 

obviously interesting to study the effect of foundation-soil interface stiffness on its ultimate load, settlement and 

failure mechanism that have not yet covered by the common bearing capacity theory. Conventional bearing-

capacity analyses were produced to deal with rigid footings and consequently are ignored the effect of reduced 

foundation-soil interface rigidity [4]. A change in the relative stiffness of a footing affects the deformation of a 

granular media and particular analysis will be taken into the load-displacement behaviour, failure mechanisms 

and velocity fields. Granular materials are ubiquitous in our daily lives but have not been studied as much as 

standard fluids and elastic solids so a lack of understanding in their behaviour exists, there is no continuum model 

to predict their behaviour under loading [6]. 

The aim of the study was to investigate the performance of a foundation structures-soil system interactions, as 

well as the effect of the overall foundation stiffness on the load-displacement behaviour and the deformation field 

subsoil using DPIV. The focus of this investigation was limited to smooth strip footings on loose, medium-dense 

and dense sand underlain by a rigid base. 

 

SYSTEM RELATIVE STIFFNESS 

In footing structures-soil interactions analysis, constant vertical displacement profile for rigid footings 

interacting with sand at the depth of the footing embedment is used by engineers [7-9]. But, the displacement in 

sand could vary significantly below the level of the footing-sand interface within the influence zone of depth about 

2-4 times the width of the footing in homogenous sand and layered soils [10-13]. Reinforced concrete footings 

were designed first by Westergaard [14]. Westergaard stated that the subgrade was an elastic media, where the 

stiffness of the subgrade could be measured as the force that would cause unit deflection if it were spread over a 

unit area. The foundation structural behaviour can be characterised by its certain physical characteristics such as 

the stiffness (E). Therefore, when designing the footing on a granular stratum, it is important to know this 

parameter and the effect it has on the granular stratum in which it interacts with. A foundation system where there 

is a load acting on the ground beneath must consider the stiffness induced as this can effect parameters like the 

ultimate bearing capacity and the load-settlement [4]. The quantifying parameter Ks gives information on the 

stiffness of the system or the flexibility. 

 𝐾𝑠 = ( 112)(𝐸𝑏𝐸𝑆)(𝑑𝐵)3 (1) 

  

Where Ks = the system stiffness; Eb = Young’s modulus of elasticity of the footing; ES = secant stiffness 

modulus of the soil; d = thickness of the footing; B = width of the footing. This equation uses a Winkler spring 

model and a function for the stiffness of the footing to determine a stiffness for the whole parameter. Westergaard 

[14] also suggested a measure of the stiffness of the subgrade compared to the stiffness of the foundation, termed 

the radius of relative stiffness. Table 1 below gives an indication of the values for Ks and places them in distinct 

categories so that the stiffness of the system can be determined [15].  

 

TABLE 1. System Stiffness Limits 

Ks System Stiffness 

0 Absolutely Flexible 

0 – 0.01 Semi Flexible 

0.01 – 0.1 Semi Stiff 

0.1 - Infinity Stiff 

 

A series of centrifuge model experiments have studied the effect of the system stiffness on the stress 

distribution below the footing [15]. They have found that the stress distribution below the footing is dependent on 

the stiffness of the footing, as well as the footing settlement for similar soil conditions. For the purpose of this 

research, three footing materials (plastic (P), rubber (R) and aluminium (A)) that differ in relative stiffness were 

used as indentation as presented in Table 2. The aim was to study the effects of the increase of the system relative 

stiffness of the indentation on granular material therefore material of different stiffnesses were used. The base of 

the whole types of footing was essentially smooth. 
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TABLE 2. Properties of footing material 

 

 

 

For the purposes of this study, dry silica sand collected from the UK was used as the granular material [7-13]. 

Table 3 highlights some key properties of the three different packing densities of sand and the physical properties 

used according to the American Society for Testing and Materials [16-17].  

 

 EXPERIMENTAL SETUP 

Bearing capacity tests of the footing were conducted in aluminium strong planar box of 460 mm in length, 300 

mm in height, and 39 mm in thickness, filled with sand (Fig. 1a). Front wall of 15 mm thickness (Smooth Perspex) 

is used to eliminate any bending effects (Fig. 1b).  The footing models located at the sand surface (Df = depth of 

foundation=0) were smooth. The load was transferred through a 20 mm diameter and 3 mm thickness circular 

desk positioned at the centre of the footing. Such fitting to the loading machine; therefore, rotation of the footing 

was allowed as it approached failure. The footings were used with dimensions as shown in Table 2.  The authors 

wish to point out that, in the case of strip foundation used in practice, around the ends of the strip footings three-

dimensional condition could exist even if the footing is long. However, plane-strain condition could present for 

rest of the strip footings [1,10-11, 18] as assumed in the current two-dimensional plane-strain tests [4, 12-13,19]. 

 
  

(a) (b) 

FIGURE 1. (a) Experimental setup (b) schematic diagram of the experimental setup, not to scale 

 
The loose sand was set directly on the loading machine platform by pouring the soil uniformly across the width 

of the model box in layers using pluviation technique from Jahanger et al [10-11] so that any segregation of the 

grains was avoided during the construction process [7-13]. The preparation procedure was done directly on the 

loading machine baseplate.  A hand scraper was used to gently level off the top surface of the sand layer. The 

disturbance of the constructed loose sample was avoided before applying the axial loading in our experiments. 

The mass of sand grains laid in the planar box to the required height pertains to the density of the loose sample. 

The medium-dense packing was achieved in three compacted layers using 50 blows per layer in 35 mm lifts by a 

predesigned hand compaction hammer (1.05 kg). The dense sand was prepared in five layers, compacted using 

60 blows per layer [10-11]. 

TEST PROCEDURE 

The experimental tests were done using universal testing system, Instron 5985L3398A strain-controlled 

machine (Instron, Norwood, Massachusetts at University of Leeds), shown in Fig. 1a [7-13]. A vertical 

compression loading was applied slowly on the centre of the footing (0.05 mm/s indentation velocity) using 5.0 

kN load cell. The machine accuracy was measured to be with 0.1 N resolution for load and with < 0.001 mm for 

settlement. The macroscopic settlement of the footing (S) and load (P) were also read from the tests using Instron 

data acquisition software. The test was completed when failure occurred or when settlement of the footing = 20-

25 mm. Hundreds of P-S readings were measured form each test, but only coarse data were presented in Fig.2 for 

Material Symbol d (mm) B (mm) Eb (MPa) 

Plastic P 2.3 38 2000 

Rubber R 10 44 100 

Aluminium A 16 38 70000 

Camera 

Data acquisition 

 

Footing 

Sand 

z 

Loading cell 
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better clarity. The sand from previous test was removed from the planar test box and the sand was refilled into the 

planar model box before starting a new test. 

 

TABLE 3. Experimentally measured physical properties of the sand used 

 

 

 

 

 

 

  

 

 

 

 

 

PARTICLE IMAGE VELOCIMETRY (PIV) ANALYSIS  

In the field of fluid mechanics, Particle image velocimetry (PIV) is often used to track the motion of fluid flow 

using tracer particles [20]. It has been also used to study the displacement and(/or) strain  distribution in some 

cases of granular materials [7-13, 21]).  A Nikon D5500 camera that captures image at a high definition resolution 

of 24 megapixels was placed 70 cm away from the planar box model and was used to capture movement of the 

granular media. Two lights were used to illuminate the front of the planar box so a clear image could then be 

captured. The loading exhibited is quasi static so an image every 1 second was obtained in order to detect any 

movement. The resolution gathered of the images were 6000 × 4000 pixel and a field of view of 270 mm × 180 

mm from the centre of the footing was taken and this is roughly 0.05 mm/pixel. 

Dynamic Studio Software Platform (DSSP) is used to analyse the digital images acquired during test using 

digital PIV (DPIV) [22]. This functionality built in the DSSP was used to analyse the digital frames of the grains, 

and to compute the related velocity vectors of the grains and their evolution during load application within the 

sand layer. More details can be found elsewhere [7-13, 23]. 

 RESULTS AND DISCUSSIONS 

Average Footing Stress versus Settlement 

The load–settlement relationship for the footing structures-sand interactions (Some of average of three tests) 

interacting with sand (using coarse data only) is presented in Fig. 2. The load–settlement curves show punching 

(without a well-defined peak), local (moderate peak) and general (well-defined peak) shear failures for sand which 

are consistent with what described by Vesic [24] indicate the repeatability of the test conditions. The footing was 

loaded until a minimum settlement value of S = 20 mm was achieved. Ultimate bearing capacity was measured 

using the tangent intersection method, in which one marked ultimate bearing load qult and its corresponding 

ultimate settlement (Su) were inset in Fig. 2. Therefore, it can be seen that all tests were loaded well beyond the 

failure settlement. However, for the dense sand, the ultimate bearing load became well-defined when a sudden 

collapse occurred. The ultimate bearing capacity for a surface strip footing resting on granular soil of cohesion 

c=0, and subjected to vertical load can be expressed by adding the Nq contribution to predict of bearing capacity 

according to Terzaghi [25] as: 

 𝑞𝑢𝑙𝑡 = 0.5𝐵𝛾𝑁𝛾 + (𝑆𝑢 𝐵⁄ )𝐵𝛾𝑁𝑞 (2) 

 

Where γ is the unit weight of the soil, Nq and Nγ are the bearing capacity factor due to surcharge stress and unit 

weight of soil respectively. Both the bearing resistance and the failure strain (S/B) increases with an increase in 

packing density of sand. 

Type of sand Loose Medium-dense Dense  Standards 

Dry density (): (kN/m3) 14.60 15.45 16.0 ASTM C29/C29M 

 Void ratio (eo) 0.77 0.683 0.62 

Relative density, Dr: % 22 56 78 ASTM C128 

Peak angle of internal friction, ϕpeak-ds: °  32.4 40 46.1          ASTM D3080 

Young’s Modulus (MPa) 25 38 50  

Maximum dry density (dmax): kN/m3 16.50 ASTM D698 

Minimum dry density (dmin): kN/m3 14.23 ASTM D4254 

Maximum void ratio (emax) 0.83 ASTM C29/C29M 

Minimum void ratio (emin) 0.58 ASTM C29/C29M 

D50: mm 0.37 ASTM D421&D422 

Uniformity coefficient, CU 1.55 ASTM D2487 

Coefficient of curvature, CC 0.93 

Grain shape Mostly spherical to sub-prismoidal Head (2006) 

 

Head (2006) 

Angularity of grains 

Angle of repose of the sand                         

Angular and sub angular 

34o 

ds: Direct shear test    
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FIGURE 2. Load-settlement curves of footing interacting with loose, medium-dense and dense sand.  The guide arrows 

show the ultimate load level (qult) of the sand packing 

 
Table 4 summarizes ultimate bearing load (qult), last settlement reading before collapse occurred (Su). This 

result shows a good agreement between experimental measurements and the Terzaghi formula [25] for dense sand 

only. The soil before qult behaves like elastic, and after yield points (qult) plastic zone develops. Therefore, the 

stress–strain curve captures both elastic and plastic deformations.  

TABLE 4. Summary of test results 

Ultimate Load and Settlement as a Function of Footing Stiffness 

Figure 3 shows the change of the ultimate load with footing system’s relative stiffness.  It can be clearly seen 
the decrease in the bearing capacity as the foundation system stiffness increases. This decrease, however, is also 

associated with a smaller ultimate settlement (failure settlement). The ultimate bearing loads of the whole footing 

systems are consistently underestimated if one uses Terzaghi bearing capacity equation for predictions. 

Leshchinsky and Marcozzi [5] have hypothesised based on experimental evidence that a high stress 

concentration could be exist around the edge of the rigid footing, which resulting in the development of 

progressive local failure of the soil by stressed beyond soil peak strength. This could be the reason for the apparent 

decrease in bearing capacity as the stiffness increased. Whereas, the flexible foundation system produces smaller 

stress concentrations that lead a collapse governed by peak strength along most of the failure surface; i.e., 

approximately uniform shear strength mobilization happens. Thus, the potential for a significant development of 

peak strength may lead to a lower bearing capacity for the rigid footing as compared with the flexible one.  

 

20

15
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5

0
0 50 100 150 200 250
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                                     Plastic
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                                     Aluminium
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 S
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)

q
ult

Foundation 

system 

Ks qult, kPa 

(measured) 

Su/B qult, kPa 

(predicted) 

qult ratio, measured to 

predicted 

System 

stiffness 

P-L 0.0015 24 0.092 8.0 3.0 Semi-flexible 

R-L 0.0041 37 0.079 9.0 4.2 Semi-flexible 

A-L 17.417 28 0.077 7.7 3.7 Stiff 

P-M 0.0009 192 0.131 32.4 5.1 Semi-flexible 

R-M 0.0027 149 0.120 37.1 4.6 Semi-flexible 

A-M 11.458 105 0.121 32.1 3.3 Stiff 

P-D 0.0007 197 0.176 127 1.4 Semi-flexible 

R-D 0.0020 182 0.156 145 1.5 Semi-flexible 

A-D 8.7087 165 0.157 125 1.3 Stiff 

P=Plastic; R=Rubber; A=Aluminium; L=Loose; M=Medium-dense; D=Dense  
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FIGURE 3. Ultimate load versus relative stiffness foundation system 

 
The increases in the bearing load with the flexibility of the foundation system, however, also lead to increase 

the corresponding settlement at failure (Fig. 4). This figure shows the normalised settlement (Su/B) plot versus the 

foundation relative stiffness (Ks). Aggregate settlement occurs due to significant deformation of both of the footing 

and the sand. The trend of the curves (Su/B) approach a constant value with the relative stiffness increases, which 

indicates independent of the foundation relative stiffness (Ks), and the settlement then becomes dependent on the 

sand packing density.  Leshchinsky and Marcozzi [5] have stated reducing the stiffness, however, is also resulted 

with increased ultimate settlement. In addition, Lemmen et al [4] have concluded that with increasing stiffness, 

the settlement reduced, but up to a point. Once the footing classified as stiff, no more improving could be got by 

increasing stiffness. The design for many structures on sand is controlled by a tolerable settlement, especially as 

the required B increases, rather than by allowable bearing capacity. Analysing the plots, it can be gathered from 

experiments that as the relative stiffness increases beyond the semi-stiff region of (Ks =1.0) the normalised 

settlement (Su/B) becomes constant at approximately 0.05, 0.12 and 0.15 for loose, medium-dense and dense sand 

respectively. 

 

  

FIGURE 4. Normalised ultimate settlement with system relative stiffness 

Analysis of Surface Failure 

The displacement of the sand grains beneath the footing was determined with the use of DPIV [22].  Soil 

displacement is dependent on the applied stress on the soil and the flexibility of the footing [1]. Figure 5 presents 

the resultant displacement vectors and the average slip surfaces under ultimate load for semi-flexible and stiff 

foundation systems in loose and dense sand packings. The resultant displacement field of semi-flexible footing 

system is presented first on the left hand side, followed by the stiff to the right hand side. Each figure extends to 

a width of 3.5B form the footing centreline on both side and a depth of 3.7B from footing sand interface. It can be 

seen that a big difference has shown in the failure surface pattern for the packing density (i.e. between Fig. 5 (a) 

and Fig. 5 (b)) and for the footing relative stiffness. Displacement profiles are different for semi-flexible and stiff 

which collapse occurred symmetrically along the footing centre line with a failure mode of general shear. The 

materials beneath the footing base objects with the granular materials moving as if they are continuous extension 
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of the footing, i.e., no slip surface at the footing-granular interface. The grains in this region under the footing 

have the highest vertical displacement for the increase in the rigidity of the footing system. The sand surface forms 

a heap spreading up wider and shallower in stiff system than semi-flexible. It seems likely that the reason behind 

decreases the ultimate load with increased relative stiffness, which the soil fails quickly due to load concentration 

around the footing corner and cannot sustain the applied load and therefore moving sideward and upward. 

However, it seems likely that the apparent increase in the settlement of the footing as the stiffness decreased may 

be attributed to the differences in interfacial contact stresses resulting in the development of progress failure (Fig. 

5 a and b). This is consistent with Leshchinsky and Marcozzi [5] and the pictorial profile of the shape of the zone 

of failure (Fig. 5c) compared well with Jahanger et al. 2018a for the case of rigid foundation system. However, 

the flexible foundation system shows a deeper failure zone which can be accept as the footing’s settlement is more 
along the line of symmetry of the flexible footing [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. (a-b) Resultant displacement vectors under ultimate load (c) sketch of average slip surface underneath footing 

of different packing densities 

 

CONCLUSIONS 

The effects of relative stiffness of the foundation system on the ultimate baring capacity and corresponding 

settlement are not yet studied well. Here, small-scale footing test were conducted to investigate the bearing 

capacity and related settlement under plane-strain condition. The results indicate that the ultimate bearing capacity 

increases as the relative stiffness of foundation system decreases. This increase, however, is also associated with 

a larger failure settlement of the footing.  Substantial and consistent differences in the slip surface envelopes were 

shown. No more improving in the load-settlement, once relative stiffness (ks) of foundation system is more than 

1.0.  The relative stiffness (ks) can be applied to measure the strength characteristics of more realistic footing 

structures-sand interactions in future. The soils in the region under the footing have the highest vertical 

displacement for the increase in the rigidity of the footing system. However, the rigidity of the foundation, system 

affects its load-settlement response. Therefore, this should help to design structures on complex media such as 

landfill sites with granular media. A new ultimate bearing capacity equation have to be established accounting for 

the relative stiffness of the foundation system. Therefore, using Terzaghi equation (2) is underestimated the 

predicted ultimate bearing capacity for relative stiffness of the foundation system that less than rigid using 

equation (1). Bearing capacity of shallow flexible foundations is higher because the soil strength changes and 

could be because the failure mechanism changes. Further investigation must be carried out to generalize and 

validate the relative stiffness factor to the conventional bearing capacity equation. 

(a) Ks=0.002 (Semi-flexible) (b) Ks=8.708 (Stiff) 

(c) 

Semi-flexible foundation, ks<1.0 
 

Stiff (Rigid) foundation ks ≥1.0 

0                                                      3                                        5 mm 
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